Multi-fire stapling systems and methods for delivering arrays of staples

Information

  • Patent Grant
  • 7934631
  • Patent Number
    7,934,631
  • Date Filed
    Monday, November 10, 2008
    15 years ago
  • Date Issued
    Tuesday, May 3, 2011
    13 years ago
Abstract
A staple housing includes an array of staples each in a staple delivery position or “ready position” ready to be fired into target tissue. A staple driver is advanceable to drive the ready-position staples from the staple head into the tissue using staple pushers. During use, the staples in the ready positions are simultaneously fired into the target tissue using the staple pushers, forming an array of staples in the target tissue. After the array has been fired, one or more feed mechanisms within the staple housing advance a second group of staples from one or more staple storage locations into the ready positions in preparation for firing of the second group of staples.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of medical staplers. More specifically, the present invention relates to the field of self-reloading staplers.


BACKGROUND

Surgical staplers have been in clinical use for many years. They have become a standard tool used by surgeons in procedures requiring tissue apposition, ligation, resection and/or anastomosis. Staplers reduce overall procedure time by eliminating the need for the time-consuming placement of sutures. Staplers can reduce blood loss in certain procedures involving resection of tissue to be stapled, by allowing tissue cutting/resection to be performed after the tissue is compressed and stapled. For example, a pair of staple rows is first formed, and then the tissue is cut along a line between the staple rows.


Surgical staplers are configured to fire the multiple staples of a staple array (e.g. a linear array such as a staple line, a circular array etc.) in a single shot. Early staplers comprised reusable handles and disposable staple cartridge loads holding a single staple array. Subsequent staplers used disposable handles and disposable cartridge loads. During clinical use of the prior art staplers, spent cartridges must be removed from the handles and replaced with fresh cartridges. Thus, a stapler carrying a single charge of staples is fired into the tissue and then removed from the patient. The spent cartridge is ejected and a new cartridge is loaded for the next staple line. The stapler is reintroduced into the body and the process is repeated for the next line or array of staples to be applied to tissue. The need for constant reloading of the stapler is particularly time consuming in transoral natural orifice surgeries, as the time required for repositioning the stapler head after removing the device from the stomach or other body cavity is not insignificant. Moreover, the requirement for multiple staple cartridges per procedure adds to the overall cost of the procedure.


Disclosed herein is a staple housing or cartridge preloaded with at least two sets of staples such that at least two staple arrays can be applied to tissue before the stapler must be actively reloaded. Each staple set contains two or more staples, with the staple sets arranged to form a staple array of at least two (but preferably more) staples in a linear or non-linear array. Each staple housing or cartridge is preloaded with at least two staple sets, but three, four, or more staples sets may instead be provided in the staple housing to limit the number of times the staple housing must be reloaded or equipped with a new cartridge during the course of a procedure.


The disclosed multi-fire staple housings and cartridges are suitable for use in any form of medical stapling procedure, including endoscopic, laparoscopic, open surgical and natural orifice procedures which utilize natural body orifices for surgery to reduce the invasiveness of these procedures. Natural orifices include, but are not limited to the esophagus, anus and vagina.


The disclosed multi-fire staple housings and cartridges are particularly beneficial for use within the stomach, such as during stomach partitioning procedures in which the stomach is partitioned from the inside by connecting tissue within the stomach (see commonly owned application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING), or for forming tissue plications within the stomach for use in retaining stomach implants (see commonly owned application Ser. No. 12/175,242, filed Jul. 17, 2008, entitled ENDOSCOPIC IMPLANT SYSTEM AND METHOD and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS).


Multi-fire staple housings or cartridges may be incorporated into multi-function devices, such as those that perform both stapling and cutting (e.g. end to end anastomosis devices, or linear stapling/cutting devices), and/or those that can both acquire and staple tissue. The staple housing is a removable/replaceable cartridge or magazine and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a first embodiment of a multi-fire stapler head, showing the jaws in the open position and the staple driver in the pre-firing position.



FIG. 1B is similar to FIG. 1A and shows the jaws in the closed position and the staple driver in the pre-firing position.



FIG. 1C is similar to FIG. 1A and shows the jaws in the closed position and the staple driver in the firing position.



FIG. 2 is a plan view of the stapler housing, with the face plate removed.



FIG. 3A is a perspective view showing a longitudinal cross-section of the staple housing with the back plate removed.



FIG. 3B is a perspective view showing a lateral cross-section of the staple housing with the back plate removed.



FIG. 4 is a perspective view of the staple advancing plate and one of the two springs provided on the plate.



FIG. 5A is similar to FIG. 2 but shows an alternate type of spring in the feed mechanism.



FIG. 5B shows a single cell of the embodiment of FIG. 5A, with the spring replaced by an elastomeric member.



FIG. 6 shows a cross-section view of a portion of the staple housing and a portion of the staple driver in the region of a single one of the cells.



FIGS. 7A-7C are a sequence of side elevation views schematically illustrating movement of an alternative staple driver to drive staples from a staple housing into tissue.



FIGS. 8A-8E are a sequence of side elevation views schematically illustrating movement of a second alternative staple driver to drive staples from a staple housing into tissue.



FIG. 9A shows a plan view of an alternate staple housing with the back plate removed.



FIGS. 9B-9E are a sequence of side elevation views schematically illustrating movement of a staple driver to drive staples from the staple housing of FIG. 9A into tissue.



FIGS. 10A through 10C are a sequence of perspective views schematically showing driving of a staple from a ready position towards tissue to be stapled, and subsequent reloading of the next staple from the stack into the ready position.



FIGS. 11 and 12 are perspective views illustrating one method of forming a staple stack for use in the stapler of FIG. 1A.



FIGS. 13 through 15 are a sequence of steps illustrating use of the stapler of FIG. 1A, in which FIG. 13 is a side elevation view showing the jaws closed and the staple driver in the retracted position, FIG. 14 is a side elevation view showing the jaws opened and the staple driver in the retracted position, and FIG. 15 is a side elevation view showing the jaws closed and the stapler driver extending through the staple housing to drive an array of staples.



FIG. 16 is a plan view of a second embodiment of a stapler employing an alternate multi-fire staple housing.



FIG. 17 is an exploded view of the staple cartridge of the FIG. 16 stapler.



FIG. 18 is another exploded view of the staple cartridge of FIG. 17, in which the staples, staple advancing elements, and staple pusher are not shown for clarity.



FIG. 19 is a perspective view of the staple cartridge of FIG. 17 in a partially assembled state, with staples and staple advancing elements loaded, but with the front housing separated to permit viewing of the staples and staple advancing elements. The compression band and staple pusher are not shown.



FIG. 20 is a perspective view of the staple pusher for the staple cartridge of FIG. 17.



FIG. 21A is a perspective view of the staple cartridge of FIG. 17, with the staple pusher in the retracted position.



FIG. 21B is similar to FIG. 21A and shows the staple pusher in the staple driving position to drive staples from the staple cartridge.



FIG. 22 is a top plan view of the staple cartridge of FIG. 17, showing in hidden lines the staple stacks and staple advancing elements.



FIGS. 23A through 23C are a sequence of cross-section views of the cartridge showing driving of staples from a ready position towards tissue to be stapled, and subsequent reloading of the next staples from the staple stacks into the ready position.



FIG. 24 is a perspective view of an alternative embodiment of a staple head, in which a spent cartridge is positioned in the background, a second cartridge is within the staple housing, and a third cartridge is awaiting advancement into the staple housing to replace the second cartridge.



FIG. 25 is a perspective view illustrating a first cartridge advancing into the staple housing and a second cartridge coupled to the first cartridge.



FIGS. 26A through 26E are a sequence of drawings illustrating the steps of driving staples from a cartridge, and the advancement of a second cartridge into the staple housing.





DETAILED DESCRIPTION


FIG. 1A generally shows a stapler 8 employing a multi-fire staple head 10. Staple head 10 includes a staple housing 12 and a corresponding anvil 14 carried by opposed jaw members 16a, 16b on the distal portion of an elongate shaft 18. As will be evident from the description that follows, the staple housing 12 has an array of staples each in a staple delivery location or “ready position” ready to be fired into target tissue. A staple driver 20 is positioned for advancement from the position shown in FIG. 1B to the position shown in FIG. 1C so as to drive the ready-position staples from the staple head 12 into the tissue using staple pushers 22. During use, the staples in the ready positions are fired into the target tissue using the staple pushers 22. After the array has been fired, feed mechanisms within the staple housing advance a second array of staples from one or more staple storage locations into the ready positions in preparation for firing of the second array.


Referring again to FIG. 1A, staple head 12 includes a face plate 24 having a number of openings 26 through which the staples exit the staple head 12 during stapling. The openings 26 are thus arranged in the pattern of the desired staple array. An internal feed mechanism within the staple housing 12 functions to feed staples from stacks of staples into ready positions, which are aligned with the openings 26. In the illustrated embodiments, separate feed mechanisms are used to move each staple of the array into its corresponding ready position. Other embodiments, however, may use feed mechanisms capable of feeding staples into multiple ready positions. FIG. 2 shows a plan view of the staple housing 12 in which the face plate 24 has been removed to reveal the feed mechanisms used to feed staples into ready positions. As shown, the staple housing 12 includes a plurality of cells 28, the number of which corresponds to the number of staples in the array. Any number of shapes may be used for the cells 28, although in the illustrated embodiment, each cell 28 includes an intermediate section 29a and narrower end sections 29b.


Each cell 28 contains a collection or stack 30 of staples disposed in the intermediate section 29a. One of the staples 30a is in a ready position 31 aligned with the corresponding opening 26 (FIG. 1A) of the overlying faceplate 24. In one of the end sections 29b is a feed mechanism which includes at least one spring 32 and a plate 34. As shown, one end of the spring 32 contacts a wall in the cell 28, and the other end contacts one face of the plate 34. The opposite face of the plate 34 is in contact with staple stack 30. The spring force against the plate 34 biases the end-most staple 30a in the ready position 31, in contact with the walls 36. When a staple is advanced from the ready position into tissue, this spring force advances the stack's next staple into the ready position 31.


Various types of springs may be used in the feed mechanism. In the embodiment illustrated in FIGS. 2-3B, a pair of compression springs 32 is used within each cell 28. As shown in FIG. 4, each spring 32 may be supported on one end by a protrusion or button 38 on the plate 34.


In alternate spring arrangements, the compression springs are replaced by one or more leaf springs 32a as shown in FIG. 5A and/or by one or more elastomeric spring elements 32b as shown in FIG. 5B. It should also be noted that FIG. 5A illustrates the staple stacks and feed mechanisms in a staple housing having a channel 35 through which a cutting blade can pass for tissue resection subsequent to stapling.



FIG. 6 is a cross-section view of a single cell and surrounding region of the staple housing 12. This figure illustrates that a back plate 48 is positioned on the opposite side of the staple housing 12 from the face plate 24, and includes openings 50 (only one of which is shown) aligned with the corresponding openings 26 (one shown) on the face plate 24. The openings 50 are positioned to permit a staple pusher to pass through them into the staple housing 12 to drive staples out the openings 26 in the face plate 24.


Features used to push staples from the ready position through the tissue will next be described. Referring to FIG. 1A, staple driver 20 includes a plurality of staple pushers 22 extending from a plate. A linkage 40 couples the staple driver 20 to the stapler head 12, with the staple pushers 22 aligned with openings 50 in the back plate 48 (FIG. 6).


Linkage 40 has a first link 42 having a first end pivotally coupled to the plate of the staple pusher 22 and a second end connected to a pull cable 44. Pull cable 44 extends through a cable housing 45 to a handle on the shaft. A second link 46 is pivotably coupled at one end to an intermediate section of the first link 42, and it is pivotably coupled at its other end to the staple housing 12. The linkage is configured such that application of tension to the pull cable 44 pivots the links 42, 46 from the position shown in FIG. 1B to that shown in FIG. 1C, thus driving the staple driver 20 towards the staple housing, causing staple pushers 22 to pass into the staple housing 12 and to drive the staples in the manner illustrated in FIG. 6.


Various other methods may be used to advance a staple pusher to drive a staple from the staple housing. Some alternate methods, each of which uses a translating staple driver, are shown schematically in FIGS. 7A through 9E.



FIGS. 7A-7C illustrate a linear arrangement of staples 30a being driven from a staple housing 12 (which could be a cartridge or magazine) with a driver 52 movable in a direction parallel to the back span of the staples. This motion could be generated with hydraulic pistons 51 as shown, or with pull cables, linkages, rotary input, as well as other means. Pushers 53 are positioned in contact with the back spans of the staples. The driver 52 includes a plurality of wedge elements 54 positioned such that as the driver is advanced, the sloped edges of the wedge elements 54 contact the pushers 53, causing the pushers to drive the staples 30a from their corresponding chambers in the staple housing (FIGS. 7B and 7C. In a modification of this embodiment, the pusher 53 is provided with a single wedge element used to sequentially drive staples similar to the manner shown in FIGS. 8A-9E below.


In the example pictured in FIGS. 7A-7C, two staples 30a are driven at the same time, but any number of staples could be driven similarly. Multiple drivers 52 and corresponding rows of staples can exist in the same tool. Once the driver 52 has fully driven the staples from the housing, it is returned to the home position. The return could be active, with operator input, as in the case of a separate hydraulic circuit, or cable to return the mechanism, or passive, with the driver returning on its own with forces supplied by a spring or springs which were compressed during actuation. In the illustrated embodiment, springs 55 compressed by the pushers 53 during staple firing return the pushers 53 to their original position in the housing after the driver has moved out of their path. A feed mechanism within the housing 12 advances another round of staples into the ready position for the next actuation as disclosed elsewhere in this application.


Another embodiment illustrated in FIGS. 8A-8E is similar to the FIG. 7A-7C embodiment, but it employs a bi-directional staple deployment scheme. As shown, driver 52a includes a wedge element 54a having two sloped edges. During movement of the driver 52a in a first direction, a first set of staples 30a is sequentially driven into the tissue (FIGS. 8B and 8C). Once the first set of staples has been fired, another staple set can be brought into the ready positions (in the return path of the driver), such that the return motion of the wedge element 54a can deploy the second set into the tissue. In a modification to the FIG. 8A embodiment, a plurality of bi-directional wedge elements are positioned similar to the positions of the wedge elements in the FIG. 7A embodiment, allowing for simultaneous advancement using the multiple wedge elements on the driver. In this variation, movement of the driver in a first direction will drive a first set of staples and then movement of the driver in the opposite direction will drive the second set of staples fed into the ready positions vacated by the first staples.


In modifications to the embodiments of FIGS. 7A and 8A, the staples may be oriented in the staple housing such that the staple back spans are rotated 90 degrees from the position shown in FIGS. 7A and 8A (i.e. the staples are turned such that the back span extends into and out of the page in FIGS. 7A and 8A). One configuration using this design is shown in FIGS. 9A-9E. FIG. 9A shows the housing 12a with the back plate removed and shows only one row of drivers and staples for simplicity. In practice, each row would be filled with staples and each row could be driven into the anvil separately, or in groups, depending on the desired actuation scheme. Additionally, the staples could be arranged with the back spans at angles other than 90 degrees to the driver.


Referring to FIGS. 9B-9E, driver 52b includes a wedge 54b. The staple back spans are transverse to the direction of motion of the driver 52b. In FIG. 9B, the wedge is at its start position. To drive the staples, driver is pulled to the right by a cable, or other flexible element actuated by any means providing appropriate force. As the driver 52b travels, it forces the sloped caps 53b positioned above each the staple in a downward direction. The caps 53b drive the staples through the tissue and towards the anvil (not shown). As with the previous embodiments, a spring or other element may be used to return the caps to the original position.



FIGS. 10A through 10C schematically illustrate operation of the staple pusher and automatic feed mechanism to fire a staple from the ready position and to then replace the fired staple in the ready position with the next staple in the stack. Referring to FIG. 10A, prior to staple firing, staple 30a is biased in the ready position due to the action of the spring force F imparted against the plate 34 by the spring (not shown in FIG. 10A). Staple pusher 22 is advanced as discussed above to fire the staple. FIG. 10B. Due to the constant spring force F against the plate 34, as soon as the staple 30a leaves the ready position, it is replaced in the ready position by the next staple 30b in the stack 30. FIG. 10C. This automatic reloading of staples into the ready position repeats itself as each staple 30a-30n in the cell is fired. After all staples 30a-30n have been fired, the staple housing may be reloaded with a new charge of staples if additional stapling is needed.


The stapler housings and staple cartridges disclosed herein may be used with any suitable staples or staple stacks. Staple stacks may be formed using a sheet of flat material 58 as shown in FIG. 11. Longitudinal score lines 60 are formed on one side of the sheet 58, and the ends 62 of the sheet are chamfered to create what will be the tips of the staple legs. The sheet 58 is bent into the shape shown in FIG. 12, with the score lines 60 serving as the dividing lines between what will become individual staples. With this arrangement, each time the staple pusher is driven, it causes the endmost staple to be sheared from the sheet of flat material and driven into the tissue.


Use of the stapler 10 will next be described. Prior to use, staple stacks 30 are loaded into the cells of the staple housing 12. With the jaws 16a, 16b in the closed position as in FIG. 13, the staple head 10 is advanced to the location of the tissue to be stapled. Next, a control element on the handle of the stapler shaft is manipulated to open the jaws to the position shown in FIG. 14. Various configurations known to those skilled in the art may be used to open and close the jaws. The illustrated embodiment employs a linkage 64 coupled to the jaws 16a, 16b. Linkage 64 is actuated using a piston 66, which is moved distally using hydraulic or mechanical means to expand the linkage for opening the jaws (FIG. 14) and which is moved proximally to collapse the linkage and close the jaws (FIG. 13).


With the jaws 16a, 16b opened, the tissue to be stapled is positioned between the staple housing 12 and anvil 14. The stapler may be equipped with integrated tissue acquisition devices useful for this purpose. Suitable tissue acquisition devices are described in the following commonly owned applications: application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING, and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, and application Ser. No. 12/268,216, entitled TISSUE ACQUISITION DEVICES AND METHODS, filed on same date herewith. In that application, tissue is acquired into a vacuum head using a vacuum source, and then the acquired tissue is retained (e.g. for tissue positioning, manipulation) by a grasper. Alternatively, separate instruments may be used to position tissue between the cartridge and anvil.


When an area of the stomach wall is drawn inwardly (bringing a two-layer “pinch” or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another. According to a preferred method disclosed herein, two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer plication. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication over extended durations, despite the forces imparted on them by stomach movement. A cut or cut-out may be formed in the plication during or separate from the stapling step to promote edge-to-edge healing effects that will enhance tissue knitting/adhesion and will ultimately contribute to the durability of the plication, despite the fact that mucosal tissue of one tissue pinch is positioned in apposition with the mucosal tissue of the other tissue pinch.


One or more such plications may be formed for a variety of purposes. For example, plications may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach. For example, a partition or barrier may be oriented to extend across the stomach, leaving only a narrow exit orifice through which food can flow from the proximal stomach to the distal stomach, or a similar antral barrier may be formed that will slow stomach emptying of stomach contents into the pylorus. In other cases, partitions or plications may be used to form a proximal pouch in the stomach or to reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities.


Coupled to or provided with the stapler are one or more, preferably two, three or more, tissue acquisition devices, which will also be referred to as “engagers” or “graspers” which are designed to engage tissue and draw the tissue into position between the stapler anvil and cartridge. In embodiments, the graspers are positioned to pass from one side of the “window” bounded by the stapler arms, through the window, and used to grasp tissue on the opposite side of the window. These graspers are then withdrawn back through the window to draw the grasped tissue between the cartridge and anvil. In other embodiments, the arms can engage tissue and draw it between the cartridge and anvil without necessarily passing through the window. Such embodiments include the arms oriented angularly relative to one another when viewed along the longitudinal axis of the device shaft.


The graspers can be simple alligator or forceps type graspers, vacuum chambers, corkscrews which can be traditional corkscrews or gear-driven perpendicular cork-screws, hooks, or any combination thereof, such as a corkscrew in combination with a vacuum chamber.


The term “grasper” is used to refer generally to any type of tool that can be used to engage or acquire tissue via any means (grasping, hooking, penetration, suction, adhesion, etc.) so the acquired tissue can be positioned between the staple holder and anvil. Similarly, even though some of the disclosed graspers do not physically “pinch” tissue, the term “pinch of tissue” may be used in this disclosure to refer to a fold, area, or tab of tissue acquired using a grasper for positioning of the that fold, area, or tab between the staple holder and the anvil.


Plugs/pledgets within the cut holes may be used to hold two or more two-layer plications together. For example, rather than joining two pinches of tissue as disclosed above to form a four-layer plication, the stapler may be used to separately staple and cut each pinch, forming a plurality of two-layer plications. Afterwards, pairs (or larger groups) of the two-layer plications may be joined together to position the cut holes into alignment, and the plugs/pledgets may be inserted through the aligned holes to retain the plications. Plugs/pledgets passed through the hole in one or more two- or four-layer plication can function as restrictive devices themselves, and may be used to restrict flow of food towards the distal stomach.


Once tissue is between the cartridge and anvil, the jaws are again closed (FIG. 13) to close the staple housing and anvil against the tissue, thereby compressing the tissue in preparation for stapling. The cable 44 (FIG. 1A) is actuated to drive the staple driver 20 towards the staple housing 12, thus driving the staple pushers 22 into the staple housing 12 (FIG. 15) to fire the array of staples through the tissue. As is typical with staplers, the free legs of the staples fold against corresponding recesses (not shown) on the anvil surface.


When tension is released from the cable 44, springs (not shown) force the staple driver 20 back into the retracted position shown in FIG. 13. Once the staple driver 20 withdraws from the staple housing, a new staple moves into the ready position in each cell (as described in connection with FIGS. 10A through 10C), immediately readying the stapler for deployment of a second staple array.



FIG. 16 is a side view of an alternate embodiment of a multi-fire stapler 110. Stapler 110 includes a stapler head 112 mounted to an elongate shaft 114. A staple housing, which may be a replaceable staple cartridge 116, and an anvil 118 are positioned on the stapler head 112. The stapler head 112 is equipped with linkages operable to decrease the distance between the cartridge and anvil for tissue compression and stapling. These features, as well as others (e.g. hydraulic and piston arrangement, cutting features, etc.) suitable for inclusion in the stapler 110, are disclosed in commonly owned application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, which is incorporated herein by reference.


Like the staple housing of the first embodiment, cartridge 116 is a multi-fire unit configured to simultaneously fire an array of staples, and to automatically reload a subsequent array of staples ones the first array has been discharged. The staples in the array can be arranged in a variety of patterns, including but not limited to the square pattern shown in connection with the FIG. 16 embodimet.


In embodiments, tissue is drawn inwardly into a vacuum chamber, although tissue may be drawn inwardly using other components (e.g. graspers) that do not involve the use of a vacuum. When a portion of the interior stomach wall is drawn inwardly, sections of serosal tissue on the exterior of the stomach are positioned facing one another. The disclosed fastener applying device allows the opposed section of tissue to be moved into contact with one another, and delivers fasteners that will hold the tissue sections together until at least such time as serosal bonds form between them.


The system may include a stapler having a stapler head positioned on a distal portion of a shaft. A handle on the shaft controls articulation of the stapler head and actuation of the tissue acquisition, tissue compression, and stapling functions of the stapler head. Vacuum and fluid sources are fluidly coupled to the handle for use in tissue acquisition, compression and stapling as discussed below. The vacuum source may be the “house vacuum” accessible through a coupling on the wall of the operating room, or an auxiliary suction pump. The stapler may include a switch allowing the user to control airflow between the vacuum source and stapler.


Features of the cartridge 116 will first be described with reference to the exploded views shown in FIGS. 17 and 18. The cartridge includes a front housing 120, middle housing 122 and a rear housing 124. The front housing 120 is positioned at the distal end of the cartridge and includes a plate 126 that contacts the tissue to be stapled during stapling. Spaced apart members 128 extend longitudinally from the plate 126 in a proximal direction. Each of the members 128 includes a circumferential channel 130. The plate 126 includes a central cutout 132 proportioned to receive middle housing 122.


Rear housing 124 has a plate 134 with a cutout 136 proportioned to receive the middle housing 122. Spaced apart members 138 extend longitudinally from the plate 134 in a distal direction. Members 138 have circumferential channels 140.


Middle housing 122 includes longitudinal sidewalls 142 proportioned to allow the middle housing 122 to slide into the central cutouts 132, 136 of the front and rear housings. Each of the sidewalls 142 has a longitudinally extending first channel 144 centrally positioned on the sidewall 142, and a longitudinally extending second channel 146 centrally positioned within the first channel 144.


As shown in FIG. 21A, in the assembled cartridge, the middle housing 122 extends between the cutouts of the front and rear housings. The longitudinally extending members 128 of the front housing 120 are disposed between the longitudinally extending members 138 of the rear housing such that the channels 130 of the walls 128 are aligned with the channels 140 of the walls 138, forming a continuous circumferential channel extending around the cartridge 116. As discussed in greater detail below, a compression band 152 (also see FIG. 18) is positioned in this circumferential channel.


When housings 120, 122, 124 are assembled, spaces between their various walls form chambers within which staples are positioned during use. Referring to FIGS. 21A and 21B, rectangular U-shaped chambers 148 are disposed between each of the longitudinally extending members 128 and its neighboring members 138. FIGS. 17 and 22 illustrate that a stack or collection of staples 30 is disposed in each of the chambers. A total of four such chambers 148 are shown, corresponding to four stacks of staples for the illustrated embodiment.


Each staple is positioned in its corresponding chamber with its legs disposed in the longitudinally extending branch of the chamber, and with the cross-member or back span of the staple in the laterally extending portion of the chamber. Each of the chambers 148 also houses rectangular U-shaped staple advancing element 150 adjacent to the radially outermost one of the staples 30.


Compression band 152 is disposed within the circumferential channel formed by the aligned channels 130, 140. The inner wall of the compression band is in contact with the longitudinally extending legs of each of staple advancing elements 150 in the cartridge. The radially inward spring forces of the compression band bias the staple advancing elements 150, and thus all of the staples, in radially inward directions.


Referring again to FIG. 22, the longitudinal channels 144, 146 of the middle housing 122 form a chamber 154 with the walls bordering the cutouts in the front and rear housings 120, 124. The innermost staple 30a in each stack is biased into the chamber 154 by the radially inward forces of the compression band 152. A staple in the chamber 154 is in the ready position, ready for advancement from the cartridge into adjacent tissue.



FIG. 19 shows the front and rear housings aligned for insertion of the elements 128 of the front housing between the elements 138 of the rear housing. This figure best shows the positions of the ready position staple 30a, the remaining staples 30b-n, and the staple advancing element 150 for a given stack. As shown, the ready position staple 30a is biased against the wall of the middle housing 122 lining the first channel 144. The compression band 152 is removed for clarity.


A staple pusher assembly 156 (FIGS. 17 and 20) is provided for driving staples that are in the ready position from the cartridge into the tissue. Staple pusher assembly 156 includes pusher elements 158 slidable in a distal direction within corresponding ones of the chambers 154. Each pusher element has a plate 160 that slides through a corresponding one of the channels 144 of the middle housing (FIG. 19), to drive the ready position staple 30a biased into that channel. A rib 162 on the inwardly facing surface of the plate 160 slides through the associated channel 146 to maintain proper alignment of the pusher assembly 156 with the middle housing. Pusher assembly 156 may be advanceable by means of a hydraulically activated piston as described in commonly owned application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, or by other means.



FIGS. 23A through 23C are a sequence of cross-section views illustrating staple firing and subsequent reloading of the staple positions in preparation for an additional firing. FIG. 23A shows the cartridge prior to the firing of the first array of staples. As shown, the pusher assembly 156 is in the fully retracted position. The most radially inwardly positioned staples 30a of each staple stack 30 are disposed in the ready position in chamber 154. The second, third etc. staples 30b-n of each stack are positioned in the chamber 148. In the FIG. 23A view, only the cross-pieces of the staples 30b-n are visible (in transverse cross-section) along with the corresponding portion of the U-shaped chamber 148. FIG. 23B shows the position of the pusher assembly 156 as it completes the process of pushing staples 30a from the cartridge. The anvil, against which the legs of each staple fold, is not shown in FIGS. 23A-C.


The pusher assembly is next retracted as shown in FIG. 23C, The radially inward forces of the compression band 152 against the staple advancing element 150 push the next staple in each stack into the ready position (i.e. in channel 144) vacated by the first staples to be driven. The stapler head may be repositioned to a second tissue area to be stapled, at which time the pusher assembly is again advanced to drive the second array of staples into the tissue. The process is repeated until the desired number of arrays has been applied to tissue, and/or until the staple sets have been exhausted. If additional staples are needed after the cartridge has been emptied of all staples, the stapler head is withdrawn from the patient, and the cartridge may be removed from the stapler and replaced with one filled with staples. Alternatively, the existing cartridge may be refilled by removing the compression band and the staple advancing elements, inserting staples in the chamber 154, and then replacing the staple advancing element and the compression band.


The disclose multi-fire staple housings are useful in carrying out a number of procedures, including but not limited to stomach partitioning and/or the formation of stomach wall plications for use in retaining implants.


For example, the disclosed multi-fire housings may be employed in a stomach wall partitioning system. When an area of the stomach wall is drawn inwardly (bringing a two-layer “pinch” or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another. In stomach wall partitioning methods disclosed in commonly owned application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING, two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer tissue plication.


Multiple plications of this type may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach and/or that will effectively reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities. A partition formed using plications might also be used as a treatment for GERD to create a shield between the stomach and esophagus that will minimize reflux.


Commonly owned application Ser. No. 12/175,242, filed Jul. 17, 2008, entitled ENDOSCOPIC IMPLANT SYSTEM AND METHOD and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS describe formation of plications by drawing a pinch of stomach wall tissue inwardly to form a tissue fold, and by then applying staple arrays or other fastening means to the tissue fold to retain the plication. Holes may be formed in the plications for receiving implants or anchors to which additional implants will be coupled.


The disclosed multi-fire staple housing will greatly facilitate these types of procedures by allowing serial formation of each of the required plications without necessitating removal of the stapler head from the stomach after formation of each plication. In other words, after a staple array is applied to tissue to create a plication, the staple head may be immediately repositioned and used to create second and subsequent plications, all without the need to remove the stapler head from the body for reloading or replacement with a fresh stapler. Thus, a stomach wall partition or a collection of plications may be formed in less time than was previously possible.


In addition to the staple arrangements disclosed above, alternative arrangements are suitable and can be used with feed mechanisms of the type disclosed above.


In one alternate staple arrangement, staples are formed into chains such that the legs are adjacent and the back spans do not touch. The arrangement would look like this: UUUUUUUU, although overlap of the staple elements is also possible. As one staple in the chain is driven from a ready position in the staple housing, and the driving member retracted, the next staple is moved into the ready position, with the feed motion primarily along the axis of the back span of the staple. Staples may be fired singly, or in multiples at the same time or at alternating times with one group (or single staple) firing while another group (or single staple) is reloading.


In a radial or “revolver” type staple arrangement, staples are arranged like spokes of a wheel, housed within a wheel, or on a belt, with the staple legs, and direction of driving generally parallel to the axis of the wheel (like the bullets in the chamber of a revolver). As an example, 3 of the 12 staples (either equally spaced about the ring or not) could be advanced, then the driving member is retracted and either the driving member indexed to the next three staples, or the staple magazine is indexed such that the next three staples are aligned with the driver. This motion could continue for 4 total firings of 3 staples each. In a modified, ferris wheel type arrangement, the staples are oriented with the staple legs perpendicular to the axis of the wheel, or in a non-circular belt. In this case, the driver would drive staples toward the outside from the inside, or toward the inside from the outside of the wheel or belt.


Other embodiments use flat nested arrangements of staples. For example, a low profile way of storing the staples would be to lay them flat on each other with each one slightly in front of the previous one, like dominoes after they have fallen. In this case, a method of tilting up the staple to be driven would be used. Double forming without tilting would also make this possible. In this instance, staples would be pushed forward and bent down, then crushed to the traditional B shape.


In another arrangement, the array or magazine of staples consists of a chain of groups of staples. The staples are housed in a link of the chain which is designed to interface with the driving member. When a link of the chain, with one to 5 or more staples is advanced to the driver, those staples may be driven. Upon retraction of the driver, the chain is advanced and the spent link is pushed beyond the driving zone and a new link is advanced into the driving zone. The spent links could move to a containment area, or proceed out of the device. Similarly, the loaded links could be housed in a containment area, or extend beyond the envelope of the device. If the material of the chain in this example, or any mentioned elsewhere in this description, were biocompatible, or bioabsorbable, the links of the chain could be discarded in the lumen or incorporated into the staple line such that no, or less, spent chain material required post-firing management.


One embodiment of a stapler employing this concept will next be described. FIG. 24 illustrates a stapler head 210 including a housing 212 and an anvil 214. Three staple cartridges 216a-c are shown. Cartridge 216a, shown coupled to the housing 212 and facing anvil 214, contains a plurality of staples and is position for staple delivery, i.e. to receive a driver that will fire the staples from the cartridge into tissue disposed between the cartridge and anvil. Cartridge 216b, which has already been fired, is in the background. Another cartridge 216b is in the foreground, waiting to be advanced into position between the cartridge and anvil for reloading of the stapler. The cartridges 216a-c are flexibly linked together.



FIG. 25 shows a close-up view of the cartridge 216a prior to its advancement into the housing 212. Wings 218 at the end of the cartridge will flex inward as the cartridge passes through the anvil extensions above the anvil pivot 220. Once they are past the anvil extensions, they spring outward and when stapling forces are applied to drive staples from the cartridge towards the anvil, the cartridge will slide backward slightly and the wings will push on the anvil extensions above the anvil pivot. This will help to keep the anvil aligned with the cartridge face, even as stapling forces push them apart.


As best shown in FIG. 25, each cartridge includes a plurality of slots 222 proportioned to receive a plurality of staples. Caps 224 are positioned above the back spans of staples in the slots. Caps 224 are shown in only two of the slots 222 in FIG. 25. Each cap 224 includes a sloped surface 226. During use, each of the four slots 222 may be filled with staples and caps 224.


Referring to FIG. 26A, a driving wedge 232 has four wedge-shaped plates (only one of which is visible), each extending into one of the slots 222. A cable pull or other mechanism is provided for advancing the driving wedge longitudinally through the housing 210 (from left to right in the illustrated drawings) so that the wedge-shaped plates move through the slots 222. The wedge-shaped plates are positioned such that when they travel in the slots, they contact the caps 224 corresponding to the various staples S (FIGS. 26A-E) within a given slot 222 in a manner similar to that described in connection with FIGS. 9B-9E, thereby driving the staples into tissue positioned between the housing and anvil.


Spring 228 is disposed in a channel in the housing 212 and is configured such that it is compressed as the driving wedge 232 is moved by the user actuating a cable or other force transfer element. For example, the wedge 232 might be coupled to a cable extending through the spring 228 and attached to cap 234 on the spring 228 such that as the wedge moves to the right in FIG. 26A, the cable pulls the cap 234 to the left to compress the spring. A second spring 230 is attached to the driving wedge 232 and is compressed by a lever 236 riding in a groove 238 (FIG. 25) in the cartridge. This groove 238 increases in depth at the end of the wedge's stroke, thus providing a notch 240 for the lever 236 to fall into at the end of its travel.



FIG. 26A shows the staple head 210 after staples have been fired from cartridge 216b and after cartridge 216a has been moved into the housing such that its staples are in staple delivery positions ready for firing. FIGS. 26A-26C show stages of staple deployment as the wedge 232 is drawn over the staple driving elements or caps 234. The wedge 232 moves from the home position (FIG. 26A) through the cartridge to deploy the staples through the tissue, such that their legs fold against the anvil 214. As the wedge advances, the spring 228 is compressed. As the wedge reaches the end of its travel, lever 236 pivots into the notch 240 as shown in FIG. 26D. When the user stops pulling on the wedge (e.g. by releasing a pull cable), the loaded return spring 228 will unload, driving the wedge 232 and lever 236 towards the home position, which is towards the left in the FIG. 26A-E drawings. The lever 236 pushes against wall 242 of the groove 238, thus driving the spent cartridge 216a out of the stapler (FIG. 26E) while drawing in the next loaded cartridge 216b that is coupled to the cartridge 216a.


The stapler is repositioned and the sequence is repeated until all the cartridges have been fired, or until stapling is complete.


It may be advantageous to maintain a level of mechanical simplicity comparable to currently produced linear staplers, but enable multi-fire capability without the need to withdraw the stapler from the patient. In this design, the spent cartridge is made to be ejected and be dropped in place, or be tethered or otherwise connected to the stapler or to the next cartridge to be loaded into the stapler. Loading would be accomplished with tools already in the patient, or with additional mechanisms within the tool itself, which would form or act as a conveyor of, or conduit for, new cartridges being advanced to the stapler head.


The above groupings are not exclusive and, for example, radial driver or magazine motion could be combined with stacked, flat nested, or chained staple arrangements.


It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Moreover, features of the disclosed embodiments may be combined with one another and with other features (including those taught in the prior applications referenced herein) in varying ways to produce additional embodiments. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. The applications and methods listed are not limited to the treatment of diseases or procedures listed. Modifications of the above described methods and tools and variations of this invention that are obvious to those of skill in the art are intended to be within the scope of this disclosure.


Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.

Claims
  • 1. A device for intraorally acquiring and stapling multiple tissue-fold regions within a subject's stomach, comprising: (a) a flexible elongate shaft having a distal end that can be inserted intraorally into the subject's stomach,(b) a staple head attached to the distal end of the shaft, said head being constructed and dimensioned for insertion into the subject's stomach intraorally, and comprising:(i) a staple housing having a plurality of staples contained in one or more staple-holding cells, at least one of said staples being held in a cell in a staple-ready position;(ii) an anvil operatively connected to and relatively moveable toward and away from the staple housing;(iii) a staple driver carried in said staple housing for movement from a first to a second position at which the one or more staples in staple-ready positions within selected cells are advanced from the staple housing and against the anvil, thereby to staple a stomach tissue fold supported between the housing and anvil; and,a reset mechanism for (i) moving the staple housing away from the anvil, (ii) moving the staple driver to its first position, and (iii) advancing one or more staples to staple-ready positions within the housing, after stapling a stomach tissue fold, wherein multiple stapled tissue folds can be formed without having to remove the staple head from the subject's stomach.
  • 2. The device of claim 1, wherein the reset mechanism includes a feed mechanism positioned within each cell to advance staples to the staple-ready position in that cell.
  • 3. The device of claim 2, wherein each of the feed mechanisms includes a biasing element positioned to bias staples positioned in the corresponding cell towards the corresponding staple-ready position.
  • 4. The device of claim 3 wherein the biasing element comprises a spring.
  • 5. The device of claim 3 wherein the biasing element comprises an elastomeric member.
  • 6. The device of claim 5 wherein the elastomeric member comprises an annular member positioned to bias advance staples in each of the cells in radially inward directions towards the staple-ready position.
  • 7. The device of claim 1, wherein the at least one driver is advanceable to simultaneously advance staples from the staple-ready position in cells out of the staple housing, through tissue positioned between the staple housing and the anvil, and against the anvil.
  • 8. The device of claim 7, wherein the driver includes a plurality of pusher elements simultaneously advanceable into contact with staples positioned in the staple-ready postions.
  • 9. The device of claim 8, wherein the plurality of elements are mounted to a common support, the support moveable from a first position to a second position to advance the pusher elements.
  • 10. The device of claim 1, wherein the at least one driver is advanceable to sequentially advance staples from the staple-ready position in the cells out of the staple housing, through tissue positioned between the staple housing and the anvil, and against the anvil.
  • 11. The device of claim 1 wherein the cells are proportioned to receive staples having at least two legs and a back span extending between the legs, and wherein the driver is advanceable in a direction parallel to the longitudinal axes of the legs.
  • 12. The device of claim 1 wherein the cells are proportioned to receive staples having at least two legs and a back span extending between the legs, and wherein the driver is advanceable in a direction transverse to the longitudinal axes of the legs.
  • 13. The device of claim 1, wherein the staple driver includes at least one pusher positionable in contact with the staples in the staple-ready positions, and wherein the driver includes a wedge moveable into contact with the pushers such that movement of the wedge in a direction transverse to a longitudinal axis of the pushers cause the pushers to move against the staples in the staple-ready positions and advance the staples out of the staple housing.
  • 14. The device of claim 1 wherein the staple-holding cells are arranged in a linear pattern.
  • 15. The device of claim 1 wherein the staple-holding cells are arranged in a non-linear pattern.
  • 16. The device of claim 1, wherein the reset mechanism includes a linkage connected to the staple housing and the staple driver for moving the staple driver and staple housing relative to each other.
  • 17. The device of claim 1, wherein said staple-holding cells are arranged such that the staples are advanced in a square pattern.
  • 18. The device of claim 1, wherein said staple-holding cells are arranged such that the stapes are advanced in a circular pattern.
  • 19. The device of claim 1, further comprising: a tissue acquisition member for acquiring a fold of tissue and retaining the fold between the staple housing and anvil.
  • 20. The device of claim 19, wherein the tissue acquisition member is a vacuum chamber positioned between the staple housing and anvil.
  • 21. A device for acquiring and stapling multiple tissue regions within a subject's stomach by introducing into the subject's stomach the device comprising: a staple housing including a cartridge receiving location and an anvil;a plurality of staple cartridges each comprising a plurality of staple storage locations with at least one staple in each staple storage location, each cartridge positionable in the cartridge receiving location;a driving element advanceable to drive staples from the staple storage locations of the staple cartridge positioned within the cartridge receiving location; anda feed mechanism positioned to advance staple cartridges into the cartridge receiving location.
  • 22. The device of claim 21, wherein the feed mechanism is positioned to advance staple cartridges out of the cartridge receiving location.
  • 23. The device of claim 22, wherein the plurality of staple cartridges includes at least two staple cartridges coupled to one another.
US Referenced Citations (327)
Number Name Date Kind
1408865 Cowell Mar 1922 A
3663965 Lee et al. May 1972 A
4134405 Smit Jan 1979 A
4207890 Mamajek et al. Jun 1980 A
4246893 Berson Jan 1981 A
4315509 Smit Feb 1982 A
4331277 Green May 1982 A
4403604 Wilkinson et al. Sep 1983 A
4416267 Garren et al. Nov 1983 A
4417360 Moasser Nov 1983 A
4441215 Kaster Apr 1984 A
4467804 Hardy et al. Aug 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4607618 Angelchik Aug 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
4641653 Rockey Feb 1987 A
4648383 Angelchik Mar 1987 A
4694827 Weiner et al. Sep 1987 A
4723547 Kullas et al. Feb 1988 A
4747849 Galtier May 1988 A
4846836 Reich Jul 1989 A
4848367 Avant et al. Jul 1989 A
4899747 Garren et al. Feb 1990 A
4925446 Garay et al. May 1990 A
4946440 Hall Aug 1990 A
4969896 Shors Nov 1990 A
4997084 Opie et al. Mar 1991 A
5006106 Angelchik Apr 1991 A
5037021 Mills et al. Aug 1991 A
5061275 Wallsten et al. Oct 1991 A
5084061 Gau et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5163952 Froix Nov 1992 A
5211658 Clouse May 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5259399 Brown Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5290217 Campos Mar 1994 A
5306300 Berry Apr 1994 A
5314473 Godin May 1994 A
5327914 Shlain Jul 1994 A
5345949 Shlain Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5401241 Delany Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405377 Cragg Apr 1995 A
5431673 Summers et al. Jul 1995 A
5486187 Schenck Jan 1996 A
5514176 Bosley, Jr. May 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5562239 Boiarski et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5593434 Williams Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5609624 Kalis Mar 1997 A
5628786 Banas et al. May 1997 A
5630539 Plyley et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653743 Martin Aug 1997 A
5662713 Andersen et al. Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5674241 Bley et al. Oct 1997 A
5706998 Plyley et al. Jan 1998 A
5709657 Zimmon Jan 1998 A
5720776 Chuter et al. Feb 1998 A
5749918 Hogendijk et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5771903 Jakobsson Jun 1998 A
5785684 Zimmon Jul 1998 A
5820584 Crabb Oct 1998 A
5839639 Sauer et al. Nov 1998 A
5848964 Samuels Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5856445 Korsmeyer Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5887594 LoCicero, III Mar 1999 A
5897562 Bolanos et al. Apr 1999 A
5910144 Hayashi Jun 1999 A
5922019 Hankh et al. Jul 1999 A
5947983 Solar et al. Sep 1999 A
5993473 Chan et al. Nov 1999 A
5993483 Gianotti Nov 1999 A
6016848 Egres, Jr. Jan 2000 A
6051015 Maahs Apr 2000 A
6086600 Kortenbach Jul 2000 A
6098629 Johnson et al. Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6113609 Adams Sep 2000 A
6120534 Ruiz Sep 2000 A
6146416 Andersen et al. Nov 2000 A
6159146 El Gazayerli Dec 2000 A
6159238 Killion et al. Dec 2000 A
6197022 Baker Mar 2001 B1
6206930 Burg et al. Mar 2001 B1
6245088 Lowery Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287334 Moll et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6358197 Silverman Mar 2002 B1
6416522 Strecker Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6460543 Forsell Oct 2002 B1
6461366 Seguin Oct 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494895 Addis Dec 2002 B2
6503264 Birk Jan 2003 B1
6506196 Laufer et al. Jan 2003 B1
6527784 Adams et al. Mar 2003 B2
6540789 Silverman Apr 2003 B1
6544291 Taylor Apr 2003 B2
6547801 Dargent et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6558429 Taylor et al. May 2003 B2
6572627 Gabbay Jun 2003 B2
6572629 Kalloo Jun 2003 B2
6575896 Silverman Jun 2003 B2
6592596 Geitz Jul 2003 B1
6596023 Nunez et al. Jul 2003 B1
6607555 Patterson et al. Aug 2003 B2
6627206 Lloyd Sep 2003 B2
6632227 Adams Oct 2003 B2
6663639 Laufer et al. Dec 2003 B1
6675809 Stack et al. Jan 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6755869 Geitz Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6790214 Kraemer et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6845776 Stack et al. Jan 2005 B2
6916332 Adams Jul 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6960233 Berg et al. Nov 2005 B1
6966875 Longobardi Nov 2005 B1
6981978 Gannoe Jan 2006 B2
6981980 Sampson et al. Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033373 de la Torre et al. Apr 2006 B2
7033384 Gannoe et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7056305 Garza Jun 2006 B2
7066945 Hashiba et al. Jun 2006 B2
7083629 Weller et al. Aug 2006 B2
7090699 Geitz Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7097665 Stack et al. Aug 2006 B2
7111627 Stack et al. Sep 2006 B2
7112186 Shah Sep 2006 B2
7120498 Imran et al. Oct 2006 B2
7121283 Stack et al. Oct 2006 B2
7146984 Stack et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7152607 Stack et al. Dec 2006 B2
7160296 Pearson et al. Jan 2007 B2
7160312 Saadat et al. Jan 2007 B2
7172613 Wazne Feb 2007 B2
7175638 Gannoe et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7211114 Bessler et al. May 2007 B2
7214233 Gannoe et al. May 2007 B2
7220237 Gannoe et al. May 2007 B2
7220284 Kagan et al. May 2007 B2
7223277 DeLegge May 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261722 McGuckin, Jr. et al. Aug 2007 B2
7288101 Deem et al. Oct 2007 B2
7306614 Weller et al. Dec 2007 B2
7315509 Jeong et al. Jan 2008 B2
7316716 Egan Jan 2008 B2
7320696 Gazi et al. Jan 2008 B2
7326207 Edwards Feb 2008 B2
7335210 Smit Feb 2008 B2
7347863 Rothe et al. Mar 2008 B2
7347875 Levine et al. Mar 2008 B2
7354454 Stack et al. Apr 2008 B2
7399304 Gambale et al. Jul 2008 B2
7431725 Stack et al. Oct 2008 B2
7625371 Morris et al. Dec 2009 B2
7708181 Cole et al. May 2010 B2
20010011543 Forsell Aug 2001 A1
20010020189 Taylor Sep 2001 A1
20010020190 Taylor Sep 2001 A1
20010021796 Silverman et al. Sep 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20020022851 Kalloo et al. Feb 2002 A1
20020055757 Torre et al. May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020183767 Adams et al. Dec 2002 A1
20020183768 Deem et al. Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030158569 Wazne Aug 2003 A1
20030191476 Smit Oct 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040030347 Gannoe et al. Feb 2004 A1
20040044353 Gannoe Mar 2004 A1
20040044354 Gannoe et al. Mar 2004 A1
20040044357 Gannoe et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040088023 Imran et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040098043 Trout May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153167 Stack et al. Aug 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040172142 Stack et al. Sep 2004 A1
20040186502 Sampson et al. Sep 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20040243223 Kraemer et al. Dec 2004 A1
20040267378 Gazi et al. Dec 2004 A1
20050004430 Lee et al. Jan 2005 A1
20050004681 Stack et al. Jan 2005 A1
20050033326 Briganti et al. Feb 2005 A1
20050033345 DeLegge Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer Apr 2005 A1
20050096673 Stack et al. May 2005 A1
20050096750 Kagan et al. May 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050183732 Edwards Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192615 Torre et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050247320 Stack et al. Nov 2005 A1
20050250980 Swanstrom et al. Nov 2005 A1
20050251158 Sadat et al. Nov 2005 A1
20050251162 Rothe et al. Nov 2005 A1
20050256533 Roth et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050261712 Balbierz et al. Nov 2005 A1
20050267405 Shah Dec 2005 A1
20050267499 Stack et al. Dec 2005 A1
20050267595 Chen et al. Dec 2005 A1
20050267596 Chen et al. Dec 2005 A1
20050273060 Levy et al. Dec 2005 A1
20060015006 Laurence et al. Jan 2006 A1
20060020278 Burnett et al. Jan 2006 A1
20060058829 Sampson et al. Mar 2006 A1
20060129094 Shah Jun 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060155259 MacLay Jul 2006 A1
20060155311 Hashiba et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060253142 Bjerken Nov 2006 A1
20060271076 Weller et al. Nov 2006 A1
20060282095 Stokes et al. Dec 2006 A1
20060287734 Stack et al. Dec 2006 A1
20070010864 Dann et al. Jan 2007 A1
20070032800 Ortiz et al. Feb 2007 A1
20070043384 Ortiz et al. Feb 2007 A1
20070055292 Ortiz et al. Mar 2007 A1
20070060932 Stack et al. Mar 2007 A1
20070149994 Sosnowski et al. Jun 2007 A1
20070175488 Cox et al. Aug 2007 A1
20070191870 Baker et al. Aug 2007 A1
20070191871 Baker et al. Aug 2007 A1
20070198074 Dann et al. Aug 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070239284 Skerven et al. Oct 2007 A1
20070260327 Case et al. Nov 2007 A1
20070276432 Stack et al. Nov 2007 A1
20080033574 Bessler et al. Feb 2008 A1
20080065122 Stack et al. Mar 2008 A1
20080116244 Rethy et al. May 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080208355 Stack et al. Aug 2008 A1
20080208356 Stack et al. Aug 2008 A1
20080269797 Stack et al. Oct 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20090024143 Crews et al. Jan 2009 A1
20090030284 Cole et al. Jan 2009 A1
20090125040 Hambly et al. May 2009 A1
Foreign Referenced Citations (47)
Number Date Country
0 775 471 May 1997 EP
1492478 Jan 2005 EP
1 602 336 Dec 2005 EP
2768324 Mar 1999 FR
09-168597 Jun 1997 JP
WO 9101117 Feb 1991 WO
WO 9747231 Dec 1997 WO
WO 0012027 Mar 2000 WO
WO 0032137 Jun 2000 WO
WO 0078227 Dec 2000 WO
WO 0141671 Jun 2001 WO
WO 0145485 Jun 2001 WO
WO 0149359 Jul 2001 WO
WO 0166018 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0189393 Nov 2001 WO
WO 02060328 Aug 2002 WO
WO 03017882 Mar 2003 WO
WO 03086246 Oct 2003 WO
WO 03086247 Oct 2003 WO
WO 03090633 Nov 2003 WO
WO 03094784 Nov 2003 WO
WO 03094785 Nov 2003 WO
WO 03099137 Dec 2003 WO
WO 2004019765 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004037064 May 2004 WO
WO 2004041133 May 2004 WO
WO 2004064680 Aug 2004 WO
WO 2004064685 Aug 2004 WO
WO 2004080336 Sep 2004 WO
WO 2004110285 Dec 2004 WO
WO 2005037152 Apr 2005 WO
WO 2005079673 Sep 2005 WO
WO 2005096991 Oct 2005 WO
WO 2005105003 Nov 2005 WO
WO 2006016894 Feb 2006 WO
WO 2006055365 May 2006 WO
WO 2006127593 Nov 2006 WO
WO 2007041598 Apr 2007 WO
WO 2008030403 Mar 2008 WO
WO 2008033409 Mar 2008 WO
WO 2008033474 Mar 2008 WO
WO 2008141288 Nov 2008 WO
WO 2009011881 Jan 2009 WO
WO 2009011882 Jan 2009 WO
Related Publications (1)
Number Date Country
20100116867 A1 May 2010 US