1. Field of the Invention
The present invention pertains to the art of refrigerators and, more particularly, to the operational control of a refrigerator employing multiple evaporators.
2. Description of the Related Art
In general, a refrigerator includes a freezer compartment for maintaining foods at or below freezing temperatures, and a fresh food compartment for maintaining foods in a temperature zone between ambient and freezing temperatures. A typical refrigerator includes a refrigeration system having a compressor, a condenser, a condenser fan, an evaporator and an evaporator fan. In operation, temperature sensors are used to measure temperatures within the fresh food and freezer compartments. When the temperature of one of the compartments deviates from a predetermined temperature, the refrigeration system is activated to return the temperature to at or below the predetermined temperature. As part of the overall refrigeration system, a damper is typically provided between the freezer and fresh food compartments, wherein operation of the damper controls the flow of cooling air from the freezer compartment to the fresh food compartment. Therefore, a common refrigeration system with a single evaporator is typically employed, along with various air flow fans, to create a flow of cold air used to cool each of the fresh food and freezer compartments, and even possibly onto an icemaker provided in the refrigerator.
Certainly, it is possible to establish distinct refrigeration systems for each of the fresh food and freezer compartments. Although presenting some advantages in enabling the isolated control of the compartments, such an arrangement would be considerably more expensive. Still, there is seen to be a need in the art for a refrigeration system which can establish separated air zones and operate in various control modes in order establish a highly efficient and effective temperature supply and demand scheme.
The present invention is directed to a refrigerator incorporating a freezer compartment, a fresh food compartment, an icemaker and a refrigeration system including multiple evaporators and associated valving which operate in conjunction with a common compressor and condenser in order to effectively regulate temperatures in specified zones of the refrigerator throughout various operational modes. More particularly, the refrigerator can be operated in at least a freezer cooling mode, a fresh food cooling mode and an ice harvesting mode. The icemaker is located in the fresh food compartment and can be selectively linked to the cooling of the fresh food compartment, while being also being selectively isolated for at least the ice harvesting mode.
More specifically, each of the freezer, fresh food and icemaker is provided with a dedicated evaporator such that, during the freezer cooling mode, refrigerant flows from the compressor, to the condenser, through the freezer evaporator and back to the compressor. During fresh food compartment cooling, the refrigerant bypasses the freezer evaporator and instead flows from the condenser to the fresh food evaporator, preferably through the icemaker evaporator, prior to being directed back to the compressor. During an ice harvest event, a gaseous flow from the compressor is routed directly to the evaporator of the icemaker to melt ice at an ice/icemaker evaporator interface in aiding in the release of the ice from an ice mold. The arrangement of the components and the strategic locating of the valving establishes the distinct, isolated flow patterns for the various modes of operation.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
In a manner known in the art, fresh food compartment 8 is provided with a plurality of vertically, height adjustable shelves 20-22 supported by a pair of shelf support rails, one of which is indicated at 25. At a lowermost portion of fresh food compartment 8 is illustrated various vertically spaced bins 28-30. At this point, it should be recognized that the above described refrigerator structure is known in the art and presented only for the sake of completeness. The present invention is not limited for use with a side-by-side style refrigerator shown, but may be utilized with other known refrigerator styles including top-mount, bottom-mount, or French door style refrigerators. In any case, as also shown in
Details of a refrigeration system 60 constructed in accordance with a preferred embodiment of the invention will now be set forth with reference to
Also stemming from three-way switching valve 90 is a second supply line 110 which leads, through another expansion device (not labeled), to an icemaker evaporator 115. Subsequent to icemaker evaporator 115 is a second two-way switching valve 118. A first outlet associated with two-way switching valve 118 defines a third supply line 124 which leads to a fresh food evaporator 130 having an associated fan 134. Leading from fresh food evaporator 130 is a second return line 140 which is fluid communication with suction line 70 and leads back to compressor 65. A second outlet associated with two-way switching valve 118 is defined by a third return line 145 which is also in fluid communication with suction line 70 and leads back to compressor 65. Finally, first two-way switching valve 74 is also connected to a bypass line 150 which merges with second supply line 110 so as to be in fluid communication with icemaker evaporator 115.
With the above arrangement, refrigeration system 60 can effectively and efficiently operate in numerous modes. More specifically,
When cooling of fresh food compartment 8 is indicated, based on the signal from at least one temperature sensor (not shown) and a user-selected cooling level for fresh food compartment 8, refrigeration system 60 is operated in a fresh food cooling mode as represented in
As clearly illustrated in these figures, it is preferred in accordance with the present invention to include icemaker 50 in fresh food compartment 8 and, correspondingly, icemaker evaporator 115 within fresh food compartment 8. This arrangement represents a preferred embodiment which produces clear ice in refrigerator 2 such that it is desired to maintain a supply of water in icemaker 50 except at an ice making mold or member(s) (not shown). Since the particular manner in which the ice is formed does not form part of the present invention, it will not be discussed in detail here. Instead, any ice making arrangement known in the art can be utilized in accordance with the overall invention, although clear ice making is preferred. However, it is an aspect of the present invention to establish an ice harvesting mode for icemaker 50. To this end,
Based on the above, it should be readily apparent that refrigerator system 60 includes a common compressor 65 and common condenser 75 and, through the use of strategically placed valving, can selectively regulate flow to one or more of freezer evaporator 96, icemaker evaporator 115 and fresh food evaporator 130 in order to selectively establish at least freezer cooling, fresh food cooling and ice harvesting modes of operation. By providing control algorithms to establish the different modes of operation, the refrigeration system 60 effectively handles any surplus of cooling capacity and at least compressor 65 can be operated with a lower temperature differential, thereby enhancing the overall efficiency of refrigerator 2, while rapidly making ample amounts of ice in an energy efficient manner. In addition, the multi-evaporator arrangement establishes more effective temperature control for fresh food and freezer compartments 8 and 13 through the use of separated air zones, while also enhancing odor and humidity control, minimizing temperature swings and reducing defrosting based on a lower humidity load in freezer compartment 13.
Although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, although the most preferred form of the fresh food cooling mode has refrigerant flowing serially through the icemaker evaporator and then the fresh food evaporator, additional valving could be employed to selectively direct refrigerant from the three-way switching valve into the fresh food evaporator for fresh food cooling, while also enabling a flow to the icemaker evaporator when the icemaker further demands cooling to produce ice. In another variation, the icemaker evaporator could follow the fresh food evaporator, instead of vise-versa. In general, the invention is only intended to be limited by the scope of the following claims.