The present invention relates generally to the field of medical staplers. More specifically, the present invention relates to the field of self-reloading staplers.
Surgical staplers have been in clinical use for many years. They have become a standard tool used by surgeons in procedures requiring tissue apposition, ligation, resection and/or anastomosis. Staplers reduce overall procedure time by eliminating the need for the time-consuming placement of sutures. Staplers can reduce blood loss in certain procedures involving resection of tissue to be stapled, by allowing tissue cutting/resection to be performed after the tissue is compressed and stapled. For example, a pair of staple rows is first formed, and then the tissue is cut along a line between the staple rows.
Surgical staplers are configured to fire the multiple staples of a staple array (e.g. a linear array such as a staple line, a circular array etc.) in a single shot. Early staplers comprised reusable handles and disposable staple cartridge loads holding a single staple array. Subsequent staplers used disposable handles and disposable cartridge loads. During clinical use of the prior art staplers, spent cartridges must be removed from the handles and replaced with fresh cartridges. Thus, a stapler carrying a single charge of staples is fired into the tissue and then removed from the patient. The spent cartridge is ejected and a new cartridge is loaded for the next staple line. The stapler is reintroduced into the body and the process is repeated for the next line or array of staples to be applied to tissue. The need for constant reloading of the stapler is particularly time consuming in transoral natural orifice surgeries, as the time required for repositioning the stapler head after removing the device from the stomach or other body cavity is not insignificant. Moreover, the requirement for multiple staple cartridges per procedure adds to the overall cost of the procedure.
Disclosed herein is a staple housing or cartridge preloaded with at least two sets of staples such that at least two staple arrays can be applied to tissue before the stapler must be actively reloaded. Each staple set contains two or more staples, with the staple sets arranged to form a staple array of at least two (but preferably more) staples in a linear or non-linear array. Each staple housing or cartridge is preloaded with at least two staple sets, but three, four, or more staples sets may instead be provided in the staple housing to limit the number of times the staple housing must be reloaded or equipped with a new cartridge during the course of a procedure.
The disclosed multi-fire staple housings and cartridges are suitable for use in any form of medical stapling procedure, including endoscopic, laparoscopic, open surgical and natural orifice procedures which utilize natural body orifices for surgery to reduce the invasiveness of these procedures. Natural orifices include, but are not limited to the esophagus, anus and vagina.
The disclosed multi-fire staple housings and cartridges are particularly beneficial for use within the stomach, such as during stomach partitioning procedures in which the stomach is partitioned from the inside by connecting tissue within the stomach (see commonly owned application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING), or for forming tissue plications within the stomach for use in retaining stomach implants (see commonly owned application Ser. No. 12/175,242, filed Jul. 17, 2008, entitled ENDOSCOPIC IMPLANT SYSTEM AND METHOD and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS).
Multi-fire staple housings or cartridges may be incorporated into multi-function devices, such as those that perform both stapling and cutting (e.g. end to end anastomosis devices, or linear stapling/cutting devices), and/or those that can both acquire and staple tissue. The staple housing is a removable/replaceable cartridge or magazine and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.
Referring again to
Each cell 28 contains a collection or stack 30 of staples disposed in the intermediate section 29a. One of the staples 30a is in a ready position 31 aligned with the corresponding opening 26 (
Various types of springs may be used in the feed mechanism. In the embodiment illustrated in
In alternate spring arrangements, the compression springs are replaced by one or more leaf springs 32a as shown in
Features used to push staples from the ready position through the tissue will next be described. Referring to
Linkage 40 has a first link 42 having a first end pivotally coupled to the plate of the staple pusher 22 and a second end connected to a pull cable 44. Pull cable 44 extends through a cable housing 45 to a handle on the shaft. A second link 46 is pivotably coupled at one end to an intermediate section of the first link 42, and it is pivotably coupled at its other end to the staple housing 12. The linkage is configured such that application of tension to the pull cable 44 pivots the inks 42, 46 from the position shown in
Various other methods may be used to advance a staple pusher to drive a staple from the staple housing. Some alternate methods, each of which uses a translating staple driver, are shown schematically in
In the example pictured in
Another embodiment illustrated in
In modifications to the embodiments of
Referring to
The stapler housings and staple cartridges disclosed herein may be used with any suitable staples or staple stacks. Staple stacks may be formed using a sheet of flat material 58 as shown in
Use of the stapler 10 will next be described. Prior to use, staple stacks 30 are loaded into the cells of the staple housing 12. With the jaws 16a, 16b in the closed position as in
With the jaws 16a, 16b opened, the tissue to be stapled is positioned between the staple housing 12 and anvil 14. The stapler may be equipped with integrated tissue acquisition devices useful for this purpose. Suitable tissue acquisition devices are described in the following commonly owned applications: application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING, and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, and application Ser. No. 12/268,216, entitled TISSUE ACQUISITION DEVICES AND METHODS, filed on same date herewith. In that application, tissue is acquired into a vacuum head using a vacuum source, and then the acquired tissue is retained (e.g. for tissue positioning, manipulation) by a grasper. Alternatively, separate instruments may be used to position tissue between the cartridge and anvil.
When an area of the stomach wall is drawn inwardly (bringing a two-layer “pinch” or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another. According to a preferred method disclosed herein, two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer plication. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication over extended durations, despite the forces imparted on them by stomach movement. A cut or cut-out may be formed in the plication during or separate from the stapling step to promote edge-to-edge healing effects that will enhance tissue knitting/adhesion and will ultimately contribute to the durability of the plication, despite the fact that mucosal tissue of one tissue pinch is positioned in apposition with the mucosal tissue of the other tissue pinch.
One or more such plications may be formed for a variety of purposes. For example, plications may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach. For example, a partition or barrier may be oriented to extend across the stomach, leaving only a narrow exit orifice through which food can flow from the proximal stomach to the distal stomach, or a similar antral barrier may be formed that will slow stomach emptying of stomach contents into the pylorus. In other cases, partitions or plications may be used to form a proximal pouch in the stomach or to reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities.
Coupled to or provided with the stapler are one or more, preferably two, three or more, tissue acquisition devices, which will also be referred to as “engagers” or “graspers” which are designed to engage tissue and draw the tissue into position between the stapler anvil and cartridge. In embodiments, the graspers are positioned to pass from one side of the “window” bounded by the stapler arms, through the window, and used to grasp tissue on the opposite side of the window. These graspers are then withdrawn back through the window to draw the grasped tissue between the cartridge and anvil. In other embodiments, the arms can engage tissue and draw it between the cartridge and anvil without necessarily passing through the window. Such embodiments include the arms oriented angularly relative to one another when viewed along the longitudinal axis of the device shaft.
The graspers can be simple alligator or forceps type graspers, vacuum chambers, corkscrews which can be traditional corkscrews or gear-driven perpendicular cork-screws, hooks, or any combination thereof, such as a corkscrew in combination with a vacuum chamber.
The term “grasper” is used to refer generally to any type of tool that can be used to engage or acquire tissue via any means (grasping, hooking, penetration, suction, adhesion, etc.) so the acquired tissue can be positioned between the staple holder and anvil. Similarly, even though some of the disclosed graspers do not physically “pinch” tissue, the term “pinch of tissue” may be used in this disclosure to refer to a fold, area, or tab of tissue acquired using a grasper for positioning of the that fold, area, or tab between the staple holder and the anvil.
Plugs/pledgets within the cut holes may be used to hold two or more two-layer plications together. For example, rather than joining two pinches of tissue as disclosed above to form a four-layer plication, the stapler may be used to separately staple and cut each pinch, forming a plurality of two-layer plications. Afterwards, pairs (or larger groups) of the two-layer plications may be joined together to position the cut holes into alignment, and the plugs/pledgets may be inserted through the aligned holes to retain the plications. Plugs/pledgets passed through the hole in one or more two- or four-layer plication can function as restrictive devices themselves, and may be used to restrict flow of food towards the distal stomach.
Once tissue is between the cartridge and anvil, the jaws are again closed (
When tension is released from the cable 44, springs (not shown) force the staple driver 20 back into the retracted position shown in
Like the staple housing of the first embodiment, cartridge 116 is a multi-fire unit configured to simultaneously fire an array of staples, and to automatically reload a subsequent array of staples ones the first array has been discharged. The staples in the array can be arranged in a variety of patterns, including but not limited to the square pattern shown in connection with the
In embodiments, tissue is drawn inwardly into a vacuum chamber, although tissue may be drawn inwardly using other components (e.g. graspers) that do not involve the use of a vacuum. When a portion of the interior stomach wall is drawn inwardly, sections of serosal tissue on the exterior of the stomach are positioned facing one another. The disclosed fastener applying device allows the opposed section of tissue to be moved into contact with one another, and delivers fasteners that will hold the tissue sections together until at least such time as serosal bonds form between them.
The system may include a stapler having a stapler head positioned on a distal portion of a shaft. A handle on the shaft controls articulation of the stapler head and actuation of the tissue acquisition, tissue compression, and stapling functions of the stapler head. Vacuum and fluid sources are fluidly coupled to the handle for use in tissue acquisition, compression and stapling as discussed below. The vacuum source may be the “house vacuum” accessible through a coupling on the wall of the operating room, or an auxiliary suction pump. The stapler may include a switch allowing the user to control airflow between the vacuum source and stapler.
Features of the cartridge 116 will first be described with reference to the exploded views shown in
Rear housing 124 has a plate 134 with a cutout 136 proportioned to receive the middle housing 122. Spaced apart members 138 extend longitudinally from the plate 134 in a distal direction. Members 138 have circumferential channels 140.
Middle housing 122 includes longitudinal sidewalls 142 proportioned to allow the middle housing 122 to slide into the central cutouts 132, 136 of the front and rear housings. Each of the sidewalls 142 has a longitudinally extending first channel 144 centrally positioned on the sidewall 142, and a longitudinally extending second channel 146 centrally positioned within the first channel 144.
As shown in
When housings 120, 122, 124 are assembled, spaces between their various walls form chambers within which staples are positioned during use. Referring to
Each staple is positioned in its corresponding chamber with its legs disposed in the longitudinally extending branch of the chamber, and with the cross-member or back span of the staple in the laterally extending portion of the chamber. Each of the chambers 148 also houses rectangular U-shaped staple advancing element 150 adjacent to the radially outermost one of the staples 30.
Compression band 152 is disposed within the circumferential channel formed by the aligned channels 130, 140. The inner wall of the compression band is in contact with the longitudinally extending legs of each of staple advancing elements 150 in the cartridge. The radially inward spring forces of the compression band bias the staple advancing elements 150, and thus all of the staples, in radially inward directions.
Referring again to
A staple pusher assembly 156 (
The pusher assembly is next retracted as shown in
The disclose multi-fire staple housings are useful in carrying out a number of procedures, including but not limited to stomach partitioning and/or the formation of stomach wall plications for use in retaining implants.
For example, the disclosed multi-fire housings may be employed in a stomach wall partitioning system. When an area of the stomach wall is drawn inwardly (bringing a two-layer “pinch” or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another. In stomach wall partitioning methods disclosed in commonly owned application Ser. No. 12/119,329, filed May 12, 2008, entitled DEVICES AND METHODS FOR STOMACH PARTITIONING, two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer tissue plication.
Multiple plications of this type may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach and/or that will effectively reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities. A partition formed using plications might also be used as a treatment for GERD to create a shield between the stomach and esophagus that will minimize reflux.
Commonly owned application Ser. No. 12/175,242, filed Jul. 17, 2008, entitled ENDOSCOPIC IMPLANT SYSTEM AND METHOD and application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS describe formation of plications by drawing a pinch of stomach wall tissue inwardly to form a tissue fold, and by then applying staple arrays or other fastening means to the tissue fold to retain the plication. Holes may be formed in the plications for receiving implants or anchors to which additional implants will be coupled.
The disclosed multi-fire staple housing will greatly facilitate these types of procedures by allowing serial formation of each of the required plications without necessitating removal of the stapler head from the stomach after formation of each plication. In other words, after a staple array is applied to tissue to create a plication, the staple head may be immediately repositioned and used to create second and subsequent plications, all without the need to remove the stapler head from the body for reloading or replacement with a fresh stapler. Thus, a stomach wall partition or a collection of plications may be formed in less time than was previously possible.
In addition to the staple arrangements disclosed above, alternative arrangements are suitable and can be used with feed mechanisms of the type disclosed above.
In one alternate staple arrangement, staples are formed into chains such that the legs are adjacent and the back spans do not touch. The arrangement would look like this: UUUUUUUU, although overlap of the staple elements is also possible. As one staple in the chain is driven from a ready position in the staple housing, and the driving member retracted, the next staple is moved into the ready position, with the feed motion primarily along the axis of the back span of the staple. Staples may be fired singly, or in multiples at the same time or at alternating times with one group (or single staple) firing while another group (or single staple) is reloading.
In a radial or “revolver” type staple arrangement, staples are arranged like spokes of a wheel, housed within a wheel, or on a belt, with the staple legs, and direction of driving generally parallel to the axis of the wheel (like the bullets in the chamber of a revolver). As an example, 3 of the 12 staples (either equally spaced about the ring or not) could be advanced, then the driving member is retracted and either the driving member indexed to the next three staples, or the staple magazine is indexed such that the next three staples are aligned with the driver. This motion could continue for 4 total firings of 3 staples each. In a modified, ferris wheel type arrangement, the staples are oriented with the staple legs perpendicular to the axis of the wheel, or in a non-circular belt. In this case, the driver would drive staples toward the outside from the inside, or toward the inside from the outside of the wheel or belt.
Other embodiments use flat nested arrangements of staples. For example, a low profile way of storing the staples would be to lay them flat on each other with each one slightly in front of the previous one, like dominoes after they have fallen. In this case, a method of tilting up the staple to be driven would be used. Double forming without tilting would also make this possible. In this instance, staples would be pushed forward and bent down, then crushed to the traditional B shape.
In another arrangement, the array or magazine of staples consists of a chain of groups of staples. The staples are housed in a link of the chain which is designed to interface with the driving member. When a link of the chain, with one to 5 or more staples is advanced to the driver, those staples may be driven. Upon retraction of the driver, the chain is advanced and the spent link is pushed beyond the driving zone and a new link is advanced into the driving zone. The spent links could move to a containment area, or proceed out of the device. Similarly, the loaded links could be housed in a containment area, or extend beyond the envelope of the device. If the material of the chain in this example, or any mentioned elsewhere in this description, were biocompatible, or bioabsorbable, the links of the chain could be discarded in the lumen or incorporated into the staple line such that no, or less, spent chain material required post-firing management.
One embodiment of a stapler employing this concept will next be described.
As best shown in
Referring to
Spring 228 is disposed in a channel in the housing 212 and is configured such that it is compressed as the driving wedge 232 is moved by the user actuating a cable or other force transfer element. For example, the wedge 232 might be coupled to a cable extending through the spring 228 and attached to cap 234 on the spring 228 such that as the wedge moves to the right in
The stapler is repositioned and the sequence is repeated until all the cartridges have been fired, or until stapling is complete.
It may be advantageous to maintain a level of mechanical simplicity comparable to currently produced linear staplers, but enable multi-fire capability without the need to withdraw the stapler from the patient. In this design, the spent cartridge is made to be ejected and be dropped in place, or be tethered or otherwise connected to the stapler or to the next cartridge to be loaded into the stapler. Loading would be accomplished with tools already in the patient, or with additional mechanisms within the tool itself, which would form or act as a conveyor of, or conduit for, new cartridges being advanced to the stapler head.
The above groupings are not exclusive and, for example, radial driver or magazine motion could be combined with stacked, flat nested, or chained staple arrangements.
It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Moreover, features of the disclosed embodiments may be combined with one another and with other features (including those taught in the prior applications referenced herein) in varying ways to produce additional embodiments. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. The applications and methods listed are not limited to the treatment of diseases or procedures listed. Modifications of the above described methods and tools and variations of this invention that are obvious to those of skill in the art are intended to be within the scope of this disclosure.
Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.
This application is a continuation of U.S. application Ser. No. 15/246,384, filed on Aug. 24, 2016, now U.S. Pat. No. 10,368,862, which is a continuation of U.S. application Ser. No. 14/259,781, filed on Apr. 23, 2014, now U.S. Pat. No. 9,451,956, which is a continuation of U.S. application Ser. No. 13/089,216, filed on Apr. 18, 2011, now U.S. Pat. No. 8,747,421, which is a divisional of U.S. application Ser. No. 12/268,404, filed on Nov. 10, 2008, now U.S. Pat. No. 7,934,631, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1408865 | Cowell | Mar 1922 | A |
3663965 | Culp et al. | May 1972 | A |
4134405 | Smit | Jan 1979 | A |
4207890 | Mamajek et al. | Jun 1980 | A |
4246893 | Berson | Jan 1981 | A |
4315509 | Smit | Feb 1982 | A |
4331277 | Green | May 1982 | A |
4403604 | Wilkinson et al. | Sep 1983 | A |
4416267 | Garren et al. | Nov 1983 | A |
4417360 | Moasser | Nov 1983 | A |
4441215 | Kaster | Apr 1984 | A |
4467804 | Hardy et al. | Aug 1984 | A |
4485805 | Foster, Jr. | Dec 1984 | A |
4501264 | Rockey | Feb 1985 | A |
4607618 | Angelchik | Aug 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4641653 | Rockey | Feb 1987 | A |
4648383 | Angelchik | Mar 1987 | A |
4694827 | Weiner et al. | Sep 1987 | A |
4723547 | Kullas et al. | Feb 1988 | A |
4747849 | Galtier | May 1988 | A |
4846836 | Reich | Jul 1989 | A |
4848367 | Avant et al. | Jul 1989 | A |
4899747 | Garren et al. | Feb 1990 | A |
4925446 | Garay et al. | May 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4946440 | Hall | Aug 1990 | A |
4969896 | Shors | Nov 1990 | A |
4997084 | Opie et al. | Mar 1991 | A |
5006106 | Angelchik | Apr 1991 | A |
5037021 | Mills et al. | Aug 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5084061 | Gau et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5163952 | Froix | Nov 1992 | A |
5188274 | Moeinzadeh et al. | Feb 1993 | A |
5211658 | Clouse | May 1993 | A |
5234454 | Bangs | Aug 1993 | A |
5246456 | Wilkinson | Sep 1993 | A |
5259399 | Brown | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5290217 | Campos | Mar 1994 | A |
5306300 | Berry | Apr 1994 | A |
5314473 | Godin | May 1994 | A |
5327914 | Shlain | Jul 1994 | A |
5345949 | Shlain | Sep 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5401241 | Delany | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5486187 | Schenck | Jan 1996 | A |
5514176 | Bosley, Jr. | May 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5593434 | Williams | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5609624 | Kalis | Mar 1997 | A |
5628786 | Banas et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5653743 | Martin | Aug 1997 | A |
5662259 | Yoo | Sep 1997 | A |
5662713 | Andersen et al. | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5674241 | Bley et al. | Oct 1997 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5709657 | Zimmon | Jan 1998 | A |
5720776 | Chuter et al. | Feb 1998 | A |
5749918 | Hogendijk et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5771903 | Jakobsson | Jun 1998 | A |
5785684 | Zimmon | Jul 1998 | A |
5792119 | Marx | Aug 1998 | A |
5820584 | Crabb | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5856445 | Korsmeyer | Jan 1999 | A |
5861036 | Godin | Jan 1999 | A |
5868141 | Ellias | Feb 1999 | A |
5887594 | Locicero, III | Mar 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5910144 | Hayashi | Jun 1999 | A |
5922019 | Hankh et al. | Jul 1999 | A |
5947983 | Solar et al. | Sep 1999 | A |
5993473 | Chan et al. | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6016848 | Egres, Jr. | Jan 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6098629 | Johnson et al. | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6120534 | Ruiz | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6146416 | Andersen et al. | Nov 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159238 | Killion et al. | Dec 2000 | A |
6197022 | Baker | Mar 2001 | B1 |
6206930 | Burg et al. | Mar 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6264700 | Kilcoyne et al. | Jul 2001 | B1 |
6287334 | Moll et al. | Sep 2001 | B1 |
6302917 | Dua et al. | Oct 2001 | B1 |
6358197 | Silverman et al. | Mar 2002 | B1 |
6416522 | Strecker | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6454785 | De Hoyos Garza et al. | Sep 2002 | B2 |
6460543 | Forsell | Oct 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6494895 | Addis | Dec 2002 | B2 |
6503264 | Birk | Jan 2003 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6527784 | Adams et al. | Mar 2003 | B2 |
6540789 | Silverman et al. | Apr 2003 | B1 |
6544291 | Taylor | Apr 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6558400 | Deem et al. | May 2003 | B2 |
6558429 | Taylor | May 2003 | B2 |
6572627 | Gabbay | Jun 2003 | B2 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6575896 | Silverman et al. | Jun 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6596023 | Nunez et al. | Jul 2003 | B1 |
6607555 | Patterson et al. | Aug 2003 | B2 |
6627206 | Lloyd | Sep 2003 | B2 |
6632227 | Adams | Oct 2003 | B2 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6675809 | Stack et al. | Jan 2004 | B2 |
6733512 | McGhan | May 2004 | B2 |
6740098 | Abrams et al. | May 2004 | B2 |
6740121 | Geitz | May 2004 | B2 |
6746460 | Gannoe et al. | Jun 2004 | B2 |
6755869 | Geitz | Jun 2004 | B2 |
6764518 | Godin | Jul 2004 | B2 |
6773440 | Gannoe et al. | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6790214 | Kraemer et al. | Sep 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6845776 | Stack et al. | Jan 2005 | B2 |
6916332 | Adams | Jul 2005 | B2 |
6932838 | Schwartz et al. | Aug 2005 | B2 |
6960233 | Berg et al. | Nov 2005 | B1 |
6966875 | Longobardi | Nov 2005 | B1 |
6981978 | Gannoe | Jan 2006 | B2 |
6981980 | Sampson et al. | Jan 2006 | B2 |
6994715 | Gannoe et al. | Feb 2006 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7025791 | Levine et al. | Apr 2006 | B2 |
7033373 | de la Torre et al. | Apr 2006 | B2 |
7033384 | Gannoe et al. | Apr 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7056305 | Garza Alvarez | Jun 2006 | B2 |
7066945 | Hashiba et al. | Jun 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7090699 | Geitz | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7097665 | Stack et al. | Aug 2006 | B2 |
7111627 | Stack et al. | Sep 2006 | B2 |
7112186 | Shah | Sep 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7121283 | Stack et al. | Oct 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7152607 | Stack et al. | Dec 2006 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7172613 | Wazne | Feb 2007 | B2 |
7175638 | Gannoe et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7211114 | Bessler et al. | May 2007 | B2 |
7214233 | Gannoe et al. | May 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7220284 | Kagan et al. | May 2007 | B2 |
7223277 | Delegge | May 2007 | B2 |
7229428 | Gannoe et al. | Jun 2007 | B2 |
7229453 | Anderson et al. | Jun 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7261722 | McGuckin, Jr. et al. | Aug 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7315509 | Jeong et al. | Jan 2008 | B2 |
7316716 | Egan | Jan 2008 | B2 |
7320696 | Gazi et al. | Jan 2008 | B2 |
7326207 | Edwards | Feb 2008 | B2 |
7335210 | Smit | Feb 2008 | B2 |
7347863 | Rothe et al. | Mar 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7399304 | Gambale et al. | Jul 2008 | B2 |
7431725 | Stack et al. | Oct 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7470251 | Shah | Dec 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7503922 | Deem et al. | Mar 2009 | B2 |
7520884 | Swanstrom et al. | Apr 2009 | B2 |
7575586 | Berg et al. | Aug 2009 | B2 |
7608114 | Levine et al. | Oct 2009 | B2 |
7615064 | Bjerken | Nov 2009 | B2 |
7625371 | Morris et al. | Dec 2009 | B2 |
7628821 | Stack et al. | Dec 2009 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7674721 | Usami | Mar 2010 | B2 |
7695446 | Levine et al. | Apr 2010 | B2 |
7699863 | Marco et al. | Apr 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7717843 | Balbierz et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7731757 | Taylor et al. | Jun 2010 | B2 |
7744613 | Ewers et al. | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7753870 | Demarais et al. | Jul 2010 | B2 |
7766861 | Levine et al. | Aug 2010 | B2 |
7819836 | Levine et al. | Oct 2010 | B2 |
7846138 | Dann et al. | Dec 2010 | B2 |
7846174 | Baker et al. | Dec 2010 | B2 |
7881797 | Griffin et al. | Feb 2011 | B2 |
7892214 | Kagan et al. | Feb 2011 | B2 |
7892292 | Stack et al. | Feb 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7954683 | Knodel et al. | Jun 2011 | B1 |
8020741 | Cole et al. | Sep 2011 | B2 |
8469977 | Balbierz et al. | Jun 2013 | B2 |
8747421 | Balbierz et al. | Jun 2014 | B2 |
8763876 | Kostrzewski | Jul 2014 | B2 |
9022274 | Penna | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9113866 | Felder et al. | Aug 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9451956 | Balbierz et al. | Sep 2016 | B2 |
10368862 | Balbierz | Aug 2019 | B2 |
20010011543 | Forsell | Aug 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20020082621 | Schurr et al. | Jun 2002 | A1 |
20020188354 | Peghini | Dec 2002 | A1 |
20030191525 | Thornton | Oct 2003 | A1 |
20030199990 | Stack et al. | Oct 2003 | A1 |
20030199991 | Stack et al. | Oct 2003 | A1 |
20030220660 | Kortenbach et al. | Nov 2003 | A1 |
20040044364 | Devries et al. | Mar 2004 | A1 |
20040068726 | Levy et al. | Apr 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040098043 | Trout | May 2004 | A1 |
20040117031 | Stack et al. | Jun 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040138761 | Stack et al. | Jul 2004 | A1 |
20040143342 | Stack et al. | Jul 2004 | A1 |
20040162568 | Saadat et al. | Aug 2004 | A1 |
20040215216 | Gannoe et al. | Oct 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040243223 | Kraemer et al. | Dec 2004 | A1 |
20050004430 | Lee et al. | Jan 2005 | A1 |
20050049718 | Dann et al. | Mar 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050080444 | Kraemer et al. | Apr 2005 | A1 |
20050085787 | Laufer | Apr 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050159769 | Alverdy | Jul 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050192599 | Demarais | Sep 2005 | A1 |
20050192615 | Torre et al. | Sep 2005 | A1 |
20050247320 | Stack et al. | Nov 2005 | A1 |
20050251158 | Saadat et al. | Nov 2005 | A1 |
20050256533 | Roth et al. | Nov 2005 | A1 |
20050267595 | Chen et al. | Dec 2005 | A1 |
20050267596 | Chen et al. | Dec 2005 | A1 |
20050273060 | Levy et al. | Dec 2005 | A1 |
20060015006 | Laurence et al. | Jan 2006 | A1 |
20060020278 | Burnett et al. | Jan 2006 | A1 |
20060058829 | Sampson et al. | Mar 2006 | A1 |
20060151568 | Weller et al. | Jul 2006 | A1 |
20060155259 | MacLay | Jul 2006 | A1 |
20060155311 | Hashiba et al. | Jul 2006 | A1 |
20060178560 | Saadat et al. | Aug 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060253142 | Bjerken et al. | Nov 2006 | A1 |
20060271076 | Weller et al. | Nov 2006 | A1 |
20060282095 | Stokes et al. | Dec 2006 | A1 |
20070010864 | Dann et al. | Jan 2007 | A1 |
20070032800 | Ortiz et al. | Feb 2007 | A1 |
20070043384 | Ortiz et al. | Feb 2007 | A1 |
20070055292 | Ortiz et al. | Mar 2007 | A1 |
20070060932 | Stack et al. | Mar 2007 | A1 |
20070149994 | Sosnowski et al. | Jun 2007 | A1 |
20070175488 | Cox et al. | Aug 2007 | A1 |
20070191870 | Baker et al. | Aug 2007 | A1 |
20070191871 | Baker et al. | Aug 2007 | A1 |
20070198074 | Dann et al. | Aug 2007 | A1 |
20070208360 | Demarais et al. | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070239284 | Skerven et al. | Oct 2007 | A1 |
20070260327 | Case et al. | Nov 2007 | A1 |
20070276428 | Haller et al. | Nov 2007 | A1 |
20070276432 | Stack et al. | Nov 2007 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080065122 | Stack et al. | Mar 2008 | A1 |
20080097510 | Albrecht et al. | Apr 2008 | A1 |
20080116244 | Rethy et al. | May 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080195226 | Williams et al. | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080208356 | Stack et al. | Aug 2008 | A1 |
20080269797 | Stack et al. | Oct 2008 | A1 |
20080272175 | Holsten et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080319471 | Sosnowski et al. | Dec 2008 | A1 |
20090018558 | Laufer et al. | Jan 2009 | A1 |
20090024143 | Crews et al. | Jan 2009 | A1 |
20090030284 | Cole et al. | Jan 2009 | A1 |
20090125040 | Hambly et al. | May 2009 | A1 |
20090171383 | Cole et al. | Jul 2009 | A1 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090182424 | Marco et al. | Jul 2009 | A1 |
20090236389 | Cole et al. | Sep 2009 | A1 |
20090236390 | Cole et al. | Sep 2009 | A1 |
20090236391 | Cole et al. | Sep 2009 | A1 |
20090236392 | Cole et al. | Sep 2009 | A1 |
20090236396 | Cole et al. | Sep 2009 | A1 |
20090236397 | Cole et al. | Sep 2009 | A1 |
20090236398 | Cole et al. | Sep 2009 | A1 |
20090236400 | Cole et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20090299487 | Stack et al. | Dec 2009 | A1 |
20100016988 | Stack et al. | Jan 2010 | A1 |
20100100109 | Stack et al. | Apr 2010 | A1 |
20100204719 | Balbierz et al. | Aug 2010 | A1 |
20110192881 | Balbierz et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
6296642 | Oct 1992 | AU |
680263 | Jul 1992 | CH |
8708978 | Nov 1987 | DE |
0775471 | May 1997 | EP |
1256318 | Nov 2002 | EP |
1492478 | Jan 2005 | EP |
1602336 | Dec 2005 | EP |
2768324 | Mar 1999 | FR |
H09168597 | Jun 1997 | JP |
2005-160933 | Jun 2005 | JP |
WO-9101117 | Feb 1991 | WO |
WO-9525468 | Sep 1995 | WO |
WO-9747231 | Dec 1997 | WO |
WO-0012027 | Mar 2000 | WO |
WO-0032137 | Jun 2000 | WO |
WO-0078227 | Dec 2000 | WO |
WO-0141671 | Jun 2001 | WO |
WO-0145485 | Jun 2001 | WO |
WO-0149359 | Jul 2001 | WO |
WO-0166018 | Sep 2001 | WO |
WO-0185034 | Nov 2001 | WO |
WO-0189393 | Nov 2001 | WO |
WO-02060328 | Aug 2002 | WO |
WO-03017882 | Mar 2003 | WO |
WO-03086246 | Oct 2003 | WO |
WO-03086247 | Oct 2003 | WO |
WO-03090633 | Nov 2003 | WO |
WO-03094784 | Nov 2003 | WO |
WO-03094785 | Nov 2003 | WO |
WO-03099137 | Dec 2003 | WO |
WO-03105698 | Dec 2003 | WO |
WO-2004019765 | Mar 2004 | WO |
WO-2004019787 | Mar 2004 | WO |
WO-2004032760 | Apr 2004 | WO |
WO-2004037064 | May 2004 | WO |
WO-2004041133 | May 2004 | WO |
WO-2004064680 | Aug 2004 | WO |
WO-2004064685 | Aug 2004 | WO |
WO-2004080336 | Sep 2004 | WO |
WO-2004110285 | Dec 2004 | WO |
WO-2005037152 | Apr 2005 | WO |
WO-2005079673 | Sep 2005 | WO |
WO-2005096991 | Oct 2005 | WO |
WO-2005105003 | Nov 2005 | WO |
WO-2006016894 | Feb 2006 | WO |
WO-2006055365 | May 2006 | WO |
WO-2006081174 | Aug 2006 | WO |
WO-2006081174 | Aug 2006 | WO |
WO-2006127593 | Nov 2006 | WO |
WO-2007041598 | Apr 2007 | WO |
WO-2008030403 | Mar 2008 | WO |
WO-2008033409 | Mar 2008 | WO |
WO-2008033474 | Mar 2008 | WO |
WO-2008141288 | Nov 2008 | WO |
WO-2009011881 | Jan 2009 | WO |
WO-2009011882 | Jan 2009 | WO |
WO-2009086549 | Jul 2009 | WO |
WO-2009117533 | Sep 2009 | WO |
WO-2010054399 | May 2010 | WO |
WO-2010054404 | May 2010 | WO |
Entry |
---|
Felsher J., et al., “Mucosal Apposition in Endoscopic Suturing,” Gastrointestinal Endoscopy, 2003, vol. 58 (6), pp. 867-870. |
International Search Report and Written Opinion for Application No. PCT/US2008/008726, dated Oct. 16, 2008, 13 pages. |
International Search Report for Application No. PCT/US2002/027177, dated Feb. 14, 2003, 5 pages. |
International Search Report for Application No. PCT/US2003/004378, dated Aug. 13, 2003, 4 pages. |
International Search Report for Application No. PCT/US2003/004449, dated Aug. 13, 2003, 4 pages. |
International Search Report for Application No. PCT/US2003/033605, dated Mar. 29, 2004, 4 pages. |
International Search Report for Application No. PCT/US2003/033606, dated Mar. 29, 2004, 6 pages. |
International Search Report for Application No. PCT/US2004/006695, dated Sep. 8, 2004, 6 pages. |
International Search Report for Application No. PCT/US2004/033007, dated Feb. 9, 2005, 6 pages. |
International Search Report for Application No. PCT/US2005/014372, dated Jul. 28, 2005, 1 page. |
International Search Report for Application No. PCT/US2006/019727, dated Apr. 19, 2007, 3 pages. |
International Search Report for Application No. PCT/US2006/038684, dated Feb. 14, 2007, 4 pages. |
International Search Report for Application No. PCT/US2007/019227, dated Feb. 20, 2008, 4 pages. |
International Search Report for Application No. PCT/US2007/019833, dated Feb. 20, 2008, 5 pages. |
International Search Report for Application No. PCT/US2007/019940, dated Mar. 14, 2008, 3 pages. |
International Search Report for Application No. PCT/US2008/008729, dated Aug. 18, 2009, 6 pages. |
International Search Report for Application No. PCT/US2008/063440, dated Aug. 1, 2008, 5 pages. |
International Search Report for Application No. PCT/US2008/088581, dated Feb. 26, 2009, 2 pages. |
International Search Report for Application No. PCT/US2009/037586, dated Sep. 28, 2009, 4 pages. |
International Search Report for Application No. PCT/US2009/063925, dated Jan. 12, 2010, 1 page. |
International Search Report for Application No. PCT/US2009/063930, dated Jan. 12, 2010, 1 page. |
Extended European Search Report dated Mar. 14, 2014 issued in PCT Appln. No. PCT/US2009063930, (13 pages). |
Stecco, et al., “Safety of a Gastric Restrictive Implant in a Canine Model,” Stecco Group, 2004, San Jose and Barosense, Inc., Redwood City, California. |
Stecco, et al., “Trans-oral Plication Formation and Gastric Implant Placement in a Canine Model,” Stecco Group, 2004, San Jose and Barosense, Inc., Redwood City, California. |
Number | Date | Country | |
---|---|---|---|
20190321035 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12268404 | Nov 2008 | US |
Child | 13089216 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15246384 | Aug 2016 | US |
Child | 16456546 | US | |
Parent | 14259781 | Apr 2014 | US |
Child | 15246384 | US | |
Parent | 13089216 | Apr 2011 | US |
Child | 14259781 | US |