The article of manufacture disclosed herein, in general, relates to a woven fabric. More particularly, the article of manufacture disclosed herein relates to a multi-effect woven fabric constructed by weaving comprising a predetermined number of yarns that impart energy harvesting, heat generating, and heat management properties.
Conventional clothing that is typically worn in cold weather creates a passive, cold, insulating barrier between a wearer of the clothing and the ambient environment. Although the passive, cold, insulating barrier reduces the body heat of the wearer from dissipating to the ambient environment, the conventional clothing does not minimize this heat loss to the environment effectively, which may result in the skin temperature of the wearer falling to a level that may not be comfortable for the wearer. Furthermore, conventional clothing typically worn in cold weather is bulky, heavy, cumbersome, and not comfortable, and restricts the movement and physical activities of the wearer.
Hence, there is a long felt need for a light weight and less bulky energy harvesting, heat generating, and heat managing, multi-effect woven fabric with active insulating performance, that maintains a uniform temperature on the skin of a wearer by a combination of heat generation, heat energy harvesting, and heat radiation within the multi-effect woven fabric and between the multi-effect woven fabric and the wearer's skin.
This summary is provided to introduce a selection of concepts in a simplified form that are further disclosed in the detailed description of the invention. This summary is not intended to determine the scope of the claimed subject matter.
The fabric disclosed herein addresses the above recited need for a light weight, less bulky, energy harvesting, heat generating, and heat managing multi-effect woven fabric with active insulating performance, herein referred to as “multi-effect woven fabric”, that maintains a uniform temperature on the skin of a wearer by a combination of heat generation, heat energy harvesting, and heat radiation within the multi-effect woven fabric and between the multi-effect woven fabric and the skin of the wearer. The multi-effect woven fabric harvests energy from both a wearer's interaction with a garment made of the multi-effect woven fabric and the ambient environment, and converts the harvested energy into heat that can be stored and distributed within the garment made of the multi-effect woven fabric with no additional device, for example, without a heat cartridge, microwave-able gel, battery, charger, etc.
The multi-effect woven fabric disclosed herein comprises a combination of a predetermined number of yarns woven with each other in a repeating pattern. The yarns comprise a first yarn, a second yarn, a third yarn, and a fourth yarn. The first yarn absorbs, stores, and releases heat energy through a phase change. The second yarn converts heat energy from the skin of a wearer, heat energy released from the first yarn, and heat energy generated from the third yarn of the multi-effect woven fabric into far infrared radiation energy and radiates the far infrared radiation energy to the other yarns and to the skin of the wearer. The third yarn absorbs moisture from one or more of the skin of the wearer and the ambient environment, and generates heat energy through an exothermic process between the moisture and the third yarn. The fourth yarn has a hydrophobic structure for removing moisture from the third yarn when the fourth yarn is in contact with the third yarn.
In an embodiment, the second yarn harvests heat energy from the skin of the wearer, heat energy released from the first yarn, and heat energy generated from the third yarn of the multi-effect woven fabric through conduction. In another embodiment, the second yarn harvests heat energy from the skin of the wearer, heat energy released from the first yarn, and heat energy generated from the third yarn of the multi-effect woven fabric through radiation.
The foregoing summary, as well as the following detailed description of the invention, is better understood when read in conjunction with the appended drawings. For illustrating the invention, exemplary constructions of the invention are shown in the drawings. However, the invention is not limited to the specific methods and structures disclosed herein. The description of a method step or a structure referenced by a numeral in a drawing is applicable to the description of that method step or structure shown by that same numeral in any subsequent drawing herein.
The multi-effect woven fabric 100 disclosed herein harvests heat energy and manages heat, temperature, and moisture of the wearer's skin to maintain a uniform temperature on the wearer's skin at a comfortable level by a combination of the heat energy generation, heat energy harvesting, and radiation of the heat energy within the multi-effect woven fabric 100 and between the multi-effect woven fabric 100 and the wearer's skin. The multi-effect woven fabric 100 is light weight and less bulky than conventional winter clothing. The multi-effect woven fabric 100 is used for constructing garments of different types that cover the wearer's entire body, or a part of the body of the wearer, for example, the wearer's torso or any other part of the wearer's body. Examples of garments that can be made using the multi-effect woven fabric 100 disclosed herein comprises shirts, blouses, dresses, scarves, slacks, skorts, skirts, denim jeans and jackets, jackets, jacket linings, windbreakers, coats, coat linings, etc., or other types of garments that can be worn on a wearer's body part to provide optimal temperature to the wearer. In an embodiment, the multi-effect woven fabric 100 disclosed herein is stitched to form one or more parts of a garment. The multi-effect woven fabric 100 is used for manufacturing light, less bulky clothing for use in cold weather.
The multi-effect woven fabric 100 disclosed herein comprises a combination of predetermined number of yarns. Interactions between the yarns of the multi-effect woven fabric 100 and interactions between the yarns and the wearer's skin provide the multi-effect property and function and active insulating performance of the multi-effect woven fabric 100. As used herein, “active insulating performance” refers to a function of the multi-effect woven fabric 100 that insulates the wearer's skin from cold air of the ambient environment. The multi-effect woven fabric 100 reduces heat energy transfer between the wearer's skin and the ambient environment, generates heat energy, stores heat energy, and uses multiple concurrent heat transfer methods to utilize the generated heat energy, which working in concert with the other heat generating and heat conserving functions of the other yarns, provide the active insulating function.
The first yarn 101 of the multi-effect woven fabric 100 disclosed herein is made of a phase change material for absorbing, storing, and releasing heat energy similar to a heat battery through a physical-chemical process called phase change. As used herein, “phase change material”, herein abbreviated as PCM, refers to a substance that undergoes a phase change process, for example, from a solid phase to a liquid phase and vice versa. The phase change material absorbs, stores, and releases heat energy as the phase change material oscillates between a solid phase and a liquid phase. The phase change functionality in the first yarn 101 is produced by micron size droplets of paraffin or similar phase change materials that change between a liquid phase and a solid phase, which are encapsulated in the first yarn 101. When heated, the phase change material droplets contained in the first yarn 101 change to a liquid phase, and when cooled, the phase change material droplets contained in the first yarn 101 change to a solid phase. Heat energy is released as the phase change material changes to a solid phase and heat energy is absorbed as the phase change material returns to a liquid phase.
The phase change material is selected to change phase in a temperature range from about 1-2° C. above and about 1-2° C. below normal human skin temperature. In an embodiment, the phase change material is selected to change phase in a temperature range from about 1-10° C. above normal human skin temperature to about 1-10° C. below normal human skin temperature. The first yarn 101 with its phase change material stores heat generated by the wearer and the third yarn 103. In an embodiment, the first yarn 101 comprises phase change material bubbles encapsulated in a polymer fiber. Examples of phase change materials comprise paraffin, salt hydrates, fatty acids, esters, etc. The diameter of a phase change material bubble is, for example, about 5 micrometer (μm). In another embodiment, the phase change material is sprayed onto the first yarn 101. Furthermore, the phase change material in the first yarn 101 provides a heat buffering functionality to the first yarn 101. The first yarn 101 therefore functions as a heat buffer and minimizes temperature swings in the multi-effect woven fabric 100, thereby providing a uniform temperature within the multi-effect woven fabric 100. An example of the first yarn 101 is the Outlast® phase change yarn of Outlast Technologies, LLC, Golden, Colo.
The second yarn 102 of the multi-effect woven fabric 100 disclosed herein converts heat energy from the wearer's skin, the heat energy released from the first yarn 101, and heat energy generated from the third yarn 103 into far infrared radiation energy and radiates the far infrared radiation energy to the other yarns and to the wearer's skin. The far infrared radiation energy radiates far infrared heat to the other yarns and to the wearer's skin. The wavelength of the far infrared radiation as specified by International Commission on Illumination (CIE) is in a range of, for example, about 3 micrometer (μm) to about 100 μm. Radiation is a method of heat transfer that does not rely upon a contact between the source of heat, for example, the wearer's skin, the first yarn 101, third yarn 103, and the object heated by the source of heat, for example, the second yarn 102. Heat is transmitted though empty space by radiation.
In an embodiment, the second yarn 102 harvests the wearer's body heat, that is, the heat energy of the wearer's skin, the heat energy released from the first yarn 101, and the heat energy generated from the third yarn 103 through conduction, and converts the harvested heat energy into far infrared radiation energy. The second yarn 102 radiates the far infrared radiation energy that radiates far infrared heat into the other yarns as well as back to the skin surface, thereby causing deep, gentle heating of the wearer's skin. In an embodiment, the second yarn 102 comprises multiple bioceramic particles. The bioceramic particles are, for example, boron-silicate minerals, tourmaline etc. in a nanoparticle form embedded in the second yarn 102. The bioceramic particles are minerals with photo-thermal properties. Photo-thermal property is a property associated with electromagnetic radiation. The bioceramic particles emit and/or reflect far infrared thermal radiation when heated by the skin of the wearer or another source. An example of the second yarn 102 is the NILIT® Innergy yarn of NILIT Limited Corporation, Maurizio Levi Road, P.O. Box 276, Ramat Gabriel, Migdal Haemek, 2310201, Israel. In another embodiment, the second yarn 102 harvests the wearer's body heat, that is, the heat energy of the wearer's skin, the heat energy released from the first yarn 101, and the heat energy generated from the third yarn 103 by radiation.
The third yarn 103 of the multi-effect woven fabric 100 disclosed herein absorbs moisture from perspiration of the wearer's skin and/or from humidity in the ambient environment and generates heat energy through an exothermic process between the moisture and the third yarn 103. In an embodiment, the third yarn 103 comprises, for example, an acrylic polymer for absorbing moisture and releasing heat. The absorbed moisture and the acrylic polymer in the third yarn 103 generate heat energy through an exothermic process.
In an embodiment, the third yarn 103 comprises a polyacrylate fiber with moisture absorption and release characteristics. The polyacrylate fiber absorbs and releases moisture at a rapid rate, exhibits heat generating properties, and possesses antibacterial properties and flame retardancy. The chemical structure of the polyacrylate fiber yields performance characteristics that make the polyacrylate fiber suitable for use in cold weather apparel. The polyacrylate fiber comprises a long chain synthetic polymer composed of, for example, greater than about 25% by weight of acrylate units and less than about 10% by weight of acrylonitrile units. The polyacrylate fiber is an ionic polymer, and thus absorbs water vapor from the skin of the wearer of the multi-effect woven fabric 100 in a substantially higher quantity and at a faster rate than other fibers. The high water absorbency of the polyacrylate fiber removes excess moisture from the wearer's skin, thereby providing more comfort to the wearer. Moreover, by absorbing water vapor from the wearer's skin, the polyacrylate fiber generates heat for the wearer through the enthalpy of condensation, that is, by the latent heat of the water vapor released to the skin of the wearer of the multi-effect woven fabric 100 upon the condensation of the vapor in the polyacrylate fiber. Therefore, the third yarn 103 comprising the polyacrylate fiber in the multi-effect woven fabric 100 keeps the wearer significantly warmer and more dry. The polyacrylate fiber also releases water at a faster rate than other fibers that allows the multi-effect woven fabric 100 comprising the third yarn 103 made of the polyacrylate fiber to dry up to three times faster than cotton garments, and significantly faster than garments constructed of other generic fibers. An example of the third yarn 103 is the Eks® yarn of Toyobo Co., Ltd., Osaka, Japan.
The fourth yarn 104 of the multi-effect woven fabric 100 disclosed herein possesses a hydrophobic property and structure and repels water. Furthermore, the fourth yarn removes moisture from the third yarn when the fourth yarn is in contact with the third yarn. The fourth yarn 104 is made of natural raw materials and/or synthetic raw materials, for example, wool, cashmere, polypropylene, polyester, etc. The fourth yarn 104 repels water to reduce entry of unwanted ambient cold air into the multi-effect woven fabric 100. An example of the fourth yarn 104 is Prolen® by Chemosvit Fibrochem, Stúrova, Slovakia. In an embodiment, the material of the fourth yarn 104 is coated with one or more hydrophobic or water repellent materials. The hydrophobic materials comprise, for example, polypropylenes, polyesters, etc. Polypropylene is made from propylene monomers. Polyester is made up of purified terephthalic acid (PTS) or its dimethyl ester dimethyl terephthalate (DMT) and monoethylene glycol (MEG).
In an embodiment, one or more of the yarns that are used as warps 105 are also used as the wefts 106 and vice versa. For example, when a fourth yarn 104 is used as a warp 105, the first yarn 101, the second yarn 102 and the third yarn 103 are used as wefts 106. In another embodiment, the first yarn 101, the second yarn 102 and the third yarn 103 are twisted together to form a twisted yarn bundle 404, as exemplarily illustrated in
Different types of looms are used commercially for weaving fabrics. Looms are most often defined by the way the weft 106, that is the pick, is inserted into the warp 105. A single thread of the weft 106 crossing the warp 106 is called a pick. Many advances in weft 106 insertion have been made in order to make manufactured cloth more cost effective. Regardless with which method the weft 106 is inserted (i.e., picked), the weaving loom 107 used herein is configured to pick from the required number of different yarns in a predetermined and repeating sequence. Both Dobby loom and Jacquard loom provide this requirement.
The multi-effect heat transfer and the active insulating performance of the multi-effect woven fabric 100 are achieved by interactions between the yarns disclosed above and between the yarns and the wearer of the multi-effect woven fabric 100, as a result of the combination of at least two of several different yarn configurations of the multi-effect woven fabric 100 in the entire garment or in specific areas of the garment. Due to the relative positions of the yarns to each other, the multi-effect woven fabric 100 maximizes interplay between the yarns, and the yarns and the wearer's skin. The first yarn 101 absorbs far infrared radiation energy in the range of, for example, about 3 μm to about 100 μm from the second yarn 102 and the first yarn 101 conductively receives heat energy from the third yarn 103 by physical contact with the third yarn 103. The first yarn 101 with the heat buffering effect of the phase change material, in conjunction with the second yarn 102 and/or the third yarn 103 having high heat conductivity, affects a uniform temperature within the combination of the predetermined number of yarns. The second yarn 102 and the third yarn 103 interact with each other and with the wearer's body part and/or the ambient environment to harvest heat energy. The second yarn 102 provides deep, gentle heating to the wearer's body part by radiating the far infrared radiation energy that radiates far infrared heat into the other yarns, and also back to the skin of the wearer's body part. The hydrophobic property and structure of the fourth yarn 104 removes moisture when the fourth yarn 104 is in contact with the third yarn 103, thereby allowing the exothermic process between the moisture and acrylic polymer in the third yarn 103 to progress without reaching equilibrium or saturation.
The combination of the predetermined number of specific yarns in the multi-effect woven fabric 100 disclosed herein results in energy harvesting, heat generation, active heat management comprising conductive heat transfer and radiation, all self-contained within the multi-effect woven fabric 100. The combination of the predetermined number of specific yarns in the multi-effect woven fabric 100 disclosed herein interact with each other and with the wearer and the ambient environment. The effect of all the processes performed by the yarns together, for example, generation of heat energy by an exothermic process, the conductive use of the heat energy by transferring the heat energy to the wearer and to the other yarns, conversion of the heat energy into far infrared radiation energy, storage of the heat energy, absorption, heat insulation, moisture removal, etc., result in heat generation and energy harvesting and in development of a heat management system in the multi-effect woven fabric 100 that works effectively without requiring any other external energy source or heating device in the multi-effect woven fabric 100.
The multi-effect woven fabric 100 disclosed herein is a self-heat generating system as the multi-effect woven fabric 100 harvests or scavenges energy both from the multi-effect woven fabric's 100 interaction with its wearer and from the outside environment, and converts this harvested energy into heat, which is stored and distributed within the multi-effect woven fabric 100. The active heat management of the multi-effect woven fabric 100 is self-generated with no additional device, for example, a heat cartridge, microwaveable gels, a battery, a charger, etc., required for maintaining heat generated within the multi-effect woven fabric 100. This is accomplished by combining at least three different types of specific yarns, selected from the yarns disclosed above, each performing the function of generating, storing, and distributing heat, respectively. The energy harvesting, heat generating, and heat managing effects of the multi-effect woven fabric 100 are achieved by the interaction of each yarn with the wearer and/or the ambient environment, and with another physically adjacent yarn due to the method of construction of the multi-effect woven fabric 100. The combination of the predetermined number of yarns and the specific construction of the multi-effect woven fabric 100 disclosed herein provides positive results to a wearer wearing the multi-effect woven fabric 100 in cold weather.
The third yarn 103 absorbs moisture at ambient pressure and ambient temperature. When the third yarn 103 receives heat energy, moisture absorbed is desorbed and escapes from the surface of the third yarn 103. The third yarn 103 cools after the desorption of the moisture. The process of absorption and desorption is a thermodynamically reversible process. The third yarn 103 can start the absorption anew. The heat energy received by the third yarn and the heat energy generated by the third yarn 103 are used conductively in different methods. In a first method, the heat energy generated by the third yarn 103 is used conductively by touching the wearer's skin. In a second method, by touching the first yarn 101, the third yarn 103 transfers the generated heat energy to the phase change material of the first yarn 101, which stores the heat energy. In a third method, the third yarn 103 transfers the generated heat energy to the second yarn 102, which converts this heat energy into far infrared radiation energy.
In an embodiment, two or more of the first yarn 101, the second yarn 102, and the third yarn 103 in the twisted yarn bundle 404 receive the heat energy from each other and from the skin of the wearer and conductively transfer the heat energy to each other and to the skin of the wearer.
The foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the multi-effect woven fabric 100 and the method of construction thereof disclosed herein. While the multi-effect woven fabric 100 and the method disclosed herein have been described with reference to various embodiments, it is understood that the words, which have been used herein, are words of description and illustration, rather than words of limitation. Furthermore, although the multi-effect woven fabric 100 and the method have been described herein with reference to particular means, materials, and embodiments, the multi-effect woven fabric 100 and the method are not intended to be limited to the particulars disclosed herein; rather, the multi-effect woven fabric 100 and the method disclosed herein extend to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims. While multiple embodiments are disclosed, it will be understood by those skilled in the art, having the benefit of the teachings of this specification, that the multi-effect woven fabric 100 and the method disclosed herein are capable of modifications and other embodiments may be effected and changes may be made thereto, without departing from the scope and spirit of the method and the system disclosed herein.
This application claims priority to and the benefit of the provisional/non-provisional patent application titled “Multi-Effect Woven Fabric For Energy Harvesting And Heat Management”, application No. 62/591,753, filed in the United States Patent and Trademark Office on Nov. 28, 2017. The specification of the above referenced patent application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7160612 | Magill | Jan 2007 | B2 |
8679627 | Hartmann | Mar 2014 | B2 |
9719206 | Blakely | Aug 2017 | B2 |
10208403 | Hartmann | Feb 2019 | B2 |
10590321 | Hartmann | Mar 2020 | B2 |
20030068949 | Ishii | Apr 2003 | A1 |
20030224684 | Botturi | Dec 2003 | A1 |
20070160836 | Magill | Jul 2007 | A1 |
20080233368 | Hartmann | Sep 2008 | A1 |
20090035557 | Hartmann | Feb 2009 | A1 |
20100196707 | Magill | Aug 2010 | A1 |
20100275342 | Sweeney | Nov 2010 | A1 |
20100300054 | Cole | Dec 2010 | A1 |
20120225290 | Hartmann | Sep 2012 | A1 |
20160000159 | Falken | Jan 2016 | A1 |
20160295928 | Bopanna | Oct 2016 | A1 |
20170035605 | Estreicher | Feb 2017 | A1 |
20170086522 | Goenka | Mar 2017 | A1 |
20170130112 | Hartmann | May 2017 | A1 |
Number | Date | Country |
---|---|---|
201821921 | May 2011 | CN |
103014992 | Apr 2013 | CN |
1144537 | Mar 1969 | GB |
2534531 | Nov 2014 | RU |
1640236 | Apr 1991 | SU |
2013044108 | Mar 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20190161891 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62591753 | Nov 2017 | US |