Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection

Information

  • Patent Grant
  • 12050201
  • Patent Number
    12,050,201
  • Date Filed
    Thursday, April 29, 2021
    3 years ago
  • Date Issued
    Tuesday, July 30, 2024
    5 months ago
Abstract
A probe for use with an imaging system, including a scanning device configured to receive a first light beam from a light source, a beam-divider configured to split the first light beam into a plurality of second light beams, and a focusing device configured to focus each of the second light beams on respective locations in an object of interest is disclosed.
Description
BACKGROUND

The ability to image microstructures, such as the micro-vascular network in the skin, the GI tract, or the brain cortex, and to monitor physiological functions of tissue is invaluable. One of the promising technologies for accomplishing this objective is photoacoustic microscopy. Current high-resolution optical imaging techniques, such as optical coherence tomography, can image up to approximately one transport mean free path (about 1 mm) into biological tissue. However, these techniques are insensitive to optical absorption that is related to important biochemical information. Other well-known techniques, such as confocal microscopy and multi-photon microscopy, often involve the introduction of exogenous dyes, which, with a few notable exceptions, have relatively high toxicity. In addition, acoustic microscopic imaging and spectroscopy systems are sensitive to acoustic impedance variations only, which have low contrast for early-stage cancer and provide little functional information about biological tissue except flow. In contrast, photoacoustic wave magnitude is, within certain bounds, linearly proportional to the optical absorption contrast; thus photoacoustic spectral measurement can be performed to gain functional (physiological) information such as the local blood oxygenation level.


BRIEF DESCRIPTION

In one aspect, an imaging method is provided the includes receiving a first light beam from a light source; splitting the first light beam into a plurality of second light beams using a beam-divider; focusing the plurality of second light beams on respective locations in an object of interest using a focusing device; and receiving the acoustic signals from the object of interest using an ultrasonic transducer array. The plurality of second light beams may cause the object of interest to emit acoustic signals. The plurality of second light beams and acoustic signals may be coaxially aligned on opposite sides of the object of interest in a transmission mode. The method may further include coaxially merging the plurality of second light beams and the acoustic signals using an optical-acoustic beam combiner. Coaxially merging the plurality of second light beams and the acoustic signals may include passing the plurality of second light beams through the optical-acoustic beam combiner to the focusing device and reflecting the acoustic signals entering the optical-acoustic beam combiner toward the ultrasonic transducer array. Coaxially merging the plurality of second light beams and the acoustic signals may include reflecting the plurality of second light beams entering the optical-acoustic beam combiner toward the focusing device and passing the acoustic signals through the optical-acoustic beam combiner to the ultrasonic transducer array. The method may further include reflecting the first light beam toward the beam-divider using a movable scanning mirror. The first light beam may be reflected in a raster scanning pattern. The method may further include generating an image based on the acoustic signals. The plurality of second light beams may be formed as a linear array. The acoustic signals may be received by a linear ultrasonic transducer array. The plurality of second light beams may be formed as a 2D array. The acoustic signals may be received by a 2D ultrasonic transducer array.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments described herein may be better understood by referring to the following description in conjunction with the accompanying drawings.



FIG. 1 is a diagram of a photoacoustic probe of an imaging system in accordance with one embodiment of the present disclosure, where a 2D transmission grating and an optically transparent acoustic reflector are employed.



FIG. 2 is a block diagram showing the overarching architecture of the present disclosure.



FIG. 3 is a diagram of the integrated focusing assembly of an imaging system in accordance with an alternative embodiment of the present disclosure, where a 2D transmission grating and a custom-built optical-acoustic beam combiner are employed.



FIG. 4 is a diagram of the integrated focusing assembly of an imaging system in accordance with another alternative embodiment of the present disclosure, where a 2D transmission grating and an acoustically transparent thin-film optical reflector are employed.



FIG. 5 is a diagram of the integrated focusing assembly of an imaging system in accordance with another alternative embodiment of the present disclosure, where a 2D transmission grating and a transmission-mode design are employed.



FIG. 6 is a diagram of the photoacoustic probe of an imaging system in accordance with another alternative embodiment of the present disclosure, where a 2D microlens array and an optically transparent acoustic reflector are employed.



FIG. 7 is a diagram of the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and a custom-built optical-acoustic beam combiner are employed.



FIG. 8 is a diagram of the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and an acoustically transparent thin-film optical reflector are employed.



FIG. 9 is a diagram of the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and a transmission-mode design are employed.



FIG. 10A shows a photoacoustic image of two crossed 6-micrometer diameter carbon fibers acquired with the current prototype of the present disclosure.



FIG. 10B shows a distribution of the photoacoustic amplitude across the vertical fiber shown in FIG. 10A.



FIGS. 11A and 11B show in vivo photoacoustic images of a mouse ear vasculature acquired with the current prototype of the present disclosure.



FIG. 12 is a flowchart illustrating an exemplary imaging method.





DETAILED DESCRIPTION

While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the disclosure and do not delimit the scope of the disclosure.


To facilitate the understanding of this disclosure, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present disclosure. Terms such as “a,” “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the disclosure, but their usage does not delimit the disclosure, except as outlined in the claims.


To be consistent with the commonly used terminology, whenever possible, the terms used herein will follow the definitions recommended by the Optical Society of America (OCIS codes).


In some embodiments, the term “photoacoustic microscopy” refers to a photoacoustic imaging technology that detects pressure waves generated by light absorption in the volume of a material (such as biological tissue) and propagated to the surface of the material. In other words, photoacoustic microscopy is a method for obtaining images of the optical contrast of a material by detecting acoustic or pressure waves traveling from the object. As used herein, the term “photoacoustic microscopy” includes detection of the pressure waves that are still within the object.


In some embodiments, the terms “reflection mode” and “transmission mode” refer to a laser photoacoustic microscopy system that employs the detection of acoustic or pressure waves transmitted from the volume of their generation to the optically irradiated surface and a surface that is opposite to, or substantially different from, the irradiated surface, respectively.


In some embodiments, the term “multi-focus 1D array illumination” refers to optical illumination for photoacoustic excitation with a one-dimensional array of focused pulsed laser beams.


In some embodiments, the term “multi-focus matrix illumination” refers to optical illumination for photoacoustic excitation using a two-dimensional array (matrix) of focused pulsed laser beams.


In some embodiments, the term “linear ultrasonic array” refers to a one-dimensional array of ultrasonic transducers, with which the two-dimensional (2D) in-plane spatial distributions and strength of ultrasonic (photoacoustic) sources can be reconstructed based on the time-resolved signals arriving at the array.


In some embodiments, the term “matrix ultrasonic array” refers to a two-dimensional array of ultrasonic transducers, with which the 3D spatial distributions and strength of photoacoustic sources can be reconstructed based on the time-resolved signals arriving at the array. Ultrasonic transducers generally refer to all types of ultrasonic wave detection devices including devices utilizing optical interferometers to sense ultrasonic waves.


In some embodiments, the term “diffraction limited resolution” refers to the best possible resolution by focusing light within the limitations imposed by diffraction.


In some embodiments, the term “photoacoustic emissions” refers to the pressure waves produced by light absorption.


In some embodiments, the term “B-scan image” refers to a cross-sectional two-dimensional image in the plane containing the acoustic axis.


In some embodiments, the term “integrated focusing assembly” refers to an integrated assembly including optical focusing components, an ultrasonic array, and the coupling devices between them.


In some embodiments, the term “photoacoustic reconstruction” refers to a signal processing technique used to reconstruct a photoacoustic B-scan image from received signals.


Embodiments of the present disclosure provide methods, systems, and apparatus for high-speed, optical-resolution photoacoustic imaging using multi-focus optical illumination in conjunction with ultrasonic array detection. Specifically, embodiments of the present disclosure use multiple focused pulsed laser beams to produce a rapid local temperature rise at multiple optical foci from absorption of the pulsed light. The temperature rise leads to a transient thermal expansion, resulting in photoacoustic emissions, which are detected by a high-frequency ultrasonic array to reconstruct an image. The image signal amplitude is related to the optical absorption and Grueneisen parameter. With each laser pulse, the multi-focus illumination excites photoacoustic waves from multiple sites, which the ultrasonic array detects simultaneously. The use of the ultrasonic array with photoacoustic reconstruction allows the separation of signals from the multiple optical illumination sites as close as the lateral resolution of the ultrasonic array. Fundamentally different from simply combining multiple assemblies of a single optical focusing element and a single ultrasonic transducer, this approach has enabled us to position optical foci much closer to each other.


Compared with previously existing optical-resolution photoacoustic microscopy, embodiments of the present disclosure significantly reduce the range or area of scanning for 2D or 3D imaging, respectively, by up to two to three orders, depending on the number of illumination spots. As a result, rapid scanning can be used to produce 2D or 3D photoacoustic imaging with optical resolution at high speed—even in real time. For example, using multi-focus matrix illumination in conjunction with matrix ultrasonic array detection, a 3D photoacoustic image can be produced by rapidly scanning the illumination over a small area comparable in size with the lateral resolution of the ultrasonic array. In fact, even with a simplified design using 1D array illumination in conjunction with linear ultrasonic array detection, the multi-focus optical-resolution photoacoustic microscopy device demonstrates a significant improvement in imaging speed over previously existing optical-resolution photoacoustic microscopy devices.


At an ultrasonic frequency suitable for ˜1 millimeter (mm) penetration in soft tissue, the optical diffraction limited spatial resolution can be two orders of magnitude finer than the acoustically defined counterpart. In addition, in comparison with a conventional broad light illumination, the confined illumination significantly reduces the background arising from the interference of photoacoustic waves from various targets within the illumination volume. Due to the minimal scanning requirement of the present disclosure, a handheld 3D imaging device can also be made, which could be particularly useful for clinical applications such as intraoperative surgery. Moreover, the high imaging speed of the present disclosure is critical for clinical practice in order to reduce motion artifacts, patient discomfort, cost, and risks associated with minimally invasive procedures such as endoscopy.


The embodiments described in detail herein employ a tunable dye laser pumped by an Nd:YLF laser as the irradiation source. The laser pulse duration is on the order of several nanoseconds. The pulse repetition rate, which is controlled by an external triggering signal, can be as high as a few kilohertz (kHz), without significant degradation of the output energy. In other embodiments, a plurality of sources of penetrating radiation, which can be confined to or concentrated in a small volume within the object, can be used. Such sources include, but are not limited to, pulsed lasers, flash lamps, other pulsed electromagnetic sources, particle beams, or their intensity-modulated continuous-wave counterparts.


To provide multi-focus optical illumination for photoacoustic excitation, the embodiments described in detail herein use either a microlens array or a transmission grating in conjunction with an objective lens; for photoacoustic signal detection, an ultrasonic array is used. However, the present disclosure includes any realization of light focusing using any kind of mirrors, lenses, fibers, and/or diaphragms that can produce multi-focus illumination confined to the field of view of a linear or matrix ultrasonic array. In scattering biological tissue, the system can image ˜1 mm deep, with axial and lateral resolutions determined by the ultrasonic bandwidth and the optical focusing, respectively. With an oscillating mirror, the present disclosure provides rapid optical scanning for 3D imaging, enabling optical-resolution photoacoustic microscopy at high speed.


The imaging procedure described herein is one of the possible embodiments specifically aimed at medical and biological applications. The optical absorption contrast of the present disclosure is complementary to other contrasts that can be obtained from purely optical or ultrasonic imaging technologies, and can be used for diagnostic, monitoring, or research purposes. The main applications of the technology include, but are not limited to, the imaging of arteries, veins, and pigmented tumors (such as melanomas) in vivo in humans or animals. The present disclosure can use the spectral properties of intrinsic optical contrast to monitor blood oxygenation, blood volume (total hemoglobin concentration), and even the metabolic rate of oxygen; it can also use the spectral properties of a variety of dyes or other contrast agents to obtain additional functional or molecular information. In short, the present disclosure is capable of functional and molecular imaging. In addition, the present disclosure can be used to monitor possible tissue changes during x-ray radiation therapy, chemotherapy, or other treatment; it can also be used to monitor topical application of cosmetics, skin creams, sun-blocks, or other skin treatment products.


To translate photoacoustic imaging into clinical practice, a high imaging speed is needed to reduce motion artifacts, cost, patient discomfort, and most important, the risks associated with minimally invasive procedures (e.g., endoscopy). Embodiments described herein provide the combined use of multi-focus optical illumination and ultrasonic array detection can help photoacoustic imaging meet the challenges of clinical translation. In addition, embodiments of the present disclosure uses tightly focused laser illumination to provide optical diffraction limited lateral resolution, which is difficult to achieve using ultrasonic approaches. Therefore, embodiments of the present disclosure offer a method, apparatus, and system of photoacoustic imaging with high imaging speed and spatial resolution sufficient for many clinical and preclinical applications.



FIG. 1 is a schematic of the photoacoustic probe of an imaging system 100 in accordance with one embodiment of the present disclosure, where a beam-divider, such as a 2D transmission grating, and an optically transparent acoustic reflector are employed. The light from a wavelength tunable laser is focused by a condenser lens 101 onto a pinhole 102 for spatial filtering. While a photo-detector 104 is used to monitor the laser pulse energy through a sampling beam splitter 103, an eyepiece 114 is used to optically image the object's surface for alignment. To provide multi-focus matrix illumination for photoacoustic excitation, the laser beam from the pinhole is collimated by a collimating lens 105, split by a 2D transmission grating 107, and then tightly focused by a focusing device, such as an objective lens 108, into an imaging object 111, after passing through an optically transparent acoustic reflector 110. Through an acoustic coupling medium 109 (e.g., ultrasound coupling gel), the photoacoustic signal emitted by the object is reflected by the acoustic reflector and detected by a matrix ultrasonic transducer array 112, 113. Inset A of FIG. 1 shows one possible relative positioning for the focused optical spots and the matrix ultrasonic array elements. This design is suitable for integration with commercially available ultrasonic transducer arrays (1D or 2D).



FIG. 2 is a block diagram showing the overarching architecture of the present disclosure. Components include a high-repetition-rate tunable pulsed laser system, an optical assembly, an ultrasonic array, a high-speed multi-channel data acquisition (DAQ) subsystem, a scanning mirror or linear scanner, and a multi-core computer. The optical assembly receives pulsed laser light and provides multi-focus illumination for photoacoustic excitation. The DAQ system records and digitizes the received photoacoustic signal. The laser pulse generation, data acquisition, and scanning of the optical illumination are synchronized using triggering signals from the DAQ card. To optimize the data acquisition and imaging speed, the number of data acquisition channels should match the number of elements of the ultrasonic array. However, when the number of array elements is greater, multiplexers may be used. An off-the-shelf multi-core computer, together with a parallel computing program based on Microsoft Visual Studio or other software development tools, is used to perform photoacoustic reconstruction for high-speed imaging and display.


To integrate the optical focusing and the ultrasonic detection for the present disclosure, one or more of the following devices or designs can be used: (1) an optically transparent acoustic reflector; (2) an acoustically transparent optical reflector; and/or (3) direct integration in transmission mode. Examples of the integrated focusing assembly are described with reference to FIGS. 3, 4, 5, 6, 7, 8, and 9, wherein the integrated focusing assembly includes optical focusing components, a matrix ultrasonic array, and an optical-acoustic beam combiner between them.



FIG. 3 shows the integrated focusing assembly of an imaging system in accordance with another embodiment of the present disclosure, where a 2D transmission grating and a custom-built optical-acoustic beam combiner are employed. In this embodiment, a scanning device, such as a scanning mirror 301, is used for rapid optical scanning; the 2D transmission grating 302 is used to split the laser beams; and the optical-acoustic beam combiner 304, 305, 306 is used to merge the optical illumination and the ultrasonic detection coaxially. The optical-acoustic beam combiner mainly consists of an isosceles triangular prism 304 and a rhomboidal prism 306 (the two prisms are adjoined along the diagonal surfaces with a gap of approximately 0.1 mm in between). The gap is filled with an optical refractive-index-matching, low-acoustic-impedance, nonvolatile liquid 305 (e.g., 1000 cSt silicone oil). The silicone oil and the glass have a good optical refractive index match (glass: 1.5; silicone oil: 1.4) but a large acoustic impedance mismatch (glass: 12.1×106 N˜s/m3; silicone oil: 0.95×106 N˜s/m3). As a result, the silicone oil layer is optically transparent but acoustically reflective. The laser beams coming from the grating are tightly focused by an objective lens 303 into an imaging object 308. Through an acoustic coupling medium 307, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 309, 310. Note that within the bandwidth of the ultrasonic array, ultrasonic absorption in the silicone oil is high enough to dampen acoustic reverberations in the matching layer and thus minimize interference with the image.



FIG. 4 shows the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D transmission grating and an acoustically transparent thin-film optical reflector are employed. In this embodiment, a scanning mirror 401 is used for rapid optical scanning; the 2D transmission grating 402 is used to split the laser beams; and the acoustically transparent optical reflector 405 (e.g., an aluminized Mylar thin film) is used to merge the optical illumination and the ultrasonic detection coaxially. The laser beams coming from the grating are tightly focused by an objective lens 403 into an imaging object 406. Through an acoustic coupling medium 404, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 407, 408.



FIG. 5 shows the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D transmission grating and a transmission-mode design are employed. In this embodiment, a scanning mirror 501 is used for rapid optical scanning; the 2D transmission grating 502 is used to split the laser beams; and the transmission-mode design is used to merge the optical illumination and the ultrasonic detection coaxially. The laser beams coming from the grating are tightly focused by an objective lens 503 into an imaging object 504. From the other side of the object, through a coupling medium 505, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 506, 507.



FIG. 6 shows the photoacoustic probe of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and an optically transparent acoustic reflector are employed. The light from a wavelength tunable laser is focused by a condenser lens 601 onto a pinhole 602 for spatial filtering. A photo-detector 604 is used to monitor the laser pulse energy through a sampling beam splitter 603, and an eyepiece 612 is used to optically image the object's surface for alignment. To provide multi-focus matrix illumination for photoacoustic excitation, the laser beam from the pinhole is first collimated by a collimating lens 605, and then split and focused by the 2D microlens array 606 into an imaging object 609, after passing through the optically transparent acoustic reflector 608. Through an acoustic coupling medium 607, the photoacoustic signal emitted from the object is reflected by the acoustic reflector and detected by a matrix ultrasonic array 610, 611. Inset B of FIG. 6 shows one possible relative positioning for the 2D microlens array and the matrix ultrasonic array. To produce a 3D image, raster scanning of the optical illumination is required, which, however, can be very fast, due to the small scanning area.



FIG. 7 shows the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and a custom-built optical-acoustic beam combiner are employed. To provide multi-focus matrix illumination for photoacoustic excitation, the laser beam from a pinhole 701 is first collimated by a collimating lens 702, and then split and focused by the 2D microlens array 703 into an imaging object 708, after passing through the optical-acoustic beam combiner 704, 705, 706. The optical-acoustic beam combiner mainly consists of an isosceles triangular prism 704 and a rhomboidal prism 706 (the two prisms are adjoined along the diagonal surfaces with a gap of approximately 0.1 mm in between). The gap is filled with an optical refractive-index-matching, low-acoustic-impedance, nonvolatile liquid 705 (e.g., 1000 cSt silicone oil). The silicone oil and the glass have a good optical refractive index match (glass: 1.5; silicone oil: 1.4) but a large acoustic impedance mismatch (glass: 12.1×106 N·s/m3; silicone oil: 0.95×106 N·s/m3). As a result, the silicone oil layer is optically transparent but acoustically reflective. Through an acoustic coupling medium 707, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 709, 710. To produce a 3D image, raster scanning of the optical illumination is required, which, however, can be very fast, due to the small scanning area.



FIG. 8 shows the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and an acoustically transparent thin-film optical reflector are employed. To provide multi-focus matrix illumination for photoacoustic excitation, the laser beam from a pinhole 801 is collimated by a collimating lens 802, reflected by a dielectric mirror 803, and then split and focused by the 2D microlens array 804 into an imaging object 807. The acoustically transparent optical reflector 806 (e.g., an aluminized Mylar thin film) is used to merge the optical illumination and the ultrasonic detection coaxially. Through an acoustic coupling medium 805, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 808, 809. To produce a 3D image, raster scanning of the optical illumination is required, which, however, can be very fast, due to the small scanning area.



FIG. 9 shows the integrated focusing assembly of an imaging system in accordance with yet another embodiment of the present disclosure, where a 2D microlens array and a transmission-mode design are employed. The transmission-mode design is used to merge the optical illumination and the ultrasonic detection coaxially. To provide multi-focus matrix illumination for photoacoustic excitation, the laser beam from a pinhole 901 is first collimated by a collimating lens 902, and then split and focused by the 2D microlens array 903 into an imaging object 904. From the other side of the object, through a coupling medium 905, the photoacoustic signal emitted from the object is detected by a matrix ultrasonic array 906, 907. To produce a 3D image, raster scanning of the optical illumination is required, which, however, can be very fast, due to the small scanning area.


The embodiments described above are based on multi-focus matrix illumination in conjunction with matrix ultrasonic array detection. However, as mentioned above, the design can be simplified to 1D, using multi-focus 1D array illumination in conjunction with linear ultrasonic array detection. With optical scanning, this simplified design can provide real-time photoacoustic B-scan imaging, sufficient for many biomedical applications. By adding one additional mechanical scanning, 3D images can be produced at a significantly higher speed compared with mechanical scanning single-focus optical-resolution photoacoustic microscopy. In addition, the implementation of this simplified version of the present disclosure can be relatively easy and inexpensive.


The above-described embodiments have been successfully demonstrated for biomedical applications. FIG. 8 illustrates a system prototype based on the transmission mode design, and using multi-focus 1D array illumination in conjunction with linear ultrasonic array detection. The system employs a tunable dye laser pumped by an Nd:YLF laser as the irradiation source. The laser pulse duration is approximately 7 nanoseconds (ns), and the pulse repetition rate can be as high as 1.5 kHz without significant degradation of the output energy. For photoacoustic excitation, a 1D microlens array consisting of 20 micro-lenses with a center-to-center spacing of approximately 250 micrometers is used, which provides twenty focused illumination spots simultaneously. For photoacoustic signal detection, a 30-MHz linear ultrasonic array consisting of forty-eight elements with a spacing of approximately 100 micrometers is used. The system can image approximately 1 mm deep in scattering biological tissue, with finer than 10-micrometer lateral resolution and an approximately 25-micrometer axial resolution. Currently, the system acquires a volume image data set of 1000 by 500 by 200 voxels in approximately 4 min, which is about 4 times faster than existing mechanical scanning single-focus photoacoustic microscopy with optical resolution. In principle, using a 48-channel DAQ system to eliminate the 6:1 multiplexing, the system can image about 20 times faster, as determined primarily by the number of optical foci. With an increased laser repetition rate and more densely packed micro-lens array, the imaging speed of the system can be further improved. Of note, the 10-micrometer optically defined lateral resolution is one to two orders of magnitude finer than the acoustically defined counterpart, enabling the system to image capillary-level microvessels in vivo.



FIG. 10A shows a photoacoustic maximum amplitude projection image of two crossed 6-micrometer diameter carbon fibers acquired at 570 nm. Maximum amplitude projection refers to projection of the maximum photoacoustic amplitudes along a direction—usually the depth or z axis direction unless otherwise mentioned—to its orthogonal plane. FIG. 10B shows the distribution of the photoacoustic amplitude across the imaged vertical fiber (along the dashed line in FIG. 10A), demonstrating that the lateral resolution of the system is at least as fine as 10 micrometers.



FIGS. 11A and 11B show a photoacoustic maximum amplitude projection and a 3D image of a mouse ear microvasculature, respectively, acquired noninvasively in vivo. Microvessels, including those in the capillary-level (less than approximately 10 micrometers), are clearly imaged. With high imaging speed and optically defined spatial resolution, the preliminary results demonstrate the potential of the present disclosure for broad biomedical applications. For example, imaging speed is one critical issue in advancing photoacoustic endoscopy into clinical practice for early cancer detection or intravascular atherosclerosis imaging. In addition, the high-speed, high-resolution capability will open up new possibilities for the study of tumor angiogenesis, diabetes-induced vascular complications, and pharmacokinetics.



FIG. 12 is a flowchart 1200 that illustrates an exemplary imaging method. In some embodiments, a scanning device, such as scanning mirror 301, a galvanometer, a polygon scanner, an acoustic-optical scanner, and an electro-optical scanner, or another suitable scanning device, receives 1202 a first light beam from a light source, such as a laser or laser system. A beam-divider, such as transmission grating 107 or 2D microlens array 606, splits 1204 the first light beam into a plurality of second light beams. A focusing device, such as objective lens 108 or collimating lens 605, focuses 1206 the second light beams on respective locations in object of interest 111. In response to the second light beams, the temperature within object 111 at each location rises, which leads to a transient thermal expansion, resulting in emission of photoacoustic signals by object 111. The photoacoustic signals are received 1208 by ultrasonic transducer array 112, for example.


In some embodiments, a computer generates an image based on the photoacoustic signals and displays the image to an operator. Moreover, in some embodiments, the second light beams and the photoacoustic signals are coaxially merged by optical-acoustic beam combiner 304, 305, 306 that includes a first prism, such as isosceles triangular prism 304, and a second prism, such as rhomboidal prism 306, separated from first prism 304 by a gap filled with non-volatile liquid 305.


Embodiments described herein provide methods, systems, and apparatus for high-speed, optical-resolution photoacoustic imaging using multi-focus optical illumination in conjunction with ultrasonic array detection. For example, embodiments of the present disclosure use multiple focused pulsed laser beams to produce a rapid local temperature rise at multiple optical foci from absorption of the pulsed light. The temperature rise leads to a transient thermal expansion, resulting in photoacoustic emissions, which are detected by a high-frequency ultrasonic array to reconstruct an image. The image signal amplitude is related to the optical absorption and the Grueneisen parameter. With each laser pulse, the multi-focus illumination excites photoacoustic waves from multiple sites, which the ultrasonic array detects simultaneously. With an appropriate reconstruction algorithm, the signals from the multiple sites are separated. Using multi-focus matrix illumination and matrix ultrasonic array detection, a three-dimensional (3D) photoacoustic image can be produced by rapidly scanning the illumination over a small area comparable in size with the lateral resolution of the ultrasonic array. Consequently, a relatively large 3D volume (e.g., 10 mm×10 mm×1 mm) can be imaged at high speed—even in real time—with optical diffraction limited lateral resolution (e.g., 5 micrometers). In one embodiment of the present disclosure, multi-focus one-dimensional (1D) array illumination and linear ultrasonic array detection can be used. Even with this simplified design, the multi-focus optical-resolution photoacoustic microscopy device demonstrates a significant improvement in imaging speed over previous optical-resolution photoacoustic microscopy devices. Overall, embodiments of the present disclosure provide 3D photoacoustic microscopy of optical absorption contrast with optical diffraction limited lateral resolution at high speed.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the disclosure. The principal features of this disclosure can be employed in various embodiments without departing from the scope of the disclosure. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this disclosure and are covered by the claims.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations can be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the disclosure. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims


It will be understood by those of skill in the art that information and signals may be represented using any of a variety of different technologies and techniques (e.g., data, instructions, commands, information, signals, bits, symbols, and chips may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof). Likewise, the various illustrative logical blocks, modules, circuits, and algorithm steps described herein may be implemented as electronic hardware, computer software, or combinations of both, depending on the application and functionality. Moreover, the various logical blocks, modules, and circuits described herein may be implemented or performed with a general purpose processor (e.g., microprocessor, conventional processor, controller, microcontroller, state machine or combination of computing devices), a digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Similarly, steps of a method or process described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Although preferred embodiments of the present disclosure have been described in detail, it will be understood by those skilled in the art that various modifications can be made therein without departing from the spirit and scope of the disclosure as set forth in the appended claims.


A controller, computer, or computing device, such as those described herein, includes at least one processor or processing unit and a system memory. The controller typically has at least some form of computer readable media. By way of example and not limitation, computer readable media include computer storage media and communication media. Computer storage media include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media. Those skilled in the art are familiar with the modulated data signal, which has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Combinations of any of the above are also included within the scope of computer readable media.


Although the present disclosure is described in connection with an exemplary imaging system environment, embodiments of the disclosure are operational with numerous other general purpose or special purpose imaging system environments or configurations. The imaging system environment is not intended to suggest any limitation as to the scope of use or functionality of any aspect of the disclosure. Moreover, the imaging system environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment.


Embodiments of the disclosure may be described in the general context of computer-executable instructions, such as program components or modules, executed by one or more computers or other devices. Aspects of the disclosure may be implemented with any number and organization of components or modules. For example, aspects of the disclosure are not limited to the specific computer-executable instructions or the specific components or modules illustrated in the figures and described herein. Alternative embodiments of the disclosure may include different computer-executable instructions or components having more or less functionality than illustrated and described herein.


When introducing elements of aspects of the disclosure or embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


This written description uses examples to disclose the disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims
  • 1. A method comprising: (a) receiving a first light beam from a light source;(b) splitting the first light beam into a plurality of second light beams using a beam-divider;(c) focusing the plurality of second light beams on a respective plurality of locations in an object of interest using a focusing device, the plurality of second light beams causing the object of interest to emit a plurality of acoustic signals from a plurality of sites corresponding to the respective plurality of locations;(d) receiving, using an ultrasonic transducer array, the plurality of acoustic signals from the plurality of sites corresponding to the respective plurality of locations on which the plurality of second light beams were focused simultaneously; and(e) monitoring changes in the object of interest.
  • 2. The method of claim 1, further comprising generating a biological image or a medical image of the object of interest based at least in part on the plurality of acoustic signals.
  • 3. The method of claim 1, further comprising coaxially merging the plurality of second light beams and the plurality of acoustic signals.
  • 4. The method of claim 1, further comprising reflecting the first light beam towards the beam-divider in a raster scan pattern using a movable scanning mirror.
  • 5. The method of claim 1, wherein the object of interest is a biological tissue of an animal and (a) through (d) are performed in vivo.
  • 6. The method of claim 5, further comprising generating an image of the biological tissue of the animal based at least in part on the plurality of acoustic signals.
  • 7. The method of claim 6, wherein (a) through (d) are performed during a medical treatment; andfurther comprising monitoring changes in the biological tissue during the medical treatment using the image generated.
  • 8. The method of claim 7, wherein monitoring the changes in the biological tissue comprises monitoring changes in (i) a blood oxygenation level, (ii) a blood volume, and/or (iii) a metabolic rate of oxygen level.
  • 9. The method of claim 1, wherein the plurality of second light beams are in a form of a linear array of light beams.
  • 10. A system, comprising: a beam-divider configured to receive a first light beam from a light source and split the first light beam into a plurality of second light beams;a focusing device configured to focus the plurality of second light beams onto a respective plurality of locations in an object of interest being imaged, the plurality of second light beams configured to cause the object of interest to emit a plurality of acoustic signals from a plurality of sites corresponding to the respective plurality of locations;an ultrasonic transducer array configured to receive the plurality of acoustic signals from the plurality of sites corresponding to the respective plurality of locations on which the plurality of second light beams were focused simultaneously; anda processor configured to generate an image of the object of interest based at least in part on the plurality of acoustic signals.
  • 11. The system of claim 10, wherein the object of interest is a biological tissue.
  • 12. The system of claim 10, wherein the beam-divider comprises a transmission grating or a two-dimensional lens array.
  • 13. The system of claim 10, wherein the beam-divider and the focusing device are part of an array of lenses, the array of lenses lying in an optical plane.
  • 14. The system of claim 10, wherein the beam-divider, the focusing device, and the ultrasonic transducer array are housed in a handheld device.
  • 15. The system of claim 10, further comprising a processor configured to generate one or more two-dimensional or three-dimensional images of the object of interest based at least in part on the plurality of acoustic signals.
  • 16. The system of claim 10, further comprising a processor configured to generate a biological image or a medical image of the object of interest based at least in part on the plurality of acoustic signals.
  • 17. The system of claim 10, further comprising an optical-acoustic beam combiner configured to coaxially merge the plurality of second light beams and the plurality of acoustic signals.
  • 18. The system of claim 17, wherein the optical-acoustic beam combiner comprises a first prism and a second prism, wherein there is a gap between the first prism and the second prism, and wherein the gap is filled with a liquid that is optically transparent and acoustically reflective.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of prior U.S. patent application Ser. No. 16/372,597, filed on Apr. 2, 2019, which is a continuation of prior U.S. patent application Ser. No. 14/639,676, filed on Mar. 5, 2015, which is a divisional of prior U.S. patent application Ser. No. 13/369,558, filed on Feb. 9, 2012, the entirety of which are incorporated herein in their entirety. U.S. application Ser. No. 13/369,558 claims the benefit of U.S. Provisional Application No. 61/442,148 filed Feb. 11, 2011, which is also incorporated herein in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH & DEVELOPMENT

This invention was made with government support under grants R01 EB000712 and U54 CA136398, both awarded by the U.S. National Institutes of Health. The government has certain rights in the invention.

US Referenced Citations (267)
Number Name Date Kind
4029756 Gaafar Jun 1977 A
4127318 Determann et al. Nov 1978 A
4255971 Rosencwaig Mar 1981 A
4267732 Quate May 1981 A
4284324 Huignard et al. Aug 1981 A
4375818 Suwaki et al. Mar 1983 A
4385634 Bowen May 1983 A
4430897 Quate Feb 1984 A
4430987 Heller Feb 1984 A
4462255 Guess et al. Jul 1984 A
4468136 Murphy et al. Aug 1984 A
4489727 Matsuo et al. Dec 1984 A
4546771 Eggleton et al. Oct 1985 A
4596254 Adrian et al. Jun 1986 A
4687304 Piller et al. Aug 1987 A
4740081 Martens et al. Apr 1988 A
4802461 Cho Feb 1989 A
4802487 Martin et al. Feb 1989 A
4809703 Ishikawa et al. Mar 1989 A
4850363 Yanagawa Jul 1989 A
4860758 Yanagawa et al. Aug 1989 A
4869256 Kanno et al. Sep 1989 A
4872758 Miyazaki et al. Oct 1989 A
4921333 Brody et al. May 1990 A
4929951 Small May 1990 A
4995396 Inaba et al. Feb 1991 A
5070455 Singer et al. Dec 1991 A
5083549 Cho et al. Jan 1992 A
5107844 Kami et al. Apr 1992 A
5115814 Griffith et al. May 1992 A
5125410 Misono et al. Jun 1992 A
5140463 Yoo et al. Aug 1992 A
5170793 Takano et al. Dec 1992 A
5194723 Cates et al. Mar 1993 A
5207672 Roth et al. May 1993 A
5227912 Ho et al. Jul 1993 A
5305759 Kaneko et al. Apr 1994 A
5321501 Swanson et al. Jun 1994 A
5329817 Garlick et al. Jul 1994 A
5331466 Van Saarloos Jul 1994 A
5345938 Nishiki et al. Sep 1994 A
5373845 Gardineer et al. Dec 1994 A
5414623 Lu et al. May 1995 A
5445155 Sieben Aug 1995 A
5465722 Fort et al. Nov 1995 A
5546187 Pepper et al. Aug 1996 A
5546947 Yagami et al. Aug 1996 A
5546948 Hamm et al. Aug 1996 A
5606975 Liang et al. Mar 1997 A
5615675 O'Donnell et al. Apr 1997 A
5635784 Seale Jun 1997 A
5651366 Liang et al. Jul 1997 A
5713356 Kruger Feb 1998 A
5718231 Dewhurst et al. Feb 1998 A
5781294 Nakato et al. Jul 1998 A
5836872 Kenet et al. Nov 1998 A
5840023 Oraevsky et al. Nov 1998 A
5860934 Sarvazyan Jan 1999 A
5913234 Julliard et al. Jun 1999 A
5971998 Russell et al. Oct 1999 A
5977538 Unger et al. Nov 1999 A
5991697 Nelson et al. Nov 1999 A
6055097 Lanni et al. Apr 2000 A
6102857 Kruger Aug 2000 A
6104942 Kruger Aug 2000 A
6108576 Alfano et al. Aug 2000 A
6111645 Tearney et al. Aug 2000 A
6134003 Tearney et al. Oct 2000 A
6216025 Kruger Apr 2001 B1
6233055 Mandella et al. May 2001 B1
6282011 Tearney et al. Aug 2001 B1
6292682 Kruger Sep 2001 B1
6309352 Oraevsky et al. Oct 2001 B1
6341036 Tearney et al. Jan 2002 B1
6379325 William et al. Apr 2002 B1
6405069 Oraevsky et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6421164 Tearney et al. Jul 2002 B2
6432067 Martin et al. Aug 2002 B1
6466806 Geva et al. Oct 2002 B1
6485413 Boppart et al. Nov 2002 B1
6490470 Kruger Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6498945 Alfheim et al. Dec 2002 B1
6501551 Tearney et al. Dec 2002 B1
6545264 Stern Apr 2003 B1
6564087 Pitris et al. May 2003 B1
6567688 Wang May 2003 B1
6590830 Garlick et al. Jul 2003 B1
6626834 Dunnie et al. Sep 2003 B2
6628404 Kelley et al. Sep 2003 B1
6633774 Kruger Oct 2003 B2
6654630 Zuluaga et al. Nov 2003 B2
6658279 Swanson et al. Dec 2003 B2
6694173 Bende et al. Feb 2004 B1
6701181 Tang et al. Mar 2004 B2
6751490 Esenaliev et al. Jun 2004 B2
6764450 Yock Jul 2004 B2
6831781 Tearney et al. Dec 2004 B2
6833540 MacKenzie et al. Dec 2004 B2
6839496 Mills et al. Jan 2005 B1
6846288 Nagar et al. Jan 2005 B2
6853446 Almogy et al. Feb 2005 B1
6877894 Vona et al. Apr 2005 B2
6937886 Zavislan Aug 2005 B2
6956650 Boas et al. Oct 2005 B2
7072045 Chen et al. Jul 2006 B2
7198778 Achilefu et al. Apr 2007 B2
7231243 Tearney et al. Jun 2007 B2
7245789 Bates et al. Jul 2007 B2
7266407 Li et al. Sep 2007 B2
7322972 Viator et al. Jan 2008 B2
7357029 Falk Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7541602 Metzger et al. Jun 2009 B2
7610080 Winchester, Jr. et al. Oct 2009 B1
7917312 Wang et al. Mar 2011 B2
8016419 Zhang Sep 2011 B2
8025406 Zhang et al. Sep 2011 B2
8143605 Metzger et al. Mar 2012 B2
8397573 Kobayashi Mar 2013 B2
8416421 Wang et al. Apr 2013 B2
8454512 Wang et al. Jun 2013 B2
8891088 Goldschmidt et al. Nov 2014 B2
8997572 Wang et al. Apr 2015 B2
9086365 Wang et al. Jul 2015 B2
9096365 Kim Aug 2015 B2
9220415 Mandelis et al. Dec 2015 B2
9226666 Wang et al. Jan 2016 B2
9234841 Wang et al. Jan 2016 B2
9335605 Wang et al. May 2016 B2
9528966 Wang et al. Dec 2016 B2
9554738 Gulati et al. Jan 2017 B1
9618445 Sun et al. Apr 2017 B2
10285595 Zalev et al. May 2019 B2
10359400 Wang et al. Jul 2019 B2
10433733 Wang et al. Oct 2019 B2
10448850 Wang et al. Oct 2019 B2
11020006 Wang et al. Jun 2021 B2
11029287 Wang et al. Jun 2021 B2
11135375 Brady et al. Oct 2021 B2
11137375 Wang et al. Oct 2021 B2
11369280 Wang et al. Jun 2022 B2
11530979 Wang et al. Dec 2022 B2
11592652 Wang et al. Feb 2023 B2
11672426 Wang et al. Jun 2023 B2
20010052979 Treado et al. Dec 2001 A1
20020093637 Yuan et al. Jul 2002 A1
20020173780 Altshuler et al. Nov 2002 A1
20020176092 Deck Nov 2002 A1
20030097066 Shelby et al. May 2003 A1
20030160957 Oldham et al. Aug 2003 A1
20030160967 Houston et al. Aug 2003 A1
20040030255 Alfano et al. Feb 2004 A1
20040039379 Viator et al. Feb 2004 A1
20040082070 Jones et al. Apr 2004 A1
20040254474 Seibel et al. Dec 2004 A1
20050015002 Dixon et al. Jan 2005 A1
20050028482 Cable et al. Feb 2005 A1
20050085725 Nagar Apr 2005 A1
20050143664 Chen et al. Jun 2005 A1
20050154313 Desilets et al. Jul 2005 A1
20050168749 Ye et al. Aug 2005 A1
20050217381 Falk Oct 2005 A1
20050234315 Mayevsky et al. Oct 2005 A1
20050277824 Aubry et al. Dec 2005 A1
20060055936 Yun et al. Mar 2006 A1
20060058614 Tsujita Mar 2006 A1
20060078196 Sumanaweera et al. Apr 2006 A1
20060122516 Schmidt et al. Jun 2006 A1
20060181791 Van Beek et al. Aug 2006 A1
20060184042 Wang et al. Aug 2006 A1
20060235299 Martinelli Oct 2006 A1
20060247510 Wiemker et al. Nov 2006 A1
20060264717 Pesach et al. Nov 2006 A1
20070075063 Wilbanks Apr 2007 A1
20070088206 Peyman et al. Apr 2007 A1
20070093702 Yu et al. Apr 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213618 Li et al. Sep 2007 A1
20070213693 Plunkett Sep 2007 A1
20070282200 Johnson et al. Dec 2007 A1
20070299341 Wang et al. Dec 2007 A1
20080029711 Viellerobe et al. Feb 2008 A1
20080037367 Gross et al. Feb 2008 A1
20080088838 Raicu et al. Apr 2008 A1
20080123083 Wang May 2008 A1
20080173093 Wang et al. Jul 2008 A1
20080230717 Ashkenazi et al. Sep 2008 A1
20090051900 Moon et al. Feb 2009 A1
20090054763 Wang et al. Feb 2009 A1
20090088631 Dietz et al. Apr 2009 A1
20090116518 Patel et al. May 2009 A1
20090138215 Wang et al. May 2009 A1
20090185191 Boppart et al. Jul 2009 A1
20090227997 Wang et al. Sep 2009 A1
20100053618 Nakajima Mar 2010 A1
20100079768 Wang et al. Apr 2010 A1
20100134793 Krishnamachari et al. Jun 2010 A1
20100245766 Zhang et al. Sep 2010 A1
20100245769 Zhang et al. Sep 2010 A1
20100245770 Zhang et al. Sep 2010 A1
20100249562 Zhang et al. Sep 2010 A1
20100268042 Wang et al. Oct 2010 A1
20100285518 Viator et al. Nov 2010 A1
20100309466 Lucassen et al. Dec 2010 A1
20100322497 Dempsey et al. Dec 2010 A1
20110071402 Masumura Mar 2011 A1
20110122416 Yang et al. May 2011 A1
20110201914 Wang et al. Aug 2011 A1
20110251515 Leuthardt et al. Oct 2011 A1
20110275890 Wang et al. Nov 2011 A1
20110282181 Wang et al. Nov 2011 A1
20110282192 Axelrod et al. Nov 2011 A1
20120065490 Zharov et al. Mar 2012 A1
20120070817 Wang et al. Mar 2012 A1
20120074294 Streuber et al. Mar 2012 A1
20120118052 O'Donnell et al. May 2012 A1
20120204648 Wang et al. Aug 2012 A1
20120275262 Song et al. Nov 2012 A1
20120307250 Wang Dec 2012 A1
20130151188 Rokni et al. Jun 2013 A1
20130199299 Wang et al. Aug 2013 A1
20130218002 Kiraly Aug 2013 A1
20130245406 Wang et al. Sep 2013 A1
20140009808 Wang et al. Jan 2014 A1
20140029829 Jiang et al. Jan 2014 A1
20140142404 Wang et al. May 2014 A1
20140356897 Wang et al. Dec 2014 A1
20150005613 Kim et al. Jan 2015 A1
20150178959 Huang et al. Jun 2015 A1
20150185187 Wang et al. Jul 2015 A1
20150245771 Wang et al. Sep 2015 A1
20150272444 Maslov et al. Oct 2015 A1
20150272446 Wang et al. Oct 2015 A1
20150316510 Fukushima et al. Nov 2015 A1
20160081558 Wang et al. Mar 2016 A1
20160235305 Wang et al. Aug 2016 A1
20160242651 Wang et al. Aug 2016 A1
20160249812 Wang et al. Sep 2016 A1
20160262628 Wang et al. Sep 2016 A1
20160305914 Wang et al. Oct 2016 A1
20160310083 Wang et al. Oct 2016 A1
20160345886 Wang et al. Dec 2016 A1
20170065182 Wang et al. Mar 2017 A1
20170105636 Wang et al. Apr 2017 A1
20170367586 Wang et al. Dec 2017 A9
20180020920 Ermilov et al. Jan 2018 A1
20180088041 Zhang et al. Mar 2018 A1
20180132728 Wang et al. May 2018 A1
20180177407 Hashimoto et al. Jun 2018 A1
20190008444 Wang et al. Jan 2019 A1
20190125583 Wang et al. May 2019 A1
20190227038 Wang et al. Jul 2019 A1
20190307334 Wang et al. Oct 2019 A1
20190343758 Wang et al. Nov 2019 A1
20200056986 Wang et al. Feb 2020 A1
20200073103 Wang et al. Mar 2020 A1
20200268253 Wang et al. Aug 2020 A1
20200275846 Wang et al. Sep 2020 A1
20200397523 Gao et al. Dec 2020 A1
20210010976 Wang et al. Jan 2021 A1
20210132005 Wang et al. May 2021 A1
20210321874 Wang et al. Oct 2021 A1
20230055979 Wang et al. Feb 2023 A1
20230404407 Garrett et al. Dec 2023 A1
20230404520 Zhang et al. Dec 2023 A1
Foreign Referenced Citations (46)
Number Date Country
1883379 Dec 2006 CN
106338473 Jan 2017 CN
0012262 Jun 1980 EP
0919180 Jun 1999 EP
1493380 Jan 2005 EP
2749208 Jul 2014 EP
3521808 Aug 2019 EP
05-126725 May 1993 JP
2000292416 Oct 2000 JP
4060615 Mar 2008 JP
2009068977 Apr 2009 JP
2010017426 Jan 2010 JP
2010040161 Feb 2010 JP
2012143384 Aug 2012 JP
2013244122 Dec 2013 JP
2014124242 Jul 2014 JP
2014224806 Dec 2014 JP
2016-101260 Jun 2016 JP
6086718 Mar 2017 JP
6390516 Sep 2018 JP
100946550 Mar 2010 KR
100946550 Mar 2010 KR
20160091059 Aug 2016 KR
2017-0006470 Jan 2017 KR
WO-9633656 Oct 1996 WO
WO2006111929 Oct 2006 WO
WO2007088709 Aug 2007 WO
WO2007148239 Dec 2007 WO
WO2008062354 May 2008 WO
WO2008100386 Aug 2008 WO
WO2009055705 Apr 2009 WO
WO-2009154298 Dec 2009 WO
WO2010048258 Apr 2010 WO
WO2010080991 Jul 2010 WO
WO2011060101 May 2011 WO
WO2011091360 Jul 2011 WO
WO2011127428 Oct 2011 WO
WO2012035472 Mar 2012 WO
WO-2012133295 Oct 2012 WO
WO2013086293 Jun 2013 WO
WO2015118881 Aug 2015 WO
WO-2016081321 May 2016 WO
WO2018102446 Jun 2018 WO
WO-2018102467 Jun 2018 WO
WO-2018116963 Jun 2018 WO
WO2018209046 Nov 2018 WO
Non-Patent Literature Citations (452)
Entry
Office Action from related U.S. Appl. No. 11/625,099, dated Nov. 1, 2010.
Final Office Action from related U.S. Appl. No. 11/625,099, dated Apr. 20, 2010.
Office Action from related U.S. Appl. No. 12/254,643, dated Aug. 6, 2010.
Notice of Allowance from related U.S. Appl. No. 12/254,643, dated Nov. 22, 2010.
Office Action from related U.S. Appl. No. 12/568,069, dated Dec. 21, 2012.
Office Action from related U.S. Appl. No. 12/568,069, dated Mar. 29, 2012.
Final Office Action from related U.S. Appl. No. 12/568,069, dated Sep. 18, 2012.
Notice of Allowance from related U.S. Appl. No. 12/568,069, dated Feb. 22, 2013.
Office Action from related U.S. Appl. No. 12/739,589, dated Jul. 19, 2012.
Notice of Allowance from related U.S. Appl. No. 12/739,589, dated Feb. 5, 2013.
Office Action from related U.S. Appl. No. 13/125,522, dated Jan. 22, 2013.
Final Office Action from related U.S. Appl. No. 13/125,522, dated May 23, 2013.
Office Action from related U.S. Appl. No. 13/125,522, dated Jul. 17, 2014.
Final Office Action from related U.S. Appl. No. 13/125,522, dated Oct. 29, 2014.
Office Action dated Aug. 26, 2015 issued in U.S. Appl. No. 13/125,522.
Final Office Action dated Mar. 3, 2016 issued in U.S. Appl. No. 13/125,522.
Notice of Allowance dated Sep. 19, 2016 issued iU.S. Appl. No. n 13/125,522.
Office Action from related U.S. Appl. No. 13/143,832, dated Apr. 18, 2014.
Office Action from related U.S. Appl. No. 13/450,793, dated Jun. 5, 2013.
Final Office Action from related U.S. Appl. No. 13/450,793, dated Nov. 22, 2013.
Office Action from related U.S. Appl. No. 13/450,793, dated Mar. 24, 2014.
Office Action from related U.S. Appl. No. 13/450,793, dated Aug. 1, 2014.
Office Action from related U.S. Appl. No. 13/574,994, dated Mar. 17, 2014.
Final Office Action from related U.S. Appl. No. 13/574,994, dated Aug. 26, 2014.
Notice of Allowance dated Nov. 17, 2015 from U.S. Appl. No. 13/574,994.
Office Action dated Jan. 20, 2015, from U.S. Appl. No. 14/026,577.
Final Office Action dated Sep. 30, 2015, from U.S. Appl. No. 14/026,577.
Notice of Allowance dated Jan. 5, 2016, from U.S. Appl. No. 14/026,577.
Office Action dated Nov. 13, 2017, from U.S. Appl. No. 15/148,685.
Final Office Action dated Sep. 24, 2018, from U.S. Appl. No. 15/148,685.
Notice of Allowance dated May 16, 2019, from U.S. Appl. No. 15/148,685.
Office Action from related U.S. Appl. No. 13/637,897, dated Aug. 1, 2014.
Office Action from related U.S. Appl. No. 14/164,117, dated Dec. 11, 2015.
Office Action dated Dec. 13, 2019 issued in U.S. Appl. No. 15/037,468.
Notice of Allowance dated Mar. 23, 2020 issued in U.S. Appl. No. 15/037,468.
Notice of Allowance dated Oct. 28, 2020 issued in U.S. Appl. No. 15/037,468.
Office Action dated Oct. 3, 2018 issued in U.S. Appl. No. 14/436,581.
Amendment and Request for Continued Examination dated Nov. 25, 2019 in U.S. Appl. No. 14/436,581.
Final Office Action dated May 24, 2019 issued in U.S. Appl. No. 14/436,581.
Office Action dated Apr. 3, 2020 issued in U.S. Appl. No. 14/436,581.
Notice of Allowance dated Jan. 26, 2021 issued in U.S. Appl. No. 14/436,581.
Office Action dated Jun. 20, 2014 issued in U.S. Appl. No. 13/369,558.
Notice of Allowance dated Jul. 29, 2014 issued in U.S. Appl. No. 13/369,558.
Notice of Allowance dated Dec. 5, 2014 issued in U.S. Appl. No. 13/369,558
Office Action dated Apr. 21, 2017 issued in U.S. Appl. No. 14/639,676.
Final Office Action dated Nov. 15, 2017 issued in U.S. Appl. No. 14/639,676.
Office Action dated May 31, 2018 issued in U.S. Appl. No. 14/639,676.
Notice of Allowance dated Dec. 12, 2018 issued in U.S. Appl. No. 14/639,676.
The International Search Report and Written Opinion dated Mar. 27, 2014 issued in Application No. PCT/US2013/065594.
The International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2009/061435, dated Mar. 29, 2010, 6 pages.
The International Search Report and the Written Opinion of the International Searching Authority, Sep. 22, 2011 , from related application No. PCT/US2011/022253, 6 pgs.
International Search Report of International Application No. PCT/US2014/066437, dated Feb. 26, 2015, 3 pages.
Partial European Search Report issued for European Application No. 17159220.7, dated Aug. 23, 2017 (9 pages).
International Search Report and Written Opinion dated Apr. 22, 2009, from Application No. PCT/US2008/081167 (7 pages).
International Search Report and Written Opinion from Application Serial No. PCT/US2010/020488, dated Aug. 31, 2010 (10 pages).
International Search Report and Written Opinion from Applicalion Serial No. PCT/US2011/031823, dated Dec. 26, 2011 (8 pages).
International Search Report and Written Opinion from Application Serial No. PCT1US2012/068403, dated Mar. 19, 2013 (10 pages).
Extended European Search Report from European Application Serial No. 08842292.8, dated Dec. 17, 2013 (8 pages).
Final Office Action from related Japanese Patent Application No. JP 2010-531281 , dated Mar. 11, 2014, (5 pages).
International Search Report and Written Opinion dated Dec. 2, 2019, issued in Application No. PCT/US2019/046574.
International Search Report and Written Opinion dated Dec. 23, 2019, issued in Application No. PCT/US2019/049594.
International Search Report and Written Opinion dated Aug. 31, 2020, issued in Application No. PCT/US2020/019368.
International Search Report and Written Opinion dated Oct. 14, 2020, issued in Application No. PCT/US2020/07174.
International Search Report and Written Opinion dated Aug. 9, 2018 issued in Application No. PCT/US2018/032007.
International Preliminary Report on Patentability dated Nov. 12, 2019 issued in PCT/US2018/032007.
Abdelmohsen, et al., “Micro- and nano-motors for biomedical applications,” J. Mater. Chem. B 2, (2014) pp. 2395-2408.
Al, et al., “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Applied Physics Letters, (Mar. 15, 2006), 88(11): pp. 111115-1-111115-3. <doi:10.1063/1.2186520>.
Allen, et al. “Pulsed Near-Infrared Laser Diode Excitation System for Biomedical Photoacoustic Imaging,” Optics Letters, Optical Society of America, USA., vol. 31 , No. 23, Dec. 1, 2006, pp. 3462-3464.
Alomair, et al., “In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla,” PloS One 10, Jun. 25, 2015, e0130133, pp. 1-17.
Arridge, et al., “Accelerated high-resolution photoacoustic tomography via compressed sensing,”ArXiV Prepr. ArXiV160500133, 2016, pp. 8908-8940.
Aubry J.-F. , et al. , “Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans,” J. Acoust. Soc. Am. 113(1), 84-93 (2003). (Year: 2003).
Baheiraei, et al., “Investigation of magnesium incorporation within gelatin/calcium phosphate nanocomposite scaffold for bone tissue engineering,” Int. J. Appl. Ceram. Technol. 12, (2015) pp. 245-253.
Baker, M. J. et al., “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771-1791 (2014).
Bansil, et al., “The biology of mucus: Composition, synthesis and organization” Adv. Drug Deliv. Rev. 124, (2018) pp. 3-15.
Beaven, G. H. & Holiday, E. R., “Ultraviolet absorption spectra of proteins and amino acids,” Adv. Protein Chem 7, 319-386 (1952).
Bell, A.G., “On the Production and Reproduction of Sound by Light,” American Journal of Sciences, Oct. 1880, pp. 305-324, Third Series, vol. XX, USA.
Bellinger, et al., “Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals” Sci Transl. Med. 8(365), Nov. 16, 2016, 365ra157, pp. 1-25. <doi:10.1126/scitranslmed.aag2374>.
Bioucas-Dias, J.M. And Figueiredo, M.A.T. “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992-3004 (Dec. 2007).
Brenner, et al., “Computed Tomography—An Increasing Source of Radiation Exposure” N. Engl. J. Med 357;22, Nov. 29, 2007, pp. 2277-2284.
Calasso et al., “Photoacoustic Point Source,” Physical Review Letters, vol. 86, No. 16, Apr. 16, 2001, pp. 3550-3553.
Cannata et al., “Development of a 35-MHz Piezo-Composite Ultrasound Array for Medical Imaging,” IEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(1): pp. 224-236 (2006).
Celli, J. P., et al., “Helicobacter pylori moves through mucus by reducing mucin viscoelasticity,” Proc. Natl. Acad. Sci. U. S. A. 106, (2009) pp. 14321-14326.
Chan, et al., “New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility,” Appl. Spectrosc. 57, 381-389 (2003).
Cheng, J.-X. Et al., “Vibrational spectroscopic imaging ofliving systems: an emerging platform for biology and medicine,” Science, vol. 350 aaa8870, No. 6264, Nov. 27, 2015, pp. 1054-1063.
Cheong, et al., “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics, 26(12): pp. 2166-2185 (1980).
Chourasia, et al., “Design and Development of Multiparticulate System for Targeted Drug Delivery to Colon,” Drug Delivery, 11:3, (2004) pp. 201-207.
Cox, B., Beard, P., “Photoacoustic tomography with a single detector in a reverberant cavity” J. Acoust. Soc. Am. 125, 1426 (Mar. 2009).
Cox, et al., “Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media,” IEEE Trans. Med. Imaging, vol. 29, No. 2, (2010) pp. 387-396.
Cui, Y., et al. “Transferring-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment,” Biomaterials 34, (2013) pp. 8511-8520.
De Boer, et al., “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography” Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069.
D'Andrea, et al., “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera” Journal of Physics D: Applied Physics, vol. 36, No. 14, Jul. 1, 2003, pp. 1675-1681.
Danielli, et al., “Label-free photoacoustic nanoscopy,” Journal of Biomedical Optics, vol. 19, No. 8, Aug. 2014, pp. 086006-1-086006-10.
Dazzi, A. et al., “AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging,” Chem. Rev. 117, 5146-5173 (2017).
Dazzi, A., et al., “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Optics Letters, vol. 30, No. 18, Sep. 15, 2005, pp. 2388-2390.
de Avila, et al., “Micromotor-enabled active drug delivery for in vivo treatment of stomach infection” Nat. Commun. 8: 272, (2017) pp. 1-9.
de Zerda, et al., “Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice,” ACS Nano 6(6), Jun. 26, 2012, pp. 4694-4701.
Deán-Ben, et al., “Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators,” Light Sci. Appl., vol. 5, No. 12, p. e16201, 2016, pp. 1-7.
Deán-Ben, et al., “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express, vol. 21, No. 23, 2013, pp. 28062-28071.
Deserno, M., “How to generate equidistributed points on the surface of a sphere,” Polym. Ed, p. 99, 2004, p. 1.
Diebold, et al., “Photoacoustic Monopole Radiation in One, Two and Three Dimensions,” Physical Review Letters, Figs. 1 and 2, vol. 67, No. 24, Dec. 9, 1991 , pp. 3384-3387.
Diebold, et al., “Photoacoustic Signature of Particulate Matter: Optical Production of 9 Acoustic Monopole Radiation,” Science New Series, Oct. 5, 1990, pp. 101-104, vol. 250, No. 4977, pp. 101-104.
Diem, M. et al., “Molecular pathology via IR and Raman spectral imaging.” Journal of Biophotonics, vol. 6, No. 11-12 (2013) pp. 855-886. <doi:10.1002/jbio.201300131>.
Diem, M., et al., “A decade of Vibrational micro-spectroscopy of human cells and tissue (1994-2004)†,” Analyst, Oct. 2004, vol. 129, No. 10, pp. 880-885. <doi:10.1039/b408952a>.
Draeger, C., Fink, M., “One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity,” Phys. Rev. Lett. 79, 407-410 (Jul. 21, 1997).
Dunn, et al., “Transport-based image reconstruction in turbid media with small source-detector separations,” Optics Letters, vol. 25, No. 24, Dec. 15, 2000, pp. 1777-1779.
Eghtedari, et al., “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Letters, vol. 7, No. 7, 2007, pp. 1914-1918.
Ermilov et al., “Laser optoacoustic imaging system for detection of breast cancer,” Journal of Biomedical Optics, vol. 14 No. 2, pp. 24007-024007-14 (2009).
Erpelding et al., “Sentinel Lymph Nodes in the Rat: Noninvasive Photoacoustic and US Imaging with a Clinical US System,” Radiology, 256(1): 102-110 (2010).
Evans, et al., “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Review of Analytical Chemistry 1, (2008), pp. 883-909.
Fan, et al., “Development of a Laser Photothermoacoustic Frequency-Swept System for Subsurface Imaging: Theory and Experiment,” J. Acoust. Soc. Am., vol. 116 (6), Dec. 2004, pp. 3523-3533.
Fan, et al., “Sub-Cellular Resolution Delivery of a Cytokine via Precisely Manipulated Nanowires” Nat. Nanotechnol. 5(7), Jul. 2010, 545-551. <doi:10.1038/nnano.2010.104>.
Fang, et al., “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Physical Review Letters 99(18) 184501-(1-4) (Nov. 2, 2007).
Fercher, et al., “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Optics Communications, 1995, vol. 117, pp. 43-48.
Fernandez, D. C., Bhargava, R., Hewitt, S. M. & Levin, I. W., “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469-474 (2005).
Foster, et al., “Advances in ultrasound biomicroscopy” Ultrasound in Medicine & Biology, vol. 26, No. 1, Jan. 2000, pp. 1-27.
Fujita, K., et al., “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Comm. 174, 7-12 (Jan. 15, 2000).
Furstenberg, et. al., “Chemical Imaging using Infrared Photo-thermal Microspectroscopy,” In Proceedings of SPIE Defense, Security, and Sensing (eds Druy, M.A. & Crocombe, R. A.) 837411 (SPIE, 2012).
Gaihre, et al., “Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study,” Int. J. Pharm. 365, (2009) pp. 180-189.
Gao, et al., “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529) 74-77 (Dec. 4, 2014).
Gao, et al., “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel” Phys Rep. 616, Feb. 29, 2016, pp. 1-37. <doi:10.1016/j.physrep.2015.12.004>.
Gao, et al., “Artificial micromotors in the mouse's stomach: A step toward in vivo use of synthetic motors,”ACS Nano 9, (2015) pp. 117-123.
Gibson, et al., “Recent advances in diffuse optical imaging” Physics in Medicine and Biology 50, 2005, pp. R1-R43, Inslilule of Physics Publishing, UK.
Gong, L. et al., “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90, 13818 (2014).
Griffiths, P., “Fourier transform infrared spectrometry,” Science 21, 297-302 (1983).
Guggenheim, et al., “Ultrasensitive planoconcave optical microresonators for ultrasound sensing”, Nat. Photon. 11, 714-721 (2017).
Guittet C, et al., “In vivo high-frequency ultrasonic characterization of human dermis” IEEE Transactions on Bio-medical Engineering. Jun. 1999;46(6):740-746. <doi:10.1109/10.764950>.
Guo, et al., “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in three-dimensional photoacoustic microscopy of biological tissue” Opt Lett. 2010 ; 35(12): 2067-2069. <doi:10.1364/OL.35.002067>.
Guo, et al., “CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment,” Adv. Mater. 29, 1604157 (2017).
Haas, J. et al., “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9 (2016) pp. 45-68.
Hai, et al., “Near-infrared optical-resolution photoacoustic microscopy”, Opt. Lett. 39, 5192-5195 (Sep. 1, 2014).
Hai, et al., “High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity,” Nature Biomedical Engineering 3(5) 381-391 (May 2019).
Han, Y. et al., “Three-dimensional optoacoustic reconstruction using fast sparse representation,” Opt. Lett., vol. 42, No. 5, (2017) pp. 979-982.
Han, et al., “Optoacoustic image reconstruction and system analysis for finite-aperture detectors under the wavelet-packet framework,” J. Biomed. Opt., vol. 21, No. 1, Jan. 2016, pp. 016002-1-016002-9.
Hebden et al., “Enhanced time-resolved imaging with a diffusion model of photon transport” Optics Letters, vol. 19, No. 5, 1994, pp. 311-313.
Hee, et al., “Femtosecond transillumination tomography in thick tissues” Optics Letters, vol. 18, No. 13, 1993, pp. 1107-1109.
Hillman, et al., “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Optics Letters, vol. 29, No. 14, Jul. 15, 2004, pp. 1650-1652.
Hoelen, et al., “Three Dimensional Photoacoustic Imaging of Blood Vessels in Tissue” Optics Letters, 1998, pp. 648-650, vol. 23, No. 8, Optical Society of America, USA.
Hong, et al., “Simple Method to Produce Janus Colloidal Particles in Large Quantity” Langmuir 22, (2006) pp. 9495-9499.
Hu, C., et al., “Soft Micro- and Nanorobotics,” Annu. Rev. Control. Robot. Auton. Syst. 1, (2018) pp. 53-75.
Hu, W., et al., “Small-scale soft-bodied robot with multimodal locomotion,” Nature 554, 81-85, (2018).
Hu, S. et al., “Three-dimensional optical-resolution photoacoustic microscopy,” Journal of Visualized Experiments 51 (2011).
Hu, S., et al., “Label-free Photoacoustic Ophthalmic Angiography” Optics Letters, 35(1), Jan. 1, 2010, pp. 1-3.
Huang, et al., “Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data,” Journal of Biomedical Optics, vol. 17, No. 6, Jun. 2012, pp. 066016-1 to 066016-8.
Huang, et al., “Optical Coherence Tomography,” Science, New Series, vol. 254, No. 5035, Nov. 22, 1991, pp. 1178-1181.
Huang, et al., “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging, vol. 32, No. 6, Jun. 2013, pp. 1097-1110.
Huber, et al., “Three-Dimensional and C-Mode 6 OCT Imaging with a Compact, Frequency Swept Laser Source at 1300 nn” Optics Express, vol. 13, No. 26, Dec. 26, 2005, pp. 10523-10526.
Imai, T. et al., “High-throughput ultraviolet photoacoustic microscopy with multifocal excitation,” Journal of Biomedical Optics 23(3), 036007 (Mar. 15, 2018).
Ing, R. K., Quieffin, N., Catheline, S., Fink, M., “In solid localization of finger impacts using acoustic time-reversal process,” Appl. Phys. Lett. 87, 204104 (Nov. 14, 2005).
Ji, M. et al., “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med 7, 309ra163 (2015).
Ji, T. et al. “Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-hell/Magnetic Beads” Adv. Mater. 13(16), Aug. 2001, pp. 1253-1256.
Karamata, et al., “Multiple Scattering in Optical Coherence Tomography I Investigation and Modeling” Journal of Optical Society of America, vol. 22, No. 7 (2005) pp. 1369-1379.
Karamata, et al., “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography” J. Opt. Soc. Am. A/vol. 22, No. 7/Jul. 2005, pp. 1380-1388.
Karshalev, E. et al., “Micromotor Pills as a Dynamic Oral Delivery Platform” American Chemical Society Nano, 2018, vol. 12, No. 8, pp. 8397-8405 <DOI:10.1021/acsnano.8b03760>.
Kim, C. et al., “In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages” ACS Nano, 2010; 4(8), pp. 4559-4564. <doi:10.1021/nn100736c>.
Kirch, J., et al., “Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus,” Proc. Natl. Acad. Sci. 109, (2012) pp. 18355-18360.
Knoll, B. & Keilmann, F., “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134-137 (1999).
Kole, M. R., et al., “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366-10372 (2012).
Kolkman, et al., “In Vivo Photoacoustic Imaging of Blood Vessels Using an Extreme-Narrow Aperture Sensor” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, No. 2, Mar./Apr. 2003, pp. 343-346.
Koziolek, et al., “Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers,” Adv. Drug Delivery Rev. 101, (2016) pp. 75-88.
R. A. Kruger, et al., “Dedicated 3D photoacoustic breast imaging,” Med. Phys., vol. 40, No. 11, 2013, pp. 113301-1-113301-8.
Kruger et al., “Photoacoustic Ultrasound (PAUS)-Reconstruction Tomography” Med. Phys., Oct. 1995, vol. 22 (10) Am. Assoc. Phys. Med., USA, pp. 1605-1609.
Kruger, et al., “Thermoacoustic computed tomography—technical considerations” Medical Physics, 26(9): 1832-1837 (1999).
Kruger et al., “Thermoacoustic computed tomography using a conventional linear transducer array,” Medical Physics, 30(5): 856-860 (2003).
Kruger, et al., “Thermoacoustic Molecular Imaging of Small Animals,” Molecular Imaging, 2(2): 113-123 (2003).
Kruger, et al., “Thermoacoustic CT: imaging principles,” Proc. SPIE 3916, (2000) pp. 150-160.
Kruger, et al., “Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology, 216(1): 279-283 (2000).
Ku and Wang, “Scanning thermoacoustic tomography in biological tissue.” Medical physics 27.5 (2000): 1195-1202.
Ku and Wang, “Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast,” Medical Physics, 28(1): 4-10 (2001).
Ku, G. et al., “Multiple-bandwidth photoacoustic tomography,” Physics in Medicine & Biology, 49(7): 1329-1338 (2004).
Ku and Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Optics Letters, 30(5): 507-509 (2005).
Ku, et al., “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Applied Optics, 44(5): 770-775 (2005).
Ku, et al., “Thermoacoustic and Photoacoustic Tomography of Thick Biological Tissues Toward Breast Imaging,” Technology in Cancer Research & Treatment, 4(5): 559-566 (2005).
Kunitz, M., “Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity,” The Journal General Physiology, vol. 33, Mar. 20, 1950, pp. 349-362. <URL:http://doi.org./10.1085/jgp.33.4.349>.
Kuppusami, S. et al., “Parylene Coatings in Medical Devices and Implants: A Review” Universal Journal of Biomedical Engineering, 2015, vol. 3, No. 2, pp. 9-14 <DOI: 10.13189/ujbe.2015.030201>.
Lai, S. et al., “Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues,” Adv. Drug Deliv. Rev. 61(2), Feb. 27, 2009, pp. 158-171. <doi:10.1016/j.addr.2008.11.002>.
Lai, P. et al., “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nature Photonics 9 126-132 (Jan. 19, 2015).
Lai, P. et al., “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time” Journal of Biomedical Optics, vol. 19, No. 3, Mar. 2014, pp. 035002-1-035002-6.
Larina, et al., Real-time optoacoustic monitoring of temperature in tissues: Journal of Physics D: Applied Physics, vol. 38, (2005) pp. 2633-2639.
Lasch, et al., “FT-IR spectroscopic investigations of single cells on the subcellular level,” Vibr. Spectrosc. 28, 147-157 (2002).
Laser Institute of America, “American National Standard for the safe use of lasers,” American National Standard Institute (ANSI Z136.1-2007 Revision of ANSI Z136.1-2000).
Leal, et al., “Physicochemical properties of mucus and their impact on transmucosal drug delivery,” Int. J. Pharm. 532, (2017) pp. 555-572.
Lewis, E. N. et al., “Fourier transform spectroscopic imaging using an infrared focal-Plane array detector,” Anal. Chem. 67, 3377-3381 (1995).
Leitgeb, et al., “Performance of fourier domain vs. time domain optical coherence tomography,” Optical Express, vol. 11, No. 8, Apr. 21, 2003, pp. 889-894.
Li, et al., “An Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract,” ACS Nano. 10(10), Oct. 25, 2016, pp. 9536-9542. <doi:10.1021/acsnano.6b04795>.
Li, et al., “Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments” ACS Nano, 11, (2017) pp. 9268-9275.
Li, G., et al., “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18, 030501 (Feb. 12, 2013).
Li, J. et al., “Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release” Angewandte Chemie International Edition, vol. 56, No. 8, 2017, pp. 2156-2161. <DOI: 10.1002/anie.201611774>.
Li, L., et al., “Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo,” Nature Communications 9(1) 2734 (Jul. 16, 2018).
Li, et al., “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat Biomed Eng. 1(5) May 2017, pp. 1-11. <doi:10.1038/s41551-017-0071>.
Li, L.., et al., “Simultaneous Molecular and Hypoxia Imaging of Brain Tumors in Vivo Using Spectroscopic Photoacoustic Tomography,” Proceedings of the IEEE, 96(3): 481-489 (2008).
Li, J. et al., “Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification” Sci Robot, 2(4), Mar. 15, 2017, pp. 1-20. <doi:10.1126/scirobotics.aam6431>.
Li, Y. et al., “Multifocal photoacoustic microscopy through an ergodic relay (Conference Presentation)”, Proc. SPIE 10878, Photons Plus Ultrasound: Imaging and Sensing 2019, 108781C, presented Feb. 4, 2019, published Mar. 4, 2019, https://doi.org/10.1117/12.2513502.
Li, et al., “Optical Coherence Computed Tomography,” Applied Physics Letters, vol. 91, American Institute of Physics, 2007, pp. 141107-1-141107-3.
Li, et al., “Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption,” Nature Photonics 14(3) (2020) pp. 164-170. <URL:https://doi.org/10.1038/s41566-019-0576-2>.
Li, Z., et al., “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” The Journal of Physical Chemistry B, vol. 121 (2017) pp. 8838-8846.
Li, Z., et al., “Super-resolution imaging with mid-IR photothermal microscopy on the single particle level,” In Proceedings of SPIE Physical Chemistry of Interfaces and Nano-materials XIV, vol. 9549, Aug. 20, 2015, pp. 954912-1-954912-8.
Liang, et al., “Single-shot real-time femtosecond imaging of temporal focusing,” Light-Science & Applications 7(1) 42 (Aug. 8, 2018).
Liang, et al., “Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse,” Science Advances 3(1) e1601814 (Jan. 20, 2017).
Liang, et al., “Single-shot ultrafast optical imaging,” Optica 5(9) 1113-1127 (Sep. 2018).
Lin, et al., “Single-breath-hold photoacoustic computed tomography of the breast,” Nature Communications 9(1) 2352 (Jun. 15, 2018).
Liu, et al., “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nature Communications 6 5409 (Jan. 5, 2015).
Liu, et al., “Label-free cell nuclear imaging by Grüneisen relaxation photoacoustic microscopy” Opt Lett. Feb. 15, 2018; 43(4), (2018) pp. 947-950.
Lovell, et al., “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nature Materials 10(4) 324-32 (Mar. 20, 2011).
Lu, F., et al., “Tip-enhanced infrared nanospectroscopy via molecular ex ansion force detection,” Nat. Photon. 8, 307-312 (2014).
Lu, F.-K. et al., “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl Acad Sci. USA 112, 11624-11629 (2015).
Ma, et al., “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nature Photonics 8(12) 931-936 (Nov. 2, 2014).
Manohar, et al., “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Optics Express, 15(19): 12277-12285 (2007).
Maslov, et al., “In vivo dark-field reflection-mode photoacoustic microscopy,” Optics Letters 30(6), Mar. 15, 2005, pp. 625-627.
Maslov, et al., “Optical-resolution photoacoustic microscropy for in vivo imaging of single capillaries,” Optical Letters, 33(9): 929-931 (2008).
Maslov, et al., “Photoacoustic Imaging of biological tissue with Intensity-Modulated Continuous-Wave Laser” Journal of Biomedical Optics, 2008, pp. 024006 1-5, vol. 13(2), SPIE, USA.
Matthews, et al., “Parameterized Joint Reconstruction of the Initial Pressure and Sound Speed Distributions for Photoacoustic Computed Tomography,” SIAM J. Imaging Sci., vol. 11, No. 2, (2018) pp. 1560-1588.
Matsumoto, et al., “Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis,” Sci. Rep., vol. 8, No. 1, (2018) p. 786.
Medina-Sanchez, et al., “Medical microbots need better imaging and control,” Nature 545, (2017) pp. 406-408.
Michaelian, Kirk H. “Photoacoustic IR spectroscopy: instrumentation, applications and data analysis” John Wiley & Sons; Dec. 1, 2010. <Preface Only>.
Miller, et al., “Synchrotron-based biological microspectroscopy: From the mid-infrared through the far-infrared regimes,” Journal of Biological Physics 29, 219-230 (2003).
Mishra et al., “Development and comparison of the DTM, the DOM and the FVM formulations for the short-pulse laser transport through a participating medium” International Journal of Heat and Mass Transfer, vol. 49 (2006) pp. 1820-1832.
Mitsuhashi, et al., “A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography,” SIAM J. Imaging Sci., vol. 10, No. 4, 2017, pp. 2022-2048.
Mitsuhashi, et al., “Investigation of the far-field approximation for modeling a transducer's spatial impulse response in photoacoustic computed tomography,” Photoacoustics, vol. 2, No. 1, 2014, pp. 21-32.
Montaldo, et al., “Building three-dimensional images using time-reversal chaotic cavity”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, pp. 1489-1497 (2005).
Morgner et al., “Spectroscopic optical coherence tomography,” Optics Letters, vol. 25, No. 2, Jan. 15, 2000, pp. 111-113.
Murray et al., “High-Sensitivity Laser-Based Acoustic Microscopy Using a Modulated Excitation Source,” Applied Physics Letters, vol. 85, No. 14, American Institute of Physics, USA., Oct. 4, 2004, pp. 2974-2976.
Nakajima, et al., “Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging,” Plastic and Reconstructive Surgery, 102(3): 748-760 (1998).
Nasiriavanaki, et al., “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proceedings of the National Academy of Sciences 111(1) 21-26 (Jan. 7, 2014).
Nasse, M. J. et al., “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413-416 (2011).
Nelson et al., “Imaging Glioblastoma Multiforme,” The Cancer Journal vol. 9, No. 2, Mar./Apr. 2003, pp. 134-145.
Niederhauser et al., “Combined Ultrasound and Optoacoustic System for Real-Time High-Contrast Vascular imaging in Vivo,” IEEE Transactions on Medicallmaging, 24(4): 436-440 (2005).
Nowak, D. et al., “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2, Mar. 25, 2016, e1501571, pp. 1-9.
Ntziachristos, V., “Going deeper than microscopy: the optical imaging frontier in biology” Nature Methods vol. 7, No. 8, Aug. 2010, pp. 603-614.
Ogunlade, et al., “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol.-Ren. Physiol., vol. 314, No. 6, (2018) pp. F1145-F1153.
Oraevsky et al., “Optoacoustic Tomography,” Biomedical Photonics Handbook, 2003, chapter 34: pp. 931-964, CRC Press LLC, USA.
Oraevsky et al., “Ultimate Sensitivity of Time-Resolved Opto-Acoustic Detection,” Biomedical Optoacoustics, 2000, pp. 228-239, vol. 3916, SPIE, USA.
Oraevsky et al., “Laser Optoacoustic Tomography of Layered Tissues: Signal Processing” Proceedings of SPIE, 2979: 59-70 (1997).
Oraevsky et al.,, “Laser opto-acoustic imaging of the breast: Detection of cancer angiogenesis” Proceedings of SPIE, 3597: 352-363 (1999).
Patel, et al., “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys., vol. 53 (1981) pp. 517-550.
Paxton, et al., “Catalytic nanomotors: Autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126, 13424-13431 (2004).
Petrov, et al., “Optoacoustic, Noninvasive, Real-Time, Continuous Monitoring of Cerebral Blood Oxygenation: An In Vivo Study in Sheep” Anesthesiology, vol. 102, No. 1, Jan. 2005, pp. 69-75.
Potter, et al., “Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts” Microvascular Research, 25(1): 68-84 (1983).
Pramanik, M., “Improving tangential resolution with a modified delayand-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” JOSA A, vol. 31, No. 3, (2014) pp. 621-627.
Prati, et al., “New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials,” Accounts of Chemical Research, vol. 43, (2010) pp. 792-801.
Prevedel, et al., “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11, 727-730 (Jul. 2014).
Quickenden, et al., “The ultraviolet absorption spectrum ofliquid water,” J Chem. Phys. 72, 4416-4428 (1980).
Razansky, et al., “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nature Photonics 3, (2009) pp. 412-417.
Robert et al., “Fabrication of Focused Poly (Vinylidene Fluoride-Trifluoroethylene) P19 (VDF-TrFE) Copolymer 40-50 MHz Ultrasound Transducers on Curved Surfaces,” Journal of Applied Physics, vol. 96, No. 1. Jul. 1, 2004, pp. 252-256.
Rockley, M.G., “Fourier-transformed infrared photoacoustic spectroscopy of polystyrene film,” Chem. Phys. Lett. 68, 455-456 (1979).
Rosenblum, et al., “Progress and challenges towards targeted delivery of cancer therapeutics” Nat. Commun. 9, (2018) 1410, pp. 1-12.
Saager et al., “Direct characterization and removal of interfering absorption trends in two-layer turbid media” J. Opt. Soc. Am. A, vol. 22, No. 9, Sep. 2005, pp. 1874-1882.
Sanchez, et al., “Chemically powered micro- and nanomotors,” Angew. Chem. Int. Ed. 54, (2015) pp. 1414-1444.
Sakadzic, et al., “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Physical Review Letters 96(16) 163902—(1-4) (Apr. 28, 2006).
Savateeva, et al., “Noninvasive detection and staging or oral cancer in vivo with confocal opto-acoustic tomography” Biomedical Optoacoustics, vol. 3916, International Society for Optics and Photonics 2000, pp. 55-66.
Schambach, et al., “Application of micro-Ct in small animal imaging” Methods, vol. 50, No. 1, Jan. 2010, pp. 2-13.
Schmidt, et al., “A 32-Channel Time Resolved Instrument for Medical Optical Tomography” Review of Scientific Instruments, vol. 71, No. 1, Jan. 2000, pp. 256-265.
Scholte, et al., “On spatial sampling and aliasing in acoustic imaging” 12th Intern. congress on sound and vibration, Lisbon, Portugal (2005) pp. 1-8.
Schoeder, et al., “Optoacoustic image reconstruction: the full inverse problem with variable bases,” Proc. R. Soc. A, vol. 474, No. 2219, (2018) pp. 1-20.
Schroeter, et al., “Spontaneous slow hemodynamic oscillations are impaired in cerebral microangiopathy,” Journal of Cerebral Blood Flow & Metabolism (2005) 25, pp. 1675-1684.
Servant, et al., “Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella” Advanced Materials 27, (2015) pp. 2981-2988.
Sezer, et al., “Review of magnesium-based biomaterials and their applications,” J. Magnesium Alloys 6, (2018) pp. 23-43.
Sethuraman et al., “Development of a combined intravascular ultrasound and photoacoustic imaging system” Proceedings of SPIE, 6086: 60860F.1-60860F.10 (2006).
Sethuraman et al., “Intravascular photoacoustic imaging of atherosclerotic plaques: Ex vivo study using a rabbit model of atherosclerosis” Proceedings of SPIE, 6437: 643729.1-643729.9 (2007).
Shah, J. et al, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” Journal of Biomedical Optics, vol. 13, No. 3, (May/Jun. 2008) pp. 034024-1-034024-9.
Sheth, et al., “Columnar Specificity of Microvascular Oxygenation and Volume Responses: Implications for Functional Brain Mapping,” The Journal of Neuroscience, vol. 24, No. 3, Jan. 21, 2004, pp. 634-641.
Shi, J., et al., “High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy,” Nature Photonics 13 609-615 (May 2019).
Shmueli, et al., “Low Frequency Fluctuations in the Cardiac Rate as a Source of Variance in the Resting-State fMRI BOLD Signal,” Neuroimage, vol. 38, No. 2, Nov. 1 2007, pp. 306-320.
Silva, et al., “Toward Label-Free Super-Resolution Microscopy,” ACS Photon. 3, 79-86 (2016).
Sim, et al., “In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products,” Sci. Rep. 8, 1059 (2018).
Siphanto et al., “Imaging of Small Vessels Using Photoacoustics: an in Vivo Study,” Lasers in Surgery and Medicince, vol. 35, Wiley-Liss, Inc., Netherlands, Dec. 20, 2004, pp. 354-362.
Sitti, M., “Miniature soft robots-road to the clinic,” Nat. Rev. Mater, 3, (2018) pp. 74-75.
Smith, et al., “Beyond C, H, O, and Ni analysis of the elemental composition of U.S. FDA approved drug architectures,” J. Med. Chem. 57, pp. 9764-9773 (2014).
Sommer, A. J., et al., “Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope,” Appl. Spectrosc. 55, 252-256 (2001).
Song, et al., “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array” Journal of Biomedical Optics, 13(5): 054028.1-054028.5 (2008).
Song, et al., “Multi-focal optical-resolution photoacoustic microscopy in vivo.” NIH Public Access Author Manuscript, May 13, 2011. pp. 1-7.
Song, et al., “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo” Optics Letters, 35(9): 1482-1484 (2010).
Soppimath, et al., “Microspheres as floating drug-delivery systems to increase gastric retention of drugs” Drug Metab. Rev. 33, (2001) pp. 149-160.
Steinbrink, et al., “Illuminating the BOLD signal: combined fMRI—fNIRS studies” Magnetic Resonance Imaging, vol. 24, No. 4, May 2006, pp. 495-505.
Stern, MD., “In vivo evaluation of microcirculation by coherent light scattering,” Nature, 254(5495): 56-58 (1975).
Tay, et al., “Magnetic Particle Imaging Guided Heating In Vivo using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy” ACS Nano. 12(4), Apr. 24, 2018, pp. 3699-3713. <doi:10.1021/acsnano.8b00893>.
Tam, A. C., “Applications of photoacoustic sensing techniques,” Reviews of Modern Physics, vol. 58, No. 2, Apr. 1986, pp. 381-431.
Tearney, et al., “Scanning single-mode fiber optic catheter-endos cope for optical coherence tomography” Optics Letters, 21(7): 543-545 (1996).
Tran, et al., “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe” Optics Letters, 29(11): 1236-1238 (2004).
Treeby B. E., et al., “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. (2010) 26(11), pp. 1-20.
Treeby, et al., “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt., vol. 15, No. 2, Mar./Apr. 2010, pp. 021314.
Treeby, et al., “Advanced photoacoustic image reconstruction using the k-Wave toolbox,” in Photons Plus Ultrasound: Imaging and Sensing 2016, 2016, vol. 9708, p. 97082P.
Tu, et al., “Self-propelled supramolecular nanomotors with temperature-responsive speed regulation,” Nat. Chem. 9, 480 (2016).
Tzoumas, et al., “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun., vol. 7, 2016, pp. 1-10.
Van Essen, et al., “An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex” Journal of the American Medical Informatics Association, vol. 8, No. 5, Sep./Oct. 2001, pp. 443-459.
Velasco, E., “Ultrafast Camera Takes 1 Trillion Frames Per Second of Transparent Objects and Phenomena” [Webpage] Caltech, California Institute of Technology, Jan. 17, 2020, pp. 1-2. <URL:https://www.eurekalert.org/pub_releases/2020-01/ciot-uct012120.php>.
Viator et al., “Design testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy” Proceedings of SPIE in Biomedical Optoacoustics II, 4256: 16-27 (2001).
Vilela, et al., “Medical imaging for the tracking of micromotors,” ACS Nano 12, (2018) pp. 1220-1227.
Wang, et al., “Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Oplical Kerr Gale,” Science, vol. 253, Aug. 16, 1991, pp. 769-771.
Wang, et al., “Biomedical Optics, Principles and Imaging,” Wiley-Interscience, A John Wiley & Sons, Inc., (2007) p. 7.
Wang et al., “Biomedical optics: principles and imaging,” Section 12.5; Photoacoustic Tomography, John Wiley & Sons (2012) pp. 288-290.
Wang, et al., “Fabrication of micro/nanoscale motors” Chem. Rev. 115, (2015) pp. 8704-8735.
Wang, B. et al., “Recent progress on micro- and nano-robots: towards in vivo tracking and localization” Quantitative Imaging in Medicine and Surgery, 2018, vol. 8, No. 5, pp. 461-479. <DOI: 10.21037/qims.2018.06.07>.
Wang, L. et al., “Grueneisen relaxation photoacoustic microscopy,” Physical Review Letters 113 174301 (Oct. 24, 2014).
Wang, L. V & Yao, J., “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13, 627-638 (Jul. 28, 2016).
Wang, L. V., “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503-509 (Aug. 29, 2009).
Wang, L. V.; “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Physical Review Letters 87(4) 043903-(1-4) (Jul. 23, 2001).
Wang, L. V.; “Prospects of photoacoustic tomography,” Medical Physics 35(12), Nov. 19, 2008, pp. 5758-5767.
Wang, L., et al., “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proceedings of the National Academy of Sciences 110(15) 5759-5764 (Apr. 9, 2013).
Wang, L., et al., “Ultrasonically encoded photoacoustic flowgraphy in biological tissue,” Physical Review Letters 111(20), 204301 (Nov. 15, 2013).
Wang, L.V., Hu, S. “Photoacoustic Tomography: in vivo imaging from organelles to organs,” Science 335, 1458-1462 (Mar. 23, 2012).
Wang, X. D., et al., “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Biotechnology 21(7) 803-806 (Jul. 2003).
Wang, et al., “MCML—Monte Carlo modeling of light transport in multi-layered tissues” Computer Methods and Programs in Biomedicine, vol. 47, No. 2, Jul. 1995, pp. 131-146.
Wang et al., “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Optics Letters, 28(19): 1739-1741 (2003).
Wang et al., “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent” Optics Letters, 29(7): 730-732 (2004).
Wang, et al., “Intravascular Photoacoustic Imaging” IEEE J Quantum Electronics, 16(3): 588-599 (2010).
Wang, et al., “Nano/microscale motors: biomedical opportunities and challenges,” ACS Nano 6, (2012) pp. 5745-5751.
Wang, K. et al., “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol., vol. 57, No. 17, 2012, p. 5399-5423.
Wetzel, et al., “Imaging molecular chemistry with infrared microscopy,” Science, New Series, vol. 285, No. 5431, Aug. 20, 1999, pp. 1224-1225.
Wong, T. et al., “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3, 1602168 (May 17, 2017).
Wong, T. et al., “Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy,” Nat. Comm. 8(1): 1386, Nov. 9, 2017, pp. 1-8.
Wu, Z., et al., “A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo,” Science Robotics 4(32) eaax0613 (Jul. 24, 2019).
Wu, D., et al., “In vivo Mapping of Macroscopic Neuronal Projections in the Mouse Hippocampus using High-resolution Diffusion MRI,” Neuroimage 125, Jan. 15, 2016, pp. 84-93.
Xia, J., et al., “Photoacoustic tomography: principles and advances,” Electromagn. Waves 147, 1 (2014; available in PMC Jan. 30, 2015).
Xia, J., et al., “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), Dec. 15, 2013, pp. 5236-5239.
Xu, et al., “Exact frequency-domain reconstruction for thermoacoustic tomography-II: Cylindrical geometry,” IEEE Trans. Med. Imaging, vol. 21, No. 7, (2002) pp. 829-833.
Xu, et al., “Photoacoustic Imaging in Biomedicine,” Review of Scientific Instruments, American Institute of Physics, vol. 77 (2006) pp. 041101 1-22.
Xu, et al., “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, No. 3, Mar. 2006, pp. 542-548.
Xu, et al., “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Transactions on Medical Imaging 21(7) 814-822 (Jul. 2002).
Xu, et al., “Universal back-projection algorithm for photoacoustic computed tomography,” Physical Review E 71(1) 016706-(1-7) (Jan. 19, 2005).
Xu, S., et al., “Thermal expansion of confined water,” Langmuir 25, 5076-5083 (2009).
Xu, X. et al., “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photonics 5(3) 154-157 (Jan. 16, 2011).
Xu, et al., “Time reversal and its application to tomography with diffracting sources,” Physical Review Letters 92(3) 033902-(1-4) (Jan. 23, 2004).
Xu et al.. “Time Reversal Ultrasound Modulated Optical Tomography Using a BSO Phase Conjugate Mirror,” poster presented at SIPE Conference 7177 on Jan. 26, 2009, 1 page.
Yadlowsky, et al., “Multiple scattering in optical coherence microscopy” Applied Optics, vol. 34, No. 25 (1995) pp. 5699-5707. <doi.org/10.1364/AO.34.005699>.
Yan, et al., “Multifunctional biohybrid magnetite microrobots for imaging-guided therapy” Yan et al., Sci. Robot. 2, eaaq1155, Nov. 22, 2017, pp. 1-14.
Yang, “Optical coherence and Doppler tomography for monitoring tissue changes induced by laser thermal therapy—An in vivo feasibility study” Review of Scientific Instruments , vol. 74, No. 1, Jan. 2003, p. 437-440.
Yang, J. M. et al., “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nature Medicine 18(8) 1297-1303 (Aug. 2012).
Yang, J., et al., “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nature Communications 8(1) 780 (Oct. 3, 2017).
Yang, et al., “Novel biomedical imaging that combines intravascular ultrasound (IVUS) and optical coherence tomography (OCT)” IEEE International Ultrasonics Symposium, Beijing, China, Nov. 2-5, 2008, pp. 1769-1772.
Yang, et al., “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution” Journal of Biomedical Optics 18(11), 110502 (Nov. 2013) pp. 110502-1-110502-4.
Yang, et al., “The grand challenges of science robotics,” Science Robotics 3, Jan. 31, 2018, eaar7650, pp. 1-14.
Yang, J.M., et al., “Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star” Science Advances 5(12) (2019) pp. 1-9.
Yao, et al., “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media” Phys. Med. Biol. 44(9), Jul. 8, 1999, pp. 2307-2320.
Yao, et al., “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228-5231 (2013).
Yao, et al., “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35, 4139-4141 (2010).
Yao, et al., “Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei,” J Biomed. Opt. 17, 056004 (2012).
Yao, et al., “Photoimprint photoacoustic microscopy for three-dimensional label-free sub-diffraction imaging,” Physical Review Letters 112(1) 014302 (Jan. 10, 2014).
Yao, L. et al., “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as near-infrared photochromic probe,” Nature Methods 13(1) 67-73 (Jan. 2016).
Yao, L. et al., “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407-410 (May 12, 2015).
Yao, L. et al., “Photoacoustic microscopy: superdepth, superresolution, and superb contrast”, IEEE Pulse 6, 34-7 (May 13, 2015).
Yaqoob, et al., “Methods and application areas of endoscopic optical coherence tomography” Journal of Biomedical Optics, 11(6): 063001.1-063001.19 (2006).
Yavuz, M. S., et al., “Gold nanocages covered by smart polymers for controlled release with near-infrared light,” Nature Materials 8(12) 935-939 (Nov. 1, 2009).
Yin, et al., “Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro” Acta Biomater. Jan. 12, 2015, pp. 129-138. <doi:10.1016/j.actbio.2014.10.019>.
Yodh et al., “Functional Imaging with Diffusing Light” Biomedical Photonics Handbook, 2003, Ch. 21 , pp. 45, CRC Press, Boca Raton.
Yodh, et al. “Spectroscopy and Imaging with Diffusing Light” Physics Today 48(3), Mar. 1995, pp. 34-40.
Zeff, et al., “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography” PNAS, vol. 104, No. 29, Jul. 17, 2007, pp. 12169-12174.
Zemp, et al., “Realtime photoacoustic microscopy in vivo with a 30MHZ ultrasonic array transducer” Optics Express, 16(11): 7915-7928 (2008).
Zhang, C., et al., “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415-445 (2015).
Zhang, D. et al., “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, el600521 (2016).
Zhang, H. F. et al., “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nature Biotechnology 24(7) 848-851 (Jul. 2006).
Zhang, H. F. et al., “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2(4) 797-804 (Apr. 5, 2007).
Zhang, et al., “Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus” Journal of Neurophysiology, vol. 100, No. 4, Oct. 2008, pp. 1740-1748.
Zharov, et al., “In vivo photoacoustic flow cytometry for monitor of circulating single cancer cells and contrast agents,” Optics Letters, 31(24): 3623-3625 (2006).
Zhou, et al., “Tutorial on photoacoustic tomography,” J. Biomed. Opt., vol. 21, No. 6, Jun. 2016, pp. 061007-1-061007-14.
Zou, et al., “BOLD responses to Visual stimulation in survivors of childhood cancer” Neurolmage, vol. 24, No. 1, Jan. 1, 2005, pp. 61-69.
Notice of Allowance dated Jun. 23, 2021 issued in U.S. Appl. No. 15/037,468.
Office Action dated Feb. 28, 2020 issued in U.S. Appl. No. 16/372,597.
Office Action dated Aug. 19, 2019 issued in U.S. Appl. No. 16/372,597.
Office Action dated Oct. 8, 2020 issued in U.S. Appl. No. 16/372,597.
Notice of Allowance dated Feb. 2, 2021 issued in U.S. Appl. No. 16/372,597.
International Preliminary Report on Patentability dated Feb. 25, 2021, issued in Application No. PCT/US2019/046574.
International Preliminary Report on Patentability dated Mar. 18, 2021, issued in Application No. PCT/US2019/049594.
International Search Report and Written Opinion dated Mar. 2, 2021 issued in PCT/US2020/059214.
U.S. Appl. No. 17/302,041, filed Apr. 22, 2021, Wang et al.
Duan, T. et al., “Hybrid Multi-wavelength Photoacoustic Imaging”, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 18, 2018, pp. 4804-4807.
EP Office Action dated May 11, 2022, in Application No. EP19849860.2.
Extended European Search Report dated Apr. 22, 2022, in Application No. 19849860.2.
Extended European search report dated May 23, 2022, in Application No. EP19857631.6.
International Preliminary Report on Patentability dated Jan. 6, 2022 in PCT Application No. PCT/US2020/070174.
International Preliminary Report on Patentability dated May 19, 2022, in PCT Application No. PCT/US2020/059214.
International Preliminary Report on Patentability dated Sep. 2, 2021, issued in Application No. PCT/US2020/019368.
Li, Y. et al., “Multifocal Photoacoustic Microscopy Using a Single-element Ultrasonic Transducer Through an Ergodic Relay”, Light: Science & Applications, Jul. 31, 2020, vol. 9, No. 135, pp. 1-7.
Notice of Allowance dated Jan. 5, 2022 issued in U.S. Appl. No. 16/540,936.
U.S. Notice of Allowance dated Oct. 19, 2022 in U.S. Appl. No. 16/560,680.
U.S. Notice of Allowance dated Sep. 7, 2022 in U.S. Appl. No. 16/611,939.
U.S. Corrected Notice of Allowance dated Nov. 14, 2022 in U.S. Appl. No. 16/540,936.
U.S. Corrected Notice of Allowance dated Oct. 26, 2022 in U.S. Appl. No. 16/560,680.
U.S Corrected Notice of Allowance dated Apr. 27, 2022 in U.S. Appl. No. 16/540,936.
U.S. Corrected Notice of Allowance dated Jun. 2, 2022 In U.S. Appl. No. 16/806,796.
U.S. Ex Parte Quayle Action dated Dec. 13, 2021 in U.S. Appl. No. 16/611,939.
U.S. Non-Final Office Action dated May 2, 2022 in U.S. Appl. No. 16/798,204.
U.S Notice of Allowance dated Apr. 19, 2022 in U.S. Appl. No. 16/540,936.
U.S. Notice of Allowance dated Aug. 5, 2022 in U.S. Appl. No. 16/540,936.
U.S. Notice of Allowance dated Feb. 23, 2022 in U.S. Appl. No. 16/806,796.
U.S. Office Action dated Apr. 7, 2022, in U.S. Appl. No. 16/560,680.
U.S. Requirement for Restriction dated Oct. 29, 2021 in U.S. Appl. No. 16/560,680.
Yao, J. et al., “Double-illumination Photoacoustic Microscopy”, Optics Letters, Feb. 15, 2012, vol. 37, No. 4, pp. 659-661.
U.S. Final office Action dated Jan. 27, 2023 in U.S. Appl. No. 16/798,204.
U.S. Non-Final office Action dated Dec. 21, 2022 in U.S. Appl. No. 17/090,752.
U.S. Non-Final Office Action dated Mar. 20, 2023 in U.S. Appl. No. 17/302,041.
U.S. Notice of Allowance dated Dec. 22, 2022 in U.S. Appl. No. 16/611,939.
U.S. Notice of Allowance dated Jan. 26, 2023 in U.S. Appl. No. 16/560,680.
U.S. Restriction Requirement dated Dec. 15, 2022 in U.S. Appl. No. 17/302,041.
White D.N., et al., “Effect of Skull in Degrading the Display of Echoencephalographic Band C Scans,” The Journal of the Acoustical Society of America, Nov. 1968, vol. 44(5), pp. 1339-1345.
Bee-Dimmer, L., et al., “The Epidemiology of Chronic Venous Insufficiency and Varicose Veins,” Annals of epidemiology, 2005, vol. 15(3), pp. 175-184.
Boas, D. A. and Dunn, A. K., “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics, (January/Feb. 2010), vol. 15, No. 1, p. 011109, 12 pages.
Brunker, J., et al., “Velocity Measurements in Whole Blood Using Acoustic Resolution Photoacoustic Doppler,” Biomedical Optics Express, 2016, vol. 7(7), 18 Pages.
Cinotti, E., et al., “Quantification of Capillary Blood Cell Flow Using Reflectance Confocal Microscopy,” Skin Research and Technology, 2014, vol. 20, pp. 373-378.
Demene, C. et al., Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity, IEEE transactions on medical imaging, (Apr. 30, 2015), 34(11):2271-85.
Dong, J., et al., “Walled Vessel-mimicking Phantom for Ultrasound Imaging Using 3d Printing With a Water-soluble Filament: Design Principle, Fluid-structure Interaction (Fsi) Simulation, and Experimental Validation,” Physics in medicine and biology, 2020, vol. 65(8).
Errico, C., et al., “Ultrafast Ultrasound Localization Microscopy for Deep Super-resolution Vascular Imaging,” Nature, 2015, vol. 527(7579), pp. 499-502.
Farneback, G., et al., “Two-frame motion estimation based on polynomial expansion, in Scandinavian conference on Image analysis,” 2003, pp. 363-370.
Fernandez-Colino, A., et al., “Advances in Engineering Venous Valves: The Pursuit of a Definite Solution for Chronic Venous Disease,” Tissue engineering. Part B, Reviews, 2021, vol. 27(3), pp. 253-265.
Guo, Z., et al., “On the Speckle-free Nature of Photoacoustic Tomography,” Medical Physics, 2009, vol. 36(9), pp. 4084-4088.
Hindelang, et al., “Enabling Precision Monitoring of Psoriasis Treatment by Optoacoustic Mesoscopy,” Science Translational Medicine, 2022, vol. 14(644).
Hu P et al., “Location-Dependent Spatiotemporal Antialiasing in Photoacoustic Computed Tomography,” IEEE Transactions on Medical Imaging, Apr. 2023, vol. 42(4), pp. 1210-1224.
Jaipan, P., et al., “Gelatin-based Hydrogels for Biomedical Applications,” MRS Communications, 2017, vol. 7, pp. 416-426.https://doi.org/10.1557/mrc.2017.92.
Keys, A., et al., “The Oxygen Saturation of the Venous Blood in Normal Human Subjects, ”American Journal of Physiology-Legacy Content, 1938, vol. 124(1), pp. 13-21.
Kinnunen, M., et al., “Effect of the Size and Shape of a Red Blood Cell On Elastic Light Scattering Properties At the Single-cell Level,” Biomedical Optics Express, 2011, vol. 2(7), pp. 1-12.
Kothapalli, S., et al., “Simultaneous Transrectal Ultrasound and Photoacoustic Human Prostate Imaging,” Science Translational Medicine, 2019, vol. 11 (507), pp. 1-12.
Lai P., et al., “Time-reversed Ultrasonically Encoded Optical Focusing in Biological Tissue,” Journal of Biomedical Optics, 2012, vol. 17 (3), pp. 1-4.
Lee, Y., et al., “Automatic Dynamic Range Adjustment for Ultrasound B-mode Imaging,” Ultrasonics, 2015, vol. 56, pp. 435-443.
Leitgeb, R., et al., “Doppler Optical Coherence Tomography,” Progress in Retinal and Eye Research, 2014, vol. 41, pp. 26-43.
Lin, L., et al., “The Emerging Role of Photoacoustic Imaging in Clinical Oncology,” Nature reviews. Clinical oncology, 2022, vol. 19(6), pp. 365-384.
Lurie, F., et al., “Mechanism of Venous Valve Closure and Role of the Valve in Circulation: a New Concept,” Journal of vascular surgery, 2003, vol. 38(5), pp. 955-961.
Montaldo, et al., “Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, No. 3, Mar. 2009, pp. 489-506.
Murray, C., et al., “The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume,” Proceedings of the National Academy of Sciences of the United States of America, 1926, vol. 12(3),pp. 207-214.
Na, S., et al., “Cross-ray Ultrasound Tomography and Photoacoustic Tomography of Cerebral Hemodynamics in Rodents,” Advanced science, 2022, vol. 9(25).
Na, S., et al., “Massively Parallel Functional Photoacoustic Computed Tomography of the Human Brain,” Nature Biomedical Engineering 2021, vol. 6(5), pp. 584-592.
Petrila, T., et al., “Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics,” Springer Science & Business Media, 2004, vol. 3, pp. 1-512.
Qureshi, M., et al., “Quantitative Blood Flow Estimation in Vivo by Optical Speckle Image Velocimetry,” 2021, Optica, vol. 8, p. 1326-1326.
Rajan, V., et al., “Review of Methodological Developments In Laser Doppler Flowmetry,” Lasers in Medical Science, 2008, vol. 24(2), pp. 269-283.
Szabo, T., et al., “Diagnostic Ultrasound Imaging: inside out,” Research Gate, 2014, pp. 1-5.
Tanter, M., et al., “Ultrafast Imaging in Biomedical Ultrasound,” IEEE, 2014, vol. 61 (1), pp. 102-119.
U.S. Advisory Action dated Dec. 8, 2023 in U.S. Appl. No. 17/302,041.
U.S. Corrected Notice of Allowance dated Sep. 19, 2023, in U.S. Appl. No. 17/090,752.
U.S. Final office Action dated Jun. 26, 2023 in U.S. Appl. No. 17/090,752.
U.S. Final Office Action dated Sep. 25, 2023, in U.S. Appl. No. 17/302,041.
U.S. Non-Final Office Action dated Aug. 14, 2023, in U.S. Appl. No. 16/798,204.
U.S. Non-Final Office Action dated Oct. 20, 2023, in U.S. Appl. No. 16/946,496.
U.S. Notice of Allowance dated Jan. 10, 2024 in U.S. Appl. No. 17/090,752.
U.S. Notice of Allowance dated Sep. 7, 2023, in U.S. Appl. No. 17/090,752.
U.S. Appl. No. 18/450,597, inventors Hu P, et al., filed on Aug. 16, 2023.
U.S Restriction requirement dated Aug. 9, 2023 in U.S. Appl. No. 16/946,496.
Wang, L., et al., “Photoacoustic Tomography: Ultrasonically Breaking Through the Optical Diffusion Limit,” Optics in the Life Sciences, 2011.
Wang, L., et al., “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE Journal of Selected Topics in Quantum Electronics, 2008, vol. 14(1), pp. 171-179.
Wiedeman, M., et al., “Dimensions of Blood Vessels From Distributing Artery to Collecting Vein, ”Circulation research, 1963, vol. 12(4), pp. 375-378.
Won, R., et al., “Mapping Blood Flow,” Nature Photonics, 2011, pp. 393-393.
Yao, J., et al., “In vivo Photoacoustic Tomography of Total Blood Flow and Potential Imaging of Cancer Angiogenesis and Hypermetabolism,” Technology in Cancer Research and Treatment, 2012, vol. 11(4), pp. 301-307.
Yao, J., et al., “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics, 2014, vol. 1(1), 13 Pages.
Yao, J., et al., “Transverse Flow Imaging Based on Photoacoustic Doppler Bandwidth Broadening,” Journal of Biomedical Optics, 2010, vol. 15(2), 5 Pages.
Yao, J., “Label-free Oxygen-metabolic Photoacoustic Microscopy in Vivo,” Journal of biomedical optics, 2011, vol. 16(7).
Zangabad, R., et al., “Photoacoustic Flow Velocity Imaging Based on Complex Field Decorrelation,” Photoacoustic, 2021,8 pages.
Zeniieh, D., et al., Parylene-C as High Performance Encapsulation Material for Implantable Sensors, Procedia Engineering, 2014, vol. 87, pp. 1398-1401. https://doi.org/10.1016/j.proeng.2014.11.704.
Zhang, Y., et al., “Transcranial Photoacoustic Computed Tomography of Human Brain Function,” Arxiv, 2022, pp. 1-12.
Zhang, Y., et al., Ultrafast Ultrasound Imaging With Cascaded Dual-polarity Waves, IEEE, 2018, vol. 37(4), pp. 906-917.
International Search Report and Written Opinion dated May 9, 2024 in PCT Application No. PCT/US2024/011281.
U.S. Final Office Action dated May 24, 2024 in U.S. Appl. No. 16/946,496.
U.S. Non-Final Office Action dated Mar. 27, 2024 in U.S. Appl. No. 17/302,041.
U.S. Notice of Allowance dated Apr. 18, 2024 in U.S. Appl. No. 17/090,752.
U.S. Notice of Allowance dated Apr. 25, 2024 in U.S. Appl. No. 17/090,752.
U.S. Appl. No. 18/633,290, inventor Zhang Y, filed on Apr. 11, 2024.
Related Publications (1)
Number Date Country
20210333241 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
61442148 Feb 2011 US
Divisions (1)
Number Date Country
Parent 13369558 Feb 2012 US
Child 14639676 US
Continuations (2)
Number Date Country
Parent 16372597 Apr 2019 US
Child 17302313 US
Parent 14639676 Mar 2015 US
Child 16372597 US