This invention is directed generally to gas turbine engines, and more particularly to ignition systems in gas turbine engines.
Typically, gas turbine engines include a compressor for compressing air, a combustor for mixing the compressed air with fuel and igniting the mixture, and a turbine blade assembly for producing power. Combustors are typically formed from a plurality of combustor baskets positioned concentrically about the longitudinal axis of a gas turbine engine. Combustion systems with cross flame tubes typically have two baskets with igniters while combustion systems without cross flame tubes contain a single igniter having a single electrode for igniting the fuel mixture within each combustor basket.
This invention relates to an ignition system for a combustor of a gas turbine engine. The ignition system may include igniters with multiple electrodes to reduce the likelihood of system failure. In at least one embodiment, the ignition system may be formed from a first igniter formed from an outer electrode containing at least one central electrode at a distal end of the outer electrode and may include a second igniter. The second igniter may be formed from a central electrode positioned within the outer electrode forming the first igniter. During operation, both electrodes of the igniters may spark to ignite the fuel mixture within the combustor.
The ignition system for a gas turbine engine may include a first igniter formed from an outer electrode containing at least one central electrode at a distal end of the outer electrode, a second igniter formed from at least one central electrode and at least one outer electrode. The central electrode of the second igniter may be positioned within the outer electrode of the first igniter at the distal end of the outer electrode. A cable connection may be positioned at a proximal end of the outer electrode of the first igniter to couple the igniter to other turbine components, such as a control system. A first exciter may be in electrical communication with the first igniter, and a second exciter may be in electrical communication with the second igniter. In another embodiment, the first exciter may be in electrical communication with the first igniter and the second igniter. In one embodiment, the central electrodes of the first and second igniters may be contained within the same outer electrode.
An advantage of this invention is that the ignition system includes redundancy, thereby reducing the likelihood of system failure should one of the igniters fail.
Another advantage of this invention is that the ignition system includes redundancy while using the existing penetrations in the basket.
These and other embodiments are described in more detail below.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate embodiments of the presently disclosed invention and, together with the description, disclose the principles of the invention.
As shown in
A shown in
The ignition system 10 may include a second igniter 26 formed from at least one central electrode 28. As shown in
The first igniter 18 may include a cable connection 42 for attaching the first igniter 18 to an exciter 32 or other appropriate components. The cable connection 42 may be, but is not limited to being, a releasable connector such as a threaded connector, a quick connect connector or the like. The cable connection 42 may be positioned at a proximal end of the outer electrode of the first igniter 18.
In one embodiment, a first exciter 32 may be in electrical communication with the first igniter 18, and a second exciter 34 may be in electrical communication with the second igniter 26. As such, if one of the exciters 32, or 34 malfunctions, the ignition system 10 is still able to function using the remaining, operable exciter 32, or 34 to ignite the fuel mixture within the combustor 12. In another embodiment, the first exciter 32 may be in communication with the first and second igniters 18, 26.
The gas turbine engine 14 in which the ignition system 10 is contained may include one or more combustors 14. The combustor 14 may be formed form one or more combustor baskets 36. The combustor baskets 36 may have any appropriate configuration. The ignition system 10 may be used together with one or more combustor baskets 36 within a gas turbine engine 14.
As shown in
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of this invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of this invention.