The disclosure relates to a multi-film damper system suited for use within a bearing housing of a gas turbine engine.
Oil dampers or squeeze film dampers can be used to accommodate radial movement of the rotor shaft and bearings. For instance, multi-film oil dampers may be placed in a coaxial nested series with the rotor system bearing supports to provide damping to a rotor system and, thus, reduce vibrations that would otherwise be present in the system.
For proper function of an oil film damper with multiple films, each of the films between adjacent coaxial nested damper rings must be supplied with sufficient oil. In a multi-film damper, the flow of oil must fill gaps between rings to create individual oil films between each damper ring. Imbalanced rotation of the shaft and bearings will alternately compress and decompress the oil films during damping. A continuous supply flow of pressurized oil is provided to ensure that oil films are maintained.
Under certain conditions, such as during start-up, it might be challenging to provide for a continuous supply flow of pressurized oil so as to ensure that oil films are maintained. Improvement is desirable.
The disclosure describes a multi-film oil damper in a gas turbine engine, comprising: a housing defining an annular damper cavity having an oil inlet in communication with a source of pressurized oil; a plurality of nested damper rings disposed within the annular damper cavity, the plurality of nested damper rings defining a plurality of squeeze film annuli, the nested damper rings having respective radially inner surfaces and radially outer surfaces; spacer bosses circumferentially spaced-apart between adjacent damper rings of the plurality of nested damper rings, the spacer bosses extending between the radially outer surfaces the radially inner surfaces of the adjacent damper rings; and a radial oil channel in fluid communication between the oil inlet and the plurality of nested damper rings.
In accordance with a further aspect, there is provided a method of supplying oil to a multi-film oil damper comprising: providing a plurality of coaxial nested outer damper rings disposed in an oil damper cavity of a bearing housing and sealed with an inner damper ring, flooding the oil damper cavity with oil via an oil inlet; spacing the coaxial nested outer damper rings apart with spacer bosses to define oil filled gaps therebetween; and providing a radial oil channel through a central portion of the plurality of outer damper rings in fluid communication with the oil inlet.
Further details of these and other aspects of the subject matter of this application will be apparent from the detailed description included below and the drawings.
As seen in
The penetration of oil between damper rings can be inhibited by inertia and by the surface tension of the oil coating the adjacent ring surfaces which can cause the rings sticking together. Especially during start-up of the pressurized oil circulating system, there may be difficulty in oil passing between damper rings. As a result oil film formation may be impeded.
As seen in
To distribute oil radially to each cylindrical surface of the outer damper rings 16 from the oil inlet 20 throughout the coaxial outer damper rings 16, the outer damper rings 16 can include a radial oil channel 22 through a central portion of each outer damper ring 16. The inner damper ring 18 serves as the outer race for the roller bearings 14 and also includes spacer bosses 23 to form an oil filled gap with the adjacent outer damper ring 16. To distribute oil circumferentially about the surfaces of the outer damper rings 16, a circumferential oil distribution channel 24 can be provided in each outer damper ring 16. The inner damper ring 18 can include an oil drainage channel 32 to receive and distribute oil between the inner damper ring 18 and the adjacent outer damper ring 16. Oil will flow in the gap between the spaced apart spacer bosses 21, 23 and past the radial sliding seals 19 into the area surrounding the roller bearings 14. Oil is scavenged from the bearing housing 12 and recycled by the oil circulating system of the engine.
Referring to
As shown in
The spacer bosses 21, 23 can be formed by stamping, staking or cold working, or can be added to the cylindrical surface using welding or additive manufacturing. The spacer bosses 21, 23 should be relatively short circumferentially to avoid interfering with the radial stiffness and flexible movement of the outer damper rings 16. For example
In the example shown in
Accordingly supplying oil to the multi-film oil damper 15 includes providing a plurality of coaxial nested outer damper rings 16 disposed in an oil damper cavity 17 of the bearing housing 12 and sealed with an inner damper ring 18. The oil damper cavity 17 is flooded with oil under pressure via the oil inlet 20. The coaxial nested outer damper rings 16 are spaced apart with spacer bosses 21 to define oil filled gaps adjacent to each cylindrical surface of each outer damper ring 16. A radial oil channel 22 is provided through a central portion of each outer damper ring 16 in fluid communication with the oil inlet 20 to distribute oil radially within the annular oil damper cavity 17. A circumferential oil distribution channel 24 on each outer damper ring 16 can distribute oil circumferentially.
The above description is meant to be exemplary only, and one skilled in the relevant arts will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. The present disclosure may be embodied in other specific forms without departing from the subject matter of the claims. The present disclosure is intended to cover and embrace all suitable changes in technology. Modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims. Also, the scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
This application claims priority to U.S. provisional patent application No. 62/878,784 filed Jul. 26, 2019, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4214796 | Monzel | Jul 1980 | A |
4289360 | Zirin | Sep 1981 | A |
RE31394 | Streifert | Sep 1983 | E |
4992024 | Heydrich | Feb 1991 | A |
5071262 | Monzel et al. | Dec 1991 | A |
5207511 | Bobo | May 1993 | A |
5228784 | Bobo | Jul 1993 | A |
8342796 | Spencer et al. | Jan 2013 | B2 |
9879750 | Husband et al. | Jan 2018 | B2 |
10077713 | Gysling et al. | Sep 2018 | B2 |
10233778 | Gysling et al. | Mar 2019 | B2 |
20040062460 | Dusserre-Telmon | Apr 2004 | A1 |
20110058759 | Herborth | Mar 2011 | A1 |
20160040554 | Hovhannisian | Feb 2016 | A1 |
20180128124 | Avis et al. | May 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
62878784 | Jul 2019 | US |