The present disclosure relates generally to prosthetic valves and more specifically synthetic flexible leaflet-type prosthetic valve devices, systems, and methods for implantation.
Bioprosthetic valves have been developed that attempt to mimic the function and performance of a native valve. Flexible leaflets are fabricated from biological tissue such as bovine pericardium. In some valve designs the biological tissue is sewn onto a relatively rigid frame that supports the leaflets and provides dimensional stability when implanted. Although bioprosthetic valves can provide excellent hemodynamic and biomechanical performance in the short term, they are prone to calcification and cusp tears, among other failure modes, requiring reoperation and replacement.
Attempts have been made to use synthetic materials, such as polyurethane, among others, as a substitute for the biological tissue, to provide a more durable flexible leaflet prosthetic valve, herein referred to as a synthetic leaflet valve (SLV). However, synthetic leaflet valves have not become a valid valve replacement option since they suffer premature failure, due to, among other things, suboptimal design and lack of a durable synthetic material.
A number of fabrication techniques have been used to couple the leaflets to a frame, including sewing individual leaflets to the frame (biological and synthetic), and for synthetic leaflets only, injection molding and dip coating a polymer onto the frame. In many cases, the resulting leaflet is supported on the frame and defines a flap having a mounting edge where the leaflet is coupled to the frame and a free edge that allows the flap to move. The flap moves under the influence of fluid pressure. In operation, the leaflets open when the upstream fluid pressure exceeds the downstream fluid pressure and close when the downstream fluid pressure exceeds the upstream fluid pressure. The free edges of the leaflets coapt under the influence of downstream fluid pressure closing the valve to prevent downstream blood from flowing retrograde through the valve.
Valve durability under the repetitive loads of the leaflets opening and closing is dependent, in part, on the load distribution between the leaflet and the frame. Further, substantial load is encountered on the leaflet when in the closed position. Mechanical failure of the leaflet can arise, for example, at the mounting edge, where the flexible leaflet is supported by the relatively rigid frame. The repetitive loads of leaflet opening and closing leads to material failure by fatigue, creep or other mechanism, depending in part on the leaflet material. Mechanical failure at the mounting edge is especially prevalent with synthetic leaflets.
There remains a need for a more durable flexible leaflet prosthetic valve.
Described embodiments are directed to apparatus, system, and methods for valve replacement, such as cardiac valve replacement. More specifically, described embodiments are directed toward flexible leaflet valve devices having biological or synthetic leaflet material and a multi-part support member or frame, and methods of making and implanting the valve devices.
According to an embodiment, a valve comprises a leaflet frame, a body frame and any number of leaflets suitable for the size and function of the valve. According to another embodiment, a method of making the valve comprises the steps of fitting the leaflet frame and body frame with a biocompatible material as described herein, and thereby also forming leaflets.
According to an embodiment, a valve comprises a body frame defining a generally tubular shape defining a body frame lumen, a leaflet frame having a generally annular shape defining a plurality of U-shaped portions each defining a base and a plurality of posts, the leaflet frame being located coaxial with and at least substantially within the body frame lumen, a first film coupled to the body frame, and a second film coupled to and extending across each of the U-shaped portions defining a leaflet, each leaflet having a leaflet free edge, at least one of the first film and second film at least partially coupling the body frame to the leaflet frame, wherein the leaflet free edges are operable to abut adjacent leaflet free edges and are moveable between an open and closed position.
In accordance with a method of making a multi-frame prosthetic valve comprising: providing a body frame defining a generally tubular shape defining a body frame lumen; providing a leaflet frame having a generally annular shape defining a plurality of U-shaped portions each defining a base and a plurality of posts; providing a film; forming a first layer of the film into a tubular form; coaxially placing the leaflet frame over the tubular form of the first layer of film; wrapping the film around the leaflet frame and the tubular form of the first layer of film, the film extending across each of the U-shaped portions so as to define a leaflet therein; bonding the first layer and the second layer to each other and the leaflet frame; clamping the leaflets disposed in the U-shaped portions to enclose the leaflets; forming a third layer of the film over the leaflet frame; placing the body frame over the third layer of the film and over the leaflet frame such that the leaflet frame is coaxially disposed within the body frame lumen forming a fourth layer of the film over the body frame and the third layer of the film; and bonding the third layer and the fourth layer to each other and the body frame.
The accompanying drawings are included to provide a further understanding of the present disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments described herein, and together with the description serve to explain the principles discussed in this disclosure.
Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. Stated differently, other methods and apparatus can be incorporated herein to perform the intended functions. It should also be noted that the accompanying drawing figures referred to herein are not necessarily drawn to scale, but may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the drawing figures should not be construed as limiting.
Although the embodiments herein may be described in connection with various principles and beliefs, the described embodiments should not be bound by theory. For example, embodiments are described herein in connection with prosthetic valves, more specifically cardiac prosthetic valves. However, embodiments within the scope of this disclosure can be applied toward any valve or mechanism of similar structure and/or function. Furthermore, embodiments within the scope of this disclosure can be applied in non-cardiac applications.
The term leaflet as used herein in the context of prosthetic valves is a flexible component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows blood to flow through the valve. In a closed portion, the leaflet substantially blocks retrograde flow through the valve. In embodiments comprising multiple leaflets, each leaflet cooperates with at least one neighboring leaflet to block the retrograde flow of blood. The pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed. As the pressure on an inflow side of the valve rises above the pressure on the outflow side of the valve, the leaflets open and blood flows therethrough. As blood flows through the valve into a neighboring chamber or blood vessel, the pressure on the inflow side equalizes with the pressure on the outflow side. As the pressure on the outflow side of the valve raises above the blood pressure on the inflow side of the valve, the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
The term membrane as used herein refers to a sheet of material comprising a single composition, such as, but not limited to, expanded fluoropolymer.
The term composite material as used herein refers to a combination of a membrane, such as, but not limited to, expanded fluoropolymer, and an elastomer, such as, but not limited to, a fluoroelastomer. The elastomer can be imbibed within a porous structure of the membrane, coated on one or both sides of the membrane, or a combination of coated on and imbibed within the membrane.
The term laminate as used herein refers to multiple layers of membrane, composite material, or other materials, such as elastomer, and combinations thereof.
The term film as used herein generically refers to one or more of the membrane, composite material, or laminate.
The term biocompatible material as used herein generically refers to any material with biocompatible characteristics including synthetic, such as, but not limited to, a biocompatible polymer, or a biological material, such as, but not limited to, bovine pericardium. Biocompatible material may comprise a first film and a second film as described herein for various embodiments.
The terms native valve orifice and tissue orifice refer to an anatomical structure into which a prosthetic valve can be placed. Such anatomical structure includes, but is not limited to, a location wherein a cardiac valve may or may not have been surgically removed. It is understood that other anatomical structures that can receive a prosthetic valve include, but are not limited to, veins, arteries, ducts and shunts. It is further understood that a valve orifice or implant site may also refer to a location in a synthetic or biological conduit that may receive a valve.
As used herein, “couple” means to join, couple, connect, attach, adhere, affix, or bond, whether directly or indirectly, and whether permanently or temporarily.
Embodiments herein include various apparatus, systems, and methods for a prosthetic valve, such as, but not limited to, cardiac valve replacement. The valve is operable as a one-way valve wherein the valve defines a valve orifice into which leaflets open to perm it flow and close so as to occlude the valve orifice and prevent flow in response to differential fluid pressure.
In accordance with embodiments, the valve has leaflets that are supported by a leaflet frame that is coaxial with and at least partially nested within a body frame. Each of the body frame and leaflet frame may have different physical properties suitable for a particular purpose. In accordance with embodiments, the body frame may be relatively stiff so as to abut and fixedly engage the tissue orifice as well as provide dimensional stability to the valve. The leaflet frame may be relatively less stiff relative to the body frame. The benefit of the leaflet frame being relatively less stiff relative to the body frame may be to slow down the rate of loading on the leaflets to reduce the stress levels on the leaflets whereby improving valve durability. Stiff and stiffness, as used herein and as is commonly used in engineering, is a measure of the resistance to deformation given by a body. Stiff and stiffness is a function of, among other things, material properties, the shape of the object, and the boundary conditions on the object. Stiffness of the leaflet frame 130 (see
The Valve
The valve 100 comprises a body frame 120, a leaflet frame 130, and a first film 160 covering the body frame 120 and a second film 162 covering the leaflet frame 130 and forming leaflets 140.
The Film
A film 160 is generally any sheet-like, biocompatible material configured to couple to the body frame 120 and the leaflet frame 130. The leaflets 140 can also be comprised of the film 160. In an embodiment, the film 160 can be formed from a generally tubular material to couple the body frame 120 and the leaflet frame 130, and to form the leaflets 140.
It is understood that the film 160 is used generically for one or more biocompatible materials suitable for a particular purpose. It is also understood that the film coupled to the body frame 120 may not be the same film coupled to the leaflet frame 130, or the same film serving as leaflets 140, although in some embodiments the same film is coupled to the body frame 120 and the leaflet frame 130 and defines leaflets 140.
The film 160 can comprise one or more of the membrane, composite material, or laminate. Details of various types of film 160 are discussed below.
The Body Frame
The body frame 120 is a generally tubular member defining a body frame lumen 123 having a body frame inner surface 129, as shown in
The body frame 120 can comprise any metallic or polymeric material that is generally biocompatible. For example, the body frame 120 can comprise a material, such as, but not limited to nitinol, cobalt-nickel alloy, stainless steel, and polypropylene, acetyl homopolymer, acetyl copolymer, ePTFE, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as described herein.
By way of example, and as illustrated in the embodiments of
In accordance with embodiments, the body frame 120 can be configured to provide positive engagement to an implant site. In an embodiment, the valve 100 further includes a sewing cuff 170 coupled about the body frame 120, as shown in
It is appreciated that other elements or means for coupling the valve 100 to an implant site are anticipated. By way of example, but not limited thereto, other means, such as mechanical and adhesive means may be used to couple the valve 100 to a synthetic or biological conduit.
Leaflet Frame
The leaflet frame 130 comprises a generally annular member defining a predetermined repeating pattern as shown in
A relatively less stiff leaflet frame 130 supporting the leaflets 140 can be more likely to reduce the loading encountered by the opening and closing leaflets 140 as compared to a more stiff leaflet frame 130. The leaflet frame 130 having a relatively less stiff property may reduce leaflet accelerations and reduce the closing stresses on the leaflets 140. In addition, the leaflet frame 130 can be elastically deformable so as to allow the leaflet frame 130 to flex and thus to facilitate surgical placement.
The leaflet frame 130 can comprise, such as, but not limited to, any elastically deformable metallic or polymeric material that is generally biocompatible. The leaflet frame 130 can comprise a shape-memory material, such as nitinol, a nickel-titanium alloy. Other materials suitable for the leaflet frame 130 include, but not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, acetyl homopolymer, acetyl copolymer, other alloys or polymers, or any other material that is generally biocompatible having adequate physical and mechanical properties to function as a leaflet frame 130 as described herein.
In accordance with an embodiment, the leaflet frame 130 comprises a shape memory material operable to flex under load and retain its original shape when the load is removed. The leaflet frame 130 and the body frame 120 can comprise the same or different materials.
Leaflet
Each of the U-shaped portions 132 of the leaflet frame 130 defines an inner region 137. Each inner region 137 is provided with a biocompatible material, such as the second film 162 which can be coupled to the sides 133 and base 134 of the leaflet frame 130; wherein the second film 162 defines a leaflet 140. Each leaflet 140 defines a leaflet free edge 142.
In accordance with an embodiment, the leaflet 140 can comprise a biocompatible material that is not of a biological source and that is sufficiently compliant and strong for the particular purpose, such as a biocompatible polymer. In an embodiment, the leaflet 140 comprises a membrane that is combined with an elastomer to form a composite material. In accordance with other embodiments, the biocompatible material that makes up the leaflet 140 comprises a biological material, such as, but not limited to, bovine pericardium.
The shape of the leaflets 140 are defined in part by the shape of the leaflet frame 130 and the leaflet free edge 142. The shape of the leaflets 140 can also be defined by the structures and processes used to manufacture the valve 100, such as, but not limited, those described below. For example, in accordance with an embodiment, the shape of the leaflets 140 also depends in part on molding the leaflets 140 using molding and trimming processes to impart a predetermined shape to the leaflet 140.
In an embodiment, substantially the entire leaflet frame 130 lies adjacent to the body frame inner surface 129. As such, when the leaflets 140 are in a fully open position, the valve 100 presents a substantially circular valve orifice 102 as shown in
The leaflets 140 generally flex about the base 134 of the U-shaped portion 132 as the leaflets 140 open and close. In an embodiment, when the valve 100 is closed, generally about half of each leaflet free edge 142 abuts an adjacent half of a leaflet free edge 142 of an adjacent leaflet 140, as shown in
The leaflet 140 can be configured to actuate at a pressure differential in the blood caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the valve 100 when closed. As the pressure on an inflow side of the valve 100 rises above the pressure on the outflow side of the valve 100, the leaflet 140 opens and blood flows therethrough. As blood flows through the valve 100 into a neighboring chamber or blood vessel, the pressure equalizes. As the pressure on the outflow side of the valve 100 rises above the blood pressure on the inflow side of the valve 100, the leaflet 140 returns to the closed position generally preventing the retrograde flow of blood through the inflow side of the valve 100.
It is understood that the leaflet frame 130 can comprise any number of U-shaped portions 132, and thus leaflets 140, suitable for a particular purpose. Leaflet frames 130 comprising one, two, three or more U-shaped portions 132 and corresponding leaflets 140 are contemplated.
Valve Film
As shown in
It is contemplated that the film 160 can be coupled to the leaflet frame 130 and the body frame 120 in many ways suitable for a particular purpose. By way of example, and not limited thereto, the body frame 120 can be wrapped with overlapping layers of a first film 161 having a first composition. The leaflet frame 130 can be wrapped with overlapping layers of a second film 162 having a second composition.
The film 160 can be coupled to the inside or outside surface of the leaflet frame 130 and body frame 120. In an embodiment, the film 160 can be coupled to both the inside and outside surfaces of both the leaflet frame 130 and the body frame 120. In another embodiment, the film 160 can be coupled to the inside surface of the leaflet frame 130 and the outside surface of the body frame 120 sandwiching at least a portion of the leaflet frame 130 and body frame 120 between the film 160, or vise versa, such that the leaflet frame 130 and body frame 120 are coupled together by the film 160.
The film 160 can be configured to prevent blood from traveling through or across the valve 100 other than through the valve orifice 102 when the leaflets 140 are in an open position. As such, the film 160 creates a barrier to blood flow in any interstitial space(s) of the body frame 120 and leaflet frame 130, and therebetween, that the film 160 covers.
The film 160 is fixedly secured or otherwise coupled at a single or a plurality of locations of the inside or outside surface of the body frame 120 and leaflet frame 130, for example, using one or more of taping, heat shrinking, adhesion and other processes known in the art. In some embodiments, a plurality of membrane/composite layers, i.e., a laminate, are used and can be coupled to the body frame 120 and the leaflet frame 130 to form at least a portion of the film 160.
The film 160 comprises any material(s) that have the suitable physical and mechanical properties to perform the functions described herein. A first film 161 coupled to the body frame 120 may comprise the same material that a second film 162 that the leaflet 140 comprises, as described above, or a different material. Similarly, the film 160 may or may not be homogenous in material composition. Different portions of the film 160 can comprise different materials which can give it predetermined physical and mechanical properties.
Leaflet Frame Engagement and Clasp
In accordance with an embodiment, any portion of the leaflet frame 130 that is not coupled to the body frame 120 by the film 160 can be in urging engagement against the body frame inner surface 129. In accordance with an embodiment, the leaflet frame 130 can have a spring bias wherein the leaflet frame 130 engages the body frame 120 in biased urging engagement.
In accordance with an embodiment, the posts 131 abut the inner surface 129 of the body frame 120, as shown in
In accordance with an embodiment, as shown in
The engagement of the posts 131 of the leaflet frame 130 with the body frame 120 can provide support to the leaflet frame 130. The engagement of the posts 131 with the body frame 120 allows for the transfer of loading on the leaflet 140 to the leaflet frame 130 and then to the body frame 120. It is contemplated that the degree of engagement of the leaflet frame 130 with the body frame 120 will determine the degree of support provided on the leaflet frame 130 by the body frame 120, which can be predetermined for a particular purpose.
In other embodiments, a portion of the leaflet frame including a portion of the posts 131 is not coupled to the first film 160 and not held in engagement with the body frame inner surface 129 so as to allow inward flexing of the posts 131 under the loading of the leaflet 140 during valve operation, particularly when closing or closed. Flexing of the posts 131 can ensure that the leaflet free edges 142 coapt to form a tight seal when closed. In various embodiments, the degree of inward flexing of the posts 131 during valve operation will determine the degree of coaptation, which can be predetermined for a particular purpose.
In accordance with an embodiment, one or more clasps (not shown) or some other similar engagement mechanism can secure the post 131 to the body frame 120 and add a predetermined amount of structural rigidity to the leaflet frame 130. As such, loading on the leaflet frame 130 can at least partially be transferred or distributed to the body frame 120. In this regard, the clasp comprises any structure configured to interlock, connect, fasten, or otherwise hold the leaflet frame 130 and body frame 120 together. The clasp connecting the leaflet frame 130 to the body frame 120 is operable to transfer at least some of the load on the leaflet frame 130 to the body frame 120.
Body Frame and Leaflet Frame Compared
In embodiments of the valve 100, the inclusion of a body frame 120 and a leaflet frame 130 provides a means for providing different physical properties for each of the body frame 120 and the leaflet frame 130 suitable for a particular purpose. In accordance with an embodiment, the body frame 120 is less stiff as compared with the leaflet frame 130. The body frame 120, when engaged to the implant site, such as, but not limited to the tissue orifice 150 as shown in
The physical properties of the body frame 120 and the leaflet frame 130 depends, in part, on the size, shape, thickness, material property of the body frame 120 and the leaflet frame 130 as well as the different physical properties and number of layers or wrappings of the film 160 as well as the coupling of the body frame 120 and the leaflet frame 130.
Film
The second film 162 that makes up the leaflet 140 can comprise any biocompatible material sufficiently compliant and flexible, such as a biocompatible polymer. The second film 162 can comprise a membrane that is combined with an elastomer to form a composite material. The second film 162, according to an embodiment, includes a composite material comprising an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and an elastomeric material. It should be appreciated that multiple types of fluoropolymer membranes and multiple types of elastomeric materials can be combined to form a laminate while remaining within the scope of the present disclosure. It should also be appreciated that the elastomeric material can include multiple elastomers, multiple types of non-elastomeric components, such as inorganic fillers, therapeutic agents, radiopaque markers, and the like while remaining within the scope of the present disclosure.
In accordance with an embodiment, the composite material includes an expanded fluoropolymer material made from porous ePTFE membrane, for instance as generally described in U.S. Pat. No. 7,306,729 to Bacino.
The expandable fluoropolymer, used to form the expanded fluoropolymer material described, can comprise PTFE homopolymer. In alternative embodiments, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used. Non-limiting examples of suitable fluoropolymer materials are described in, for example, U.S. Pat. No. 5,708,044, to Branca, U.S. Pat. No. 6,541,589, to Baillie, U.S. Pat. No. 7,531,611, to Sabol et al., U.S. patent application Ser. No. 11/906,877, to Ford, and U.S. patent application Ser. No. 12/410,050, to Xu et al.
The expanded fluoropolymer membrane can comprise any suitable microstructure for achieving the desired leaflet performance. In accordance with an embodiment, the expanded fluoropolymer comprises a microstructure of nodes interconnected by fibrils, such as described in U.S. Pat. No. 3,953,566 to Gore, in accordance with an embodiment. The fibrils extend from the nodes in a plurality of directions, and the membrane has a generally homogeneous structure. Membranes having this microstructure can typically exhibit a ratio of matrix tensile strength in two orthogonal directions of less than 2, and possibly less than 1.5. Embodiments of expanded fluoropolymer membrane provided herein contain a majority of fibrils having a diameter that is less than about 1 μm. Other embodiments of expanded fluoropolymer membrane provided herein contain a majority of fibrils having a diameter that is less than 0.1 μm. The embodiments provided herein recognize that a membrane comprising fibrils the majority of which are less than about 1 to beyond less than about 0.1 μm provide a significant improvement to, at least, but not limited to, the durability and lifetime of the heart valve when used as leaflet material. Embodiments of expanded fluoropolymer membrane provided herein may have a mean flow pore sizes of less than about 5 μm, less than about 1 μm, and less than about 0.10 μm, in accordance with embodiments.
In another embodiment, the expanded fluoropolymer membrane has a microstructure of substantially only fibrils, such as, for example, as is generally taught by U.S. Pat. No. 7,306,729, to Bacino in accordance with an embodiment. The expanded fluoropolymer membrane having substantially only fibrils can possess a high surface area, such as greater than 20 m2/g, or greater than 25 m2/g, and in some embodiments can provide a highly balanced strength material having a product of matrix tensile strengths in two orthogonal directions of at least 1.5×105 MPa2, and/or a ratio of matrix tensile strengths in two orthogonal directions of less than 4, and possibly less than 1.5. Embodiments of expanded fluoropolymer membrane provided herein contain a majority of fibrils having a diameter that is less than about 1 μm. Other embodiments of expanded fluoropolymer membrane provided herein contain a majority of fibrils having a diameter that is less than about 0.1 μm. The embodiments provided herein recognize that a membrane comprising fibrils the majority of which are less than about 1 to beyond less than about 0.1 μm provide a significant improvement to, at least, but not limited to, the durability and lifetime of the heart valve when used as leaflet material. Embodiments of expanded fluoropolymer membrane provided herein may have a mean flow pore sizes of less than about 5 μm, less than about 1 μm, and less than about 0.10 μm, in accordance with embodiments.
The expanded fluoropolymer membrane can be tailored to have any suitable thickness and mass to achieve the desired leaflet performance. By way of example, but not limited thereto, the leaflet 140 comprises an expanded fluoropolymer membrane having a thickness of about 0.1 μm. The expanded fluoropolymer membrane can possess a mass per area of about 1.15 g/m2. Membranes according to an embodiment of the invention can have matrix tensile strengths of about 411 MPa in the longitudinal direction and 315 MPa in the transverse direction.
Additional materials can be incorporated into the pores or within the material of the membranes or in between layers of membranes to enhance desired properties of the leaflet. Composite materials described herein can be tailored to have any suitable thickness and mass to achieve the desired leaflet performance. Composite materials according to embodiments can include fluoropolymer membranes and have a thickness of about 1.9 μm and a mass per area of about 4.1 g/m2.
The expanded fluoropolymer membrane combined with elastomer to form a composite material provides the elements of the present disclosure with the performance attributes required for use in high-cycle flexural implant applications, such as heart valve leaflets, in various ways. For example, the addition of the elastomer can improve the fatigue performance of the leaflet 140 by eliminating or reducing the stiffening observed with ePTFE-only materials. In addition, it can reduce the likelihood that the material will undergo permanent set deformation, such as wrinkling or creasing, that could result in compromised performance. In one embodiment, the elastomer occupies substantially all of the pore volume or space within the porous structure of the expanded fluoropolymer membrane. In another embodiment, the elastomer is present in substantially all of the pores of the at least one fluoropolymer layer. Having elastomer filling the pore volume or present in substantially all of the pores reduces the space in which foreign materials can be undesirably incorporated into the composite material. An example of such foreign material is calcium that can be drawn into the membrane from contact with the blood. If calcium becomes incorporated into the composite material, as used in a heart valve leaflet, for example, mechanical damage can occur during cycling open and closed, thus leading to the formation of holes in the leaflet and degradation in hemodynamics.
In an embodiment, the elastomer that is combined with the ePTFE is a thermoplastic copolymer of tetrafluoroethylene (TFE) and perfluoromethyl vinyl ether (PMVE), such as described in U.S. Pat. No. 7,462,675 to Chang et al. hereby incorporated by reference in its entirety. As discussed above, the elastomer is combined with the expanded fluoropolymer membrane such that the elastomer occupies substantially all of the void space or pores within the expanded fluoropolymer membrane to form a composite material. This filling of the pores of the expanded fluoropolymer membrane with elastomer can be performed by a variety of methods. In one embodiment, a method of filling the pores of the expanded fluoropolymer membrane includes the steps of dissolving the elastomer in a solvent suitable to create a solution with a viscosity and surface tension that is appropriate to partially or fully flow into the pores of the expanded fluoropolymer membrane and allow the solvent to evaporate, leaving the filler behind.
In another embodiment, the ePTFE comprises pores with the elastomer present in substantially all of the pores. The composite material comprises less than about 80% ePTFE by weight in the range of about 10% to 90%.
In one embodiment, the composite material comprises three layers: two outer layers of ePTFE and an inner layer of a fluoroelastomer disposed therebetween. Additional fluoroelastomers can be suitable and are described in U.S. Publication No. 2004/0024448 to Chang hereby incorporated by reference in its entirety.
In another embodiment, a method of filling the pores of the expanded fluoropolymer membrane includes the steps of delivering the filler via a dispersion to partially or fully fill the pores of the expanded fluoropolymer membrane.
In another embodiment, a method of filling the pores of the expanded fluoropolymer membrane includes the steps of bringing the porous expanded fluoropolymer membrane into contact with a sheet of the elastomer under conditions of heat and/or pressure that allow elastomer to flow into the pores of the expanded fluoropolymer membrane.
In another embodiment, a method of filling the pores of the expanded fluoropolymer membrane includes the steps of polymerizing the elastomer within the pores of the expanded fluoropolymer membrane by first filling the pores with a prepolymer of the elastomer and then at least partially curing the elastomer.
After reaching a minimum percent by weight of elastomer, the leaflets constructed from fluoropolymer materials or ePTFE generally performed better with increasing percentages of elastomer resulting in significantly increased cycle lives. In one embodiment, the elastomer combined with the ePTFE is a thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether, such as described in U.S. Pat. No. 7,462,675 to Chang et al., and other references that would be known to those of skill in the art. Other biocompatible polymers which can be suitable for use in leaflet 140 include but are not limited to the groups of urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
Sewing Cuff
The valve 100 further comprises a sewing cuff 170 about a body frame outer surface 127 in accordance with an embodiment, as shown in
Other Considerations
In accordance with an embodiment, the valve 100 can be configured to prevent interference with a heart conduction system by not covering a bundle branch in the left ventricle when implanted, such as might be encountered with an aortic valve replacement procedure. For example, the valve 100 can comprise a length of less than about 25 mm or less than about 18 mm. The valve 100 can also comprise an aspect ratio of less than one, wherein the ratio describes the relationship between the length of the valve 100 to the functional diameter. However, the valve 100 can be constructed at any length and, more generally, any desirable dimension.
The valve 100 can further comprise a bio-active agent. Bio-active agents can be coated onto a portion or the entirety of the film 160 for controlled release of the agents once the valve 100 is implanted. The bio-active agents can include, but are not limited to, vasodilator, anti-coagulants, anti-platelet, anti-thrombogenic agents, such as, but not limited to, heparin. Other bio-active agents can also include, but are not limited to agents such as, but not limited to, anti-proliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents such as G(GP) IIb/IIIa inhibitors and vitronectin receptor antagonists; anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nitrosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes-dacarbazinine (DTIC); anti-proliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine}); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones (i.e. estrogen); anti-coagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory; antisecretory (breveldin); anti-inflammatory: such as adrenocortical steroids (cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6α-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin; para-aminophenol derivatives i.e. acetominophen; indole and indene acetic acids (indomethacin, sulindac, and etodalac), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate); immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); angiogenic agents: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF); angiotensin receptor blockers; nitric oxide donors; anti-sense oligionucleotides and combinations thereof; cell cycle inhibitors, mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors; retenoids; cyclin/CDK inhibitors; HMG co-enzyme reductase inhibitors (statins); and protease inhibitors.
Method of Making
Embodiments described herein also pertain to a method of making the valve embodiments as described herein. In order to make the various embodiments, a winding jig and a two-piece leaflet mandrel can be used. With reference to
With reference to
With reference to
With reference to
By way of example, one embodiment of a valve was made as follows:
A leaflet frame was constructed by winding a nitinol wire (0.020″ diameter) onto a winding jig as illustrated in
FEP powder (Daikin America, Orangeburg N.Y.) was applied to the leaflet frame. The leaflet frame was then heated in a forced air oven set to 320° C. for approximately three minutes. In this way, the powder was melted and adhered as a thin coating to the entire frame. The leaflet frame was removed from the oven and left to cool to room temperature.
A body frame was laser cut from a tube of 316 stainless steel having a wall thickness of about 0.5 mm (0.02″), a diameter of about 2.5 cm (1.0″), and a length of 2 cm. A diamond-shaped pattern was cut into the tube to form an annular-shaped body frame as shown in
A second film 162 was obtained. A membrane of ePTFE can be manufactured according to the general teachings described in U.S. Pat. No. 7,306,729 to Bacino et al. The ePTFE membrane can have a mass per area of 1.15 g/m2, a bubble point of 79.7 MPa, a thickness of about 1.016 μm, a matrix tensile strength of 410.9 MPa in the longitudinal direction and 315.4 MPa in the transverse direction. The ePTFE membrane was imbibed with a fluoroelastomer to form a composite material.
A fluoroelastomer that is a copolymer comprising tetrafluoroethylene and perfluoro(methyl vinylether) as described in U.S. Pat. No. 7,462,675 to Chang, et al. was obtained. The copolymer consists essentially of between about 65 and 70 weight percent perfluoromethyl vinyl ether and complementally about 35 and 30 weight percent tetrafluoroethylene.
This copolymer was dissolved in Novec HFE7500 (3M, St Paul, MN) in a 2.5% concentration. The ePTFE membrane (while being supported by a polypropylene release film) was coated with the prepared solution using a mayer bar and dried in a convection oven set to 145° C. for 30 seconds thereby creating an imbibed composite material. After the two coating steps, the final ePTFE/fluoroelastomer or composite material had a mass per area of approximately 4.08 g/m2, 28.22% fluoropolymer by weight, a dome burst strength of 15.9 KPa, and a thickness of 1.89 μm.
Fifteen layers of the composite material, the second film 162, were wrapped around the combined 25 mm diameter aluminum mandrel assembly shown in
The leaflet frame was everted from its wire wound condition, then coaxially positioned on the mandrel, as illustrated in
A second layer of the second film 162 comprising five additional layers of membrane material were wrapped around the combined mandrel assembly and over the leaflet frame with the elastomer rich side facing toward the leaflet frame The leaflets were then formed to a predetermined shape by positioning the leaflet clamp 596 as shown in
A first layer comprising first film 161 comprising five layers of membrane material were wrapped around the combined mandrel assembly with the elastomer rich side facing outward, as shown in
The combined mandrel assembly was then thermal treated to set the leaflet shape and to consolidate the biocompatible material. The first film 161 and second film 162 were trimmed in accordance with the configuration as shown in
Testing Methods
It should be understood that although certain methods and equipment are described below, any method or equipment determined suitable by one of ordinary skill in the art may be alternatively utilized.
Bubble Point and Mean Flow Pore Size
Bubble point and mean flow pore size were measured according to the general teachings of ASTM F31 6-03 using a capillary flow Porometer, Model CFP 1500AEXL from Porous Materials, Inc., Ithaca NY, USA. The sample membrane was placed into the sample chamber and wet with SilWick Silicone Fluid (available from Porous Materials Inc.) having a surface tension of about 20.1 dynes/cm. The bottom clamp of the sample chamber had an about 2.54 cm diameter hole. The test fluid was isopropyl alcohol. Using the Capwin software version 7.73.012 the following parameters were set as specified in the table below. As used herein, mean flow pore size and pore size are used interchangeably.
Presence of Elastomer within the Pores
The presence of elastomer within the pores can be determined by several methods known to those having ordinary skill in the art, such as surface and/or cross section visual, or other analyses. These analyses can be performed prior to and after the removal of elastomer from the composite.
Diameter of Fibrils
The average diameter of the fibrils was estimated by examining micrographs that were obtained having at a magnification suitable for showing numerous fibrils. In the case of a composite material, it may be necessary to extract the elastomer or other material that may be filling the pores, by any suitable means, to expose the fibrils.
Mass, Thickness, and Density of ePTFE Membranes
Membrane thickness was measured by placing the membrane between the two plates of a Kafer FZ1000/30 thickness snap gauge Kafer Messuhrenfabrik GmbH, Villingen-Schwenningen, Germany. The average of the three measurements was reported.
Membrane samples were die cut to form rectangular sections about 2.54 cm by about 15.24 cm to measure the weight (using a Mettler-Toledo analytical balance model AG204) and thickness (using a Kafer Fz1000/30 snap gauge). Using these data, density was calculated with the following formula: ρ=m/(w*l*t), in which: ρ=density (g/cm3), m=mass (g), w=width (cm), l=length (cm), and t=thickness (cm). The average of three measurements was reported.
Matrix Tensile Strength (MTS) of ePTFE Membranes
Tensile break load was measured using an INSTRON 122 tensile test machine equipped with flat-faced grips and a 0.445 kN load cell. The gauge length was about 5.08 cm and the cross-head speed was about 50.8 cm/min. The sample dimensions were about 2.54 cm by about 15.24 cm. For highest strength measurements, the longer dimension of the sample was oriented in the highest strength direction. For the orthogonal MTS measurements, the larger dimension of the sample was oriented perpendicular to the highest strength direction. Each sample was weighed using a Mettler Toledo Scale Model AG204, then the thickness was measured using the Käfer FZ1000/30 snap gauge; alternatively, any suitable means for measuring thickness may be used. The samples were then tested individually on the tensile tester. Three different sections of each sample were measured. The average of the three maximum loads (i.e., peak force) measurements was reported. The longitudinal and transverse matrix tensile strengths (MTS) were calculated using the following equation: MTS=(maximum load/cross-section area)*(bulk density of PTFE)/(density of the porous membrane), where the bulk density of the PTFE was taken to be about 2.2 g/cm3.
Numerous characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and/or methods. The disclosure is intended as illustrative only and as such is not intended to be exhaustive. It will be evident to those skilled in the art that various modifications can be made, especially in matters of structure, materials, elements, components, shape, size and arrangement of parts including combinations within the principles of the disclosure, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.
This application is a continuation of U.S. application Ser. No. 13/797,526, filed Mar. 12, 2013, which claims priority to provisional application Ser. No. 61/676,812 filed Jul. 27, 2012, both of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
654799 | Levett | Jul 1900 | A |
3739402 | Kahn et al. | Jun 1973 | A |
3953566 | Gore | Apr 1976 | A |
4178639 | Bokros | Dec 1979 | A |
4187390 | Gore | Feb 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4332035 | Mano | Jun 1982 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4477930 | Totten et al. | Oct 1984 | A |
4556996 | Wallace | Dec 1985 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4759759 | Walker et al. | Jul 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4877661 | House et al. | Oct 1989 | A |
4955899 | Della et al. | Sep 1990 | A |
5026513 | House et al. | Jun 1991 | A |
5064435 | Porter | Nov 1991 | A |
5071609 | Tu et al. | Dec 1991 | A |
5123918 | Perrier et al. | Jun 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5415667 | Frater | May 1995 | A |
5469868 | Reger | Nov 1995 | A |
5476589 | Bacino | Dec 1995 | A |
5489297 | Duran | Feb 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5554183 | Nazari | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562729 | Purdy | Oct 1996 | A |
5628791 | Bokros et al. | May 1997 | A |
5673102 | Suzuki et al. | Sep 1997 | A |
5708044 | Branca | Jan 1998 | A |
5718973 | Lewis et al. | Feb 1998 | A |
5749852 | Schwab et al. | May 1998 | A |
5752934 | Campbell et al. | May 1998 | A |
5759192 | Saunders | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5772884 | Tanaka et al. | Jun 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5814405 | Branca et al. | Sep 1998 | A |
5824043 | Cottone, Jr. | Oct 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5843171 | Campbell et al. | Dec 1998 | A |
5853419 | Imran | Dec 1998 | A |
5925061 | Ogi et al. | Jul 1999 | A |
5928281 | Huynh et al. | Jul 1999 | A |
5935162 | Dang | Aug 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5944654 | Crawford | Aug 1999 | A |
5957974 | Thompson et al. | Sep 1999 | A |
6010529 | Herweck et al. | Jan 2000 | A |
6013854 | Moriuchi | Jan 2000 | A |
6019785 | Strecker | Feb 2000 | A |
6042588 | Munsinger et al. | Mar 2000 | A |
6042605 | Martin et al. | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6086612 | Jansen | Jul 2000 | A |
6110198 | Fogarty et al. | Aug 2000 | A |
6117169 | Moe | Sep 2000 | A |
6129758 | Love | Oct 2000 | A |
6161399 | Jayaraman | Dec 2000 | A |
6165211 | Thompson | Dec 2000 | A |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6174331 | Moe et al. | Jan 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6197143 | Bodnar | Mar 2001 | B1 |
6217609 | Haverkost | Apr 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6261620 | Leadbeater | Jul 2001 | B1 |
6283994 | Moe et al. | Sep 2001 | B1 |
6283995 | Moe et al. | Sep 2001 | B1 |
6287334 | Moll et al. | Sep 2001 | B1 |
6328763 | Love et al. | Dec 2001 | B1 |
6334873 | Lane et al. | Jan 2002 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6379382 | Yang | Apr 2002 | B1 |
6436132 | Patel et al. | Aug 2002 | B1 |
6454798 | Moe | Sep 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6461665 | Scholander | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6541589 | Baillie | Apr 2003 | B1 |
6558418 | Carpentier et al. | May 2003 | B2 |
6562069 | Cai et al. | May 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6613086 | Moe et al. | Sep 2003 | B1 |
6620190 | Colone | Sep 2003 | B1 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6645244 | Shu et al. | Nov 2003 | B2 |
6666885 | Moe | Dec 2003 | B2 |
6673102 | Vonesh et al. | Jan 2004 | B1 |
6673107 | Brandt et al. | Jan 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730120 | Berg et al. | May 2004 | B2 |
6755856 | Fierens et al. | Jun 2004 | B2 |
6755857 | Peterson et al. | Jun 2004 | B2 |
6758858 | McCrea et al. | Jul 2004 | B2 |
6890350 | Walak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6916338 | Speziali | Jul 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6953332 | Kurk et al. | Oct 2005 | B1 |
7022132 | Kocur | Apr 2006 | B2 |
7049380 | Chang et al. | May 2006 | B1 |
7083642 | Sirhan et al. | Aug 2006 | B2 |
7105018 | Yip et al. | Sep 2006 | B1 |
7137184 | Schreck | Nov 2006 | B2 |
7163556 | Xie et al. | Jan 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7306729 | Bacino et al. | Dec 2007 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7419678 | Falotico | Sep 2008 | B2 |
7462675 | Chang et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7531611 | Sabol et al. | May 2009 | B2 |
7563277 | Case et al. | Jul 2009 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7727274 | Zilla et al. | Jun 2010 | B2 |
7758640 | Vesely | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7789908 | Sowinski et al. | Sep 2010 | B2 |
7803186 | Li et al. | Sep 2010 | B1 |
7811314 | Fierens et al. | Oct 2010 | B2 |
7815763 | Fierens et al. | Oct 2010 | B2 |
7879085 | Sowinski et al. | Feb 2011 | B2 |
7887562 | Young et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7927364 | Fierens et al. | Apr 2011 | B2 |
7927365 | Fierens et al. | Apr 2011 | B2 |
7935141 | Randall et al. | May 2011 | B2 |
7967829 | Gunderson et al. | Jun 2011 | B2 |
7967853 | Eidenschink et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8048440 | Chang et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8092523 | Li et al. | Jan 2012 | B2 |
8167935 | McGuckin, Jr. et al. | May 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252037 | Styrc et al. | Aug 2012 | B2 |
8303647 | Case | Nov 2012 | B2 |
8349000 | Schreck | Jan 2013 | B2 |
8409274 | Li et al. | Apr 2013 | B2 |
8475512 | Hunt | Jul 2013 | B2 |
8545525 | Surti et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8585753 | Scanlon et al. | Nov 2013 | B2 |
8585757 | Agathos | Nov 2013 | B2 |
8628566 | Eberhardt et al. | Jan 2014 | B2 |
8637144 | Ford | Jan 2014 | B2 |
8709077 | Schreck | Apr 2014 | B2 |
8722178 | Ashmead et al. | May 2014 | B2 |
8728103 | Surti et al. | May 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8801774 | Silverman | Aug 2014 | B2 |
8808848 | Bacino | Aug 2014 | B2 |
8845709 | Styrc et al. | Sep 2014 | B2 |
8845721 | Braido et al. | Sep 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8936634 | Irwin et al. | Jan 2015 | B2 |
8945212 | Bruchman et al. | Feb 2015 | B2 |
8961599 | Bruchman et al. | Feb 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9101469 | Bruchman et al. | Aug 2015 | B2 |
9101696 | Leontein et al. | Aug 2015 | B2 |
9107771 | Wubbeling et al. | Aug 2015 | B2 |
9125740 | Morriss et al. | Sep 2015 | B2 |
9139669 | Xu et al. | Sep 2015 | B2 |
9144492 | Bruchman et al. | Sep 2015 | B2 |
9168131 | Yohanan et al. | Oct 2015 | B2 |
9198787 | Kratzberg et al. | Dec 2015 | B2 |
9241695 | Peavey et al. | Jan 2016 | B2 |
9259313 | Wheatley | Feb 2016 | B2 |
9283072 | Bruchman et al. | Mar 2016 | B2 |
9295552 | McLean et al. | Mar 2016 | B2 |
9314355 | Styrc et al. | Apr 2016 | B2 |
9345601 | Jantzen et al. | May 2016 | B2 |
9375308 | Norris | Jun 2016 | B2 |
9393110 | Levi et al. | Jul 2016 | B2 |
9398952 | Bruchman et al. | Jul 2016 | B2 |
9399085 | Cleek et al. | Jul 2016 | B2 |
9504565 | Armstrong | Nov 2016 | B2 |
9554786 | Carley et al. | Jan 2017 | B2 |
9554900 | Bruchman et al. | Jan 2017 | B2 |
9597181 | Christianson et al. | Mar 2017 | B2 |
9629718 | Gloss et al. | Apr 2017 | B2 |
9681948 | Levi et al. | Jun 2017 | B2 |
9737398 | Bruchman et al. | Aug 2017 | B2 |
9737422 | Armstrong et al. | Aug 2017 | B2 |
9743932 | Amplatz et al. | Aug 2017 | B2 |
9795496 | Armstrong et al. | Oct 2017 | B2 |
9801712 | Bruchman et al. | Oct 2017 | B2 |
9827089 | Bruchman et al. | Nov 2017 | B2 |
9827094 | Bennett | Nov 2017 | B2 |
9839540 | Armstrong et al. | Dec 2017 | B2 |
9855141 | Dienno et al. | Jan 2018 | B2 |
9931193 | Cully et al. | Apr 2018 | B2 |
9931204 | Rothstein et al. | Apr 2018 | B2 |
9937037 | Dienno et al. | Apr 2018 | B2 |
9968443 | Bruchman et al. | May 2018 | B2 |
10039638 | Bruchman et al. | Aug 2018 | B2 |
10166128 | Armstrong et al. | Jan 2019 | B2 |
10279084 | Goepfrich et al. | May 2019 | B2 |
10285808 | Bruchman et al. | May 2019 | B2 |
10314697 | Gassler | Jun 2019 | B2 |
10321986 | Bruchman et al. | Jun 2019 | B2 |
10335298 | Armstrong et al. | Jul 2019 | B2 |
10342659 | Bennett | Jul 2019 | B2 |
10368984 | Armstrong | Aug 2019 | B2 |
10376360 | Bruchman et al. | Aug 2019 | B2 |
10441416 | Oba et al. | Oct 2019 | B2 |
10463478 | Bruchman et al. | Nov 2019 | B2 |
10507124 | Armstrong et al. | Dec 2019 | B2 |
10639144 | Bruchman et al. | May 2020 | B2 |
10660745 | Bruchman et al. | May 2020 | B2 |
10881507 | Bruchman et al. | Jan 2021 | B2 |
10980633 | Dienno et al. | Apr 2021 | B2 |
11020221 | Arcaro et al. | Jun 2021 | B2 |
11039917 | Bruchman et al. | Jun 2021 | B2 |
D926322 | Bennett et al. | Jul 2021 | S |
11065112 | Gassler | Jul 2021 | B2 |
11090153 | Haarer et al. | Aug 2021 | B2 |
11109963 | Dienno et al. | Sep 2021 | B2 |
11123183 | Bennett et al. | Sep 2021 | B2 |
11439502 | Busalacchi et al. | Sep 2022 | B2 |
11471276 | Bennett | Oct 2022 | B2 |
20010053929 | Vonesh et al. | Dec 2001 | A1 |
20020045936 | Moe | Apr 2002 | A1 |
20020055773 | Campbell et al. | May 2002 | A1 |
20020076542 | Kramer et al. | Jun 2002 | A1 |
20020082687 | Moe | Jun 2002 | A1 |
20020133226 | Marquez et al. | Sep 2002 | A1 |
20020151953 | Chobotov et al. | Oct 2002 | A1 |
20020151956 | Chobotov et al. | Oct 2002 | A1 |
20020183840 | Lapeyre et al. | Dec 2002 | A1 |
20020198588 | Armstrong et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014105 | Cao | Jan 2003 | A1 |
20030027332 | Lafrance et al. | Feb 2003 | A1 |
20030055494 | Bezuidenhout et al. | Mar 2003 | A1 |
20030055496 | Cai et al. | Mar 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030074052 | Besselink et al. | Apr 2003 | A1 |
20030097175 | O'Connor et al. | May 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030125805 | Johnson et al. | Jul 2003 | A1 |
20030180488 | Lim et al. | Sep 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030229394 | Ogle et al. | Dec 2003 | A1 |
20040024442 | Sowinski et al. | Feb 2004 | A1 |
20040024448 | Chang et al. | Feb 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040026245 | Agarwal et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040044400 | Cheng et al. | Mar 2004 | A1 |
20040044401 | Bales et al. | Mar 2004 | A1 |
20040133266 | Clerc et al. | Jul 2004 | A1 |
20040170782 | Wang et al. | Sep 2004 | A1 |
20040176839 | Huynh et al. | Sep 2004 | A1 |
20040224442 | Grigg | Nov 2004 | A1 |
20040243222 | Osborne et al. | Dec 2004 | A1 |
20040260277 | Maguire | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050080476 | Gunderson et al. | Apr 2005 | A1 |
20050119722 | Styrc et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050283224 | King | Dec 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060009835 | Osborne et al. | Jan 2006 | A1 |
20060015171 | Armstrong | Jan 2006 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060041091 | Chang et al. | Feb 2006 | A1 |
20060106337 | Blankenship | May 2006 | A1 |
20060118236 | House et al. | Jun 2006 | A1 |
20060122693 | Biadillah et al. | Jun 2006 | A1 |
20060135985 | Cox et al. | Jun 2006 | A1 |
20060154365 | Ratcliffe et al. | Jul 2006 | A1 |
20060161241 | Barbut et al. | Jul 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060229718 | Marquez | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259133 | Sowinski et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060265053 | Hunt | Nov 2006 | A1 |
20060271091 | Campbell et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20060276883 | Greenberg et al. | Dec 2006 | A1 |
20060276888 | Lee et al. | Dec 2006 | A1 |
20060282162 | Nguyen et al. | Dec 2006 | A1 |
20060287719 | Rowe | Dec 2006 | A1 |
20060290027 | O'Connor et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070012624 | Bacino et al. | Jan 2007 | A1 |
20070021826 | Case et al. | Jan 2007 | A1 |
20070060999 | Randall et al. | Mar 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070129786 | Beach et al. | Jun 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070207816 | Spain, Jr. | Sep 2007 | A1 |
20070208417 | Agnew | Sep 2007 | A1 |
20070208421 | Quigley | Sep 2007 | A1 |
20070213800 | Fierens et al. | Sep 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070250146 | Cully et al. | Oct 2007 | A1 |
20070250153 | Cully et al. | Oct 2007 | A1 |
20070254012 | Ludwig et al. | Nov 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080026190 | King et al. | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080051876 | Ta et al. | Feb 2008 | A1 |
20080065198 | Quintessenza | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082154 | Tseng et al. | Apr 2008 | A1 |
20080097301 | Alpini et al. | Apr 2008 | A1 |
20080097401 | Trapp et al. | Apr 2008 | A1 |
20080097579 | Shanley et al. | Apr 2008 | A1 |
20080097582 | Shanley et al. | Apr 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080133004 | White | Jun 2008 | A1 |
20080140178 | Rasmussen et al. | Jun 2008 | A1 |
20080195199 | Kheradvar et al. | Aug 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080220041 | Brito et al. | Sep 2008 | A1 |
20080228263 | Ryan | Sep 2008 | A1 |
20080300678 | Eidenschink et al. | Dec 2008 | A1 |
20080319531 | Doran et al. | Dec 2008 | A1 |
20090005854 | Huang et al. | Jan 2009 | A1 |
20090005863 | Goetz | Jan 2009 | A1 |
20090030499 | Bebb et al. | Jan 2009 | A1 |
20090036976 | Beach et al. | Feb 2009 | A1 |
20090043373 | Arnault et al. | Feb 2009 | A1 |
20090099640 | Weng | Apr 2009 | A1 |
20090104247 | Pacetti | Apr 2009 | A1 |
20090117334 | Sogard et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090264997 | Salahieh et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281609 | Benichou et al. | Nov 2009 | A1 |
20090287305 | Amalaha | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306762 | McCullagh et al. | Dec 2009 | A1 |
20090306766 | McDermott et al. | Dec 2009 | A1 |
20100016940 | Shokoohi et al. | Jan 2010 | A1 |
20100023114 | Chambers et al. | Jan 2010 | A1 |
20100036021 | Lee et al. | Feb 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049294 | Zukowski et al. | Feb 2010 | A1 |
20100082089 | Quadri et al. | Apr 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100094405 | Cottone | Apr 2010 | A1 |
20100106240 | Duggal et al. | Apr 2010 | A1 |
20100114307 | Agnew et al. | May 2010 | A1 |
20100131056 | Lapeyre | May 2010 | A1 |
20100137998 | Sobrino-Serrano et al. | Jun 2010 | A1 |
20100145438 | Barone | Jun 2010 | A1 |
20100159171 | Clough | Jun 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100185274 | Moaddeb et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191320 | Straubinger et al. | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100211165 | Schreck | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100248324 | Xu et al. | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100256738 | Berglund | Oct 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100286760 | Beach et al. | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20100305682 | Furst | Dec 2010 | A1 |
20110009953 | Luk et al. | Jan 2011 | A1 |
20110040366 | Goetz et al. | Feb 2011 | A1 |
20110054515 | Bridgeman et al. | Mar 2011 | A1 |
20110064781 | Cleek et al. | Mar 2011 | A1 |
20110087318 | Daugherty et al. | Apr 2011 | A1 |
20110160836 | Behan | Jun 2011 | A1 |
20110172784 | Richter et al. | Jul 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110251678 | Eidenschink et al. | Oct 2011 | A1 |
20110257739 | Corbett | Oct 2011 | A1 |
20110282439 | Thill et al. | Nov 2011 | A1 |
20110295363 | Girard et al. | Dec 2011 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120083839 | Letac et al. | Apr 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101567 | Jansen | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120116496 | Chuter et al. | May 2012 | A1 |
20120116498 | Chuter et al. | May 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120123530 | Carpentier et al. | May 2012 | A1 |
20120130468 | Khosravi et al. | May 2012 | A1 |
20120130471 | Shoemaker et al. | May 2012 | A1 |
20120185038 | Fish et al. | Jul 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120253453 | Bruchman et al. | Oct 2012 | A1 |
20120277734 | Goetz et al. | Nov 2012 | A1 |
20120290082 | Quint et al. | Nov 2012 | A1 |
20120323211 | Ogle et al. | Dec 2012 | A1 |
20120323315 | Bruchman et al. | Dec 2012 | A1 |
20130018456 | Li et al. | Jan 2013 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20130079700 | Ballard et al. | Mar 2013 | A1 |
20130110229 | Bokeriya et al. | May 2013 | A1 |
20130116655 | Bacino et al. | May 2013 | A1 |
20130131780 | Armstrong et al. | May 2013 | A1 |
20130150956 | Yohanan et al. | Jun 2013 | A1 |
20130158647 | Norris et al. | Jun 2013 | A1 |
20130166021 | Bruchman et al. | Jun 2013 | A1 |
20130183515 | White | Jul 2013 | A1 |
20130184807 | Kovach et al. | Jul 2013 | A1 |
20130197624 | Armstrong et al. | Aug 2013 | A1 |
20130204347 | Armstrong et al. | Aug 2013 | A1 |
20130204360 | Gainor | Aug 2013 | A1 |
20130253466 | Campbell et al. | Sep 2013 | A1 |
20130297003 | Pinchuk | Nov 2013 | A1 |
20130338755 | Goetz et al. | Dec 2013 | A1 |
20140005771 | Braido et al. | Jan 2014 | A1 |
20140005773 | Wheatley | Jan 2014 | A1 |
20140031924 | Bruchman et al. | Jan 2014 | A1 |
20140031927 | Bruchman et al. | Jan 2014 | A1 |
20140094898 | Borck | Apr 2014 | A1 |
20140106951 | Brandon | Apr 2014 | A1 |
20140135897 | Cully et al. | May 2014 | A1 |
20140163671 | Bruchman et al. | Jun 2014 | A1 |
20140163673 | Bruchman et al. | Jun 2014 | A1 |
20140172066 | Goepfrich et al. | Jun 2014 | A1 |
20140172069 | Roeder et al. | Jun 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172078 | Bruchman et al. | Jun 2014 | A1 |
20140172079 | Bruchman et al. | Jun 2014 | A1 |
20140172082 | Bruchman et al. | Jun 2014 | A1 |
20140172083 | Bruchman et al. | Jun 2014 | A1 |
20140180400 | Bruchman et al. | Jun 2014 | A1 |
20140180402 | Bruchman et al. | Jun 2014 | A1 |
20140194968 | Zukowski | Jul 2014 | A1 |
20140222140 | Schreck | Aug 2014 | A1 |
20140236289 | Alkhatib | Aug 2014 | A1 |
20140277413 | Arnold et al. | Sep 2014 | A1 |
20140277418 | Miller | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20150005870 | Kovach et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150088250 | Zeng et al. | Mar 2015 | A1 |
20150105856 | Rowe et al. | Apr 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150157456 | Armstrong | Jun 2015 | A1 |
20150157770 | Cully et al. | Jun 2015 | A1 |
20150224231 | Bruchman et al. | Aug 2015 | A1 |
20150245910 | Righini et al. | Sep 2015 | A1 |
20150313871 | Li et al. | Nov 2015 | A1 |
20150366663 | Bruchman et al. | Dec 2015 | A1 |
20150366664 | Guttenberg et al. | Dec 2015 | A1 |
20160001469 | Bacchereti et al. | Jan 2016 | A1 |
20160015422 | De Cicco et al. | Jan 2016 | A1 |
20160074161 | Bennett | Mar 2016 | A1 |
20160106537 | Christianson et al. | Apr 2016 | A1 |
20160113699 | Sverdlik et al. | Apr 2016 | A1 |
20160157998 | Bruchman et al. | Jun 2016 | A1 |
20160175095 | Dienno et al. | Jun 2016 | A1 |
20160175096 | Dienno et al. | Jun 2016 | A1 |
20160206424 | Al-Jilaihawi et al. | Jul 2016 | A1 |
20160213465 | Girard et al. | Jul 2016 | A1 |
20160235525 | Rothstein et al. | Aug 2016 | A1 |
20160250051 | Lim et al. | Sep 2016 | A1 |
20160310268 | Oba et al. | Oct 2016 | A1 |
20160317299 | Alkhatib | Nov 2016 | A1 |
20170027727 | Wuebbeling et al. | Feb 2017 | A1 |
20170042674 | Armstrong | Feb 2017 | A1 |
20170056169 | Johnson et al. | Mar 2017 | A1 |
20170065400 | Armstrong et al. | Mar 2017 | A1 |
20170095330 | Malewicz et al. | Apr 2017 | A1 |
20170095331 | Spenser et al. | Apr 2017 | A1 |
20170100236 | Robertson et al. | Apr 2017 | A1 |
20170105854 | Treacy et al. | Apr 2017 | A1 |
20170106176 | Taft et al. | Apr 2017 | A1 |
20170128199 | Gurovich et al. | May 2017 | A1 |
20170156859 | Chang et al. | Jun 2017 | A1 |
20170165066 | Rothstein | Jun 2017 | A1 |
20170165067 | Barajas-Torres et al. | Jun 2017 | A1 |
20170216062 | Armstrong et al. | Aug 2017 | A1 |
20170224481 | Spenser et al. | Aug 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170348101 | Vaughn et al. | Dec 2017 | A1 |
20180021128 | Bruchman et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180125646 | Bruchman et al. | May 2018 | A1 |
20180177583 | Cully et al. | Jun 2018 | A1 |
20180221144 | Bruchman et al. | Aug 2018 | A1 |
20180271651 | Christianson et al. | Sep 2018 | A1 |
20180271653 | Vidlund et al. | Sep 2018 | A1 |
20180318070 | Bruchman et al. | Nov 2018 | A1 |
20190076245 | Arcaro et al. | Mar 2019 | A1 |
20190091014 | Arcaro et al. | Mar 2019 | A1 |
20190091015 | Dienno et al. | Mar 2019 | A1 |
20190110893 | Haarer et al. | Apr 2019 | A1 |
20190125517 | Cully et al. | May 2019 | A1 |
20190125528 | Busalacchi et al. | May 2019 | A1 |
20190125530 | Arcaro et al. | May 2019 | A1 |
20190125531 | Bennett et al. | May 2019 | A1 |
20190125534 | Arcaro et al. | May 2019 | A1 |
20190209292 | Bruchman et al. | Jul 2019 | A1 |
20190209739 | Goepfrich et al. | Jul 2019 | A1 |
20190216592 | Cully et al. | Jul 2019 | A1 |
20190247185 | Gassler | Aug 2019 | A1 |
20190269505 | Bruchman et al. | Sep 2019 | A1 |
20190314154 | Armstrong | Oct 2019 | A1 |
20190328525 | Noe et al. | Oct 2019 | A1 |
20190374339 | Bennett | Dec 2019 | A1 |
20200000578 | Bruchman et al. | Jan 2020 | A1 |
20200022828 | Armstrong et al. | Jan 2020 | A1 |
20200179663 | McDaniel et al. | Jun 2020 | A1 |
20200237497 | Silverman et al. | Jul 2020 | A1 |
20200237505 | Bruchman et al. | Jul 2020 | A1 |
20200246137 | Bruchman et al. | Aug 2020 | A1 |
20200276014 | Burkart et al. | Sep 2020 | A1 |
20200323631 | Chuter et al. | Oct 2020 | A1 |
20210121289 | Bruchman et al. | Apr 2021 | A1 |
20210177589 | Arcaro et al. | Jun 2021 | A1 |
20210205074 | Bruchman et al. | Jul 2021 | A1 |
20210307905 | Arcaro et al. | Oct 2021 | A1 |
20210338422 | Dienno et al. | Nov 2021 | A1 |
20210346156 | Haarer et al. | Nov 2021 | A1 |
20210361420 | Bennett et al. | Nov 2021 | A1 |
20210393399 | Arcaro et al. | Dec 2021 | A1 |
20220000611 | Arcaro et al. | Jan 2022 | A1 |
20220023032 | Bruchman et al. | Jan 2022 | A1 |
20220183831 | Burkart et al. | Jun 2022 | A1 |
20220257369 | Burkart et al. | Aug 2022 | A1 |
20220273426 | Hagaman et al. | Sep 2022 | A1 |
20220378575 | Busalacchi et al. | Dec 2022 | A1 |
20230000623 | Bennett | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
2013363172 | Jul 2015 | AU |
2017202405 | Apr 2017 | AU |
2297536 | Dec 2000 | CA |
2462509 | Apr 2003 | CA |
2849030 | Apr 2013 | CA |
2878691 | Jan 2014 | CA |
2964546 | Jan 2014 | CA |
2960034 | Mar 2016 | CA |
101057796 | Oct 2007 | CN |
101091675 | Dec 2007 | CN |
101188985 | May 2008 | CN |
101374477 | Feb 2009 | CN |
101420913 | Apr 2009 | CN |
101849863 | Oct 2010 | CN |
101902989 | Dec 2010 | CN |
101926699 | Dec 2010 | CN |
201744060 | Feb 2011 | CN |
102015009 | Apr 2011 | CN |
102119013 | Jul 2011 | CN |
102292053 | Dec 2011 | CN |
102438546 | May 2012 | CN |
102573703 | Jul 2012 | CN |
102652694 | Sep 2012 | CN |
102724937 | Oct 2012 | CN |
102764169 | Nov 2012 | CN |
102791223 | Nov 2012 | CN |
102883684 | Jan 2013 | CN |
103079498 | May 2013 | CN |
103228232 | Jul 2013 | CN |
103237524 | Aug 2013 | CN |
103384505 | Nov 2013 | CN |
103732183 | Apr 2014 | CN |
103781439 | May 2014 | CN |
103945796 | Jul 2014 | CN |
104114127 | Oct 2014 | CN |
104487023 | Apr 2015 | CN |
104507417 | Apr 2015 | CN |
104869948 | Aug 2015 | CN |
105007955 | Oct 2015 | CN |
105101911 | Nov 2015 | CN |
105263445 | Jan 2016 | CN |
105662651 | Jun 2016 | CN |
105792780 | Jul 2016 | CN |
106668949 | May 2017 | CN |
106714733 | May 2017 | CN |
106794065 | May 2017 | CN |
107106294 | Aug 2017 | CN |
107690323 | Feb 2018 | CN |
108578016 | Sep 2018 | CN |
212013000104 | Nov 2014 | DE |
0293090 | Nov 1988 | EP |
0313263 | Apr 1989 | EP |
0582870 | Feb 1994 | EP |
0775472 | May 1997 | EP |
0815806 | Jan 1998 | EP |
0893108 | Jan 1999 | EP |
1057460 | Dec 2000 | EP |
1318775 | Jun 2003 | EP |
1666003 | Jun 2006 | EP |
1395205 | Jul 2008 | EP |
1235537 | Dec 2008 | EP |
2193762 | Jun 2010 | EP |
2255750 | Dec 2010 | EP |
2359774 | Aug 2011 | EP |
2400923 | Jan 2012 | EP |
2489331 | Aug 2012 | EP |
2591100 | May 2013 | EP |
2109417 | Nov 2013 | EP |
3142608 | Mar 2017 | EP |
3797738 | Mar 2021 | EP |
2591100 | Jun 1987 | FR |
2312485 | Oct 1997 | GB |
2513194 | Oct 2014 | GB |
44-032400 | Dec 1969 | JP |
196932400 | Dec 1969 | JP |
02-000645 | Jan 1990 | JP |
09-241412 | Sep 1997 | JP |
10507097 | Jul 1998 | JP |
11-290448 | Oct 1999 | JP |
11-512635 | Nov 1999 | JP |
2000511459 | Sep 2000 | JP |
2000513248 | Oct 2000 | JP |
2001-000460 | Jan 2001 | JP |
2001-508641 | Jul 2001 | JP |
2001-508681 | Jul 2001 | JP |
2001-509702 | Jul 2001 | JP |
2001-511030 | Aug 2001 | JP |
2002-525169 | Aug 2002 | JP |
2002-541915 | Dec 2002 | JP |
2004-510471 | Apr 2004 | JP |
2005500101 | Jan 2005 | JP |
2005-512611 | May 2005 | JP |
2005-514108 | May 2005 | JP |
2007-525291 | Sep 2007 | JP |
2007-526098 | Sep 2007 | JP |
2007536989 | Dec 2007 | JP |
2008-506459 | Mar 2008 | JP |
2008-535572 | Sep 2008 | JP |
4335487 | Sep 2009 | JP |
2010-500107 | Jan 2010 | JP |
2010-504174 | Feb 2010 | JP |
2010517623 | May 2010 | JP |
2010-528761 | Aug 2010 | JP |
2010-188189 | Sep 2010 | JP |
2010-535075 | Nov 2010 | JP |
2010536527 | Dec 2010 | JP |
2012504031 | Feb 2012 | JP |
2012152563 | Aug 2012 | JP |
2013-506439 | Feb 2013 | JP |
2013-543399 | Dec 2013 | JP |
2014-513585 | Jun 2014 | JP |
2014517720 | Jul 2014 | JP |
2015-523168 | Aug 2015 | JP |
2016-501104 | Jan 2016 | JP |
2016-501115 | Jan 2016 | JP |
2016-509932 | Apr 2016 | JP |
2016-510645 | Apr 2016 | JP |
2016-512753 | May 2016 | JP |
2016-518948 | Jun 2016 | JP |
2017-527397 | Sep 2017 | JP |
2018-079352 | May 2018 | JP |
6392778 | Sep 2018 | JP |
6802300 | Dec 2020 | JP |
2124986 | Jan 1999 | RU |
2434604 | Nov 2011 | RU |
9413224 | Jun 1994 | WO |
9416802 | Aug 1994 | WO |
9505555 | Feb 1995 | WO |
9509586 | Apr 1995 | WO |
1996002212 | Feb 1996 | WO |
9607370 | Mar 1996 | WO |
9640348 | Dec 1996 | WO |
9710871 | Mar 1997 | WO |
9926558 | Jun 1999 | WO |
0018333 | Apr 2000 | WO |
0041649 | Jul 2000 | WO |
0047271 | Aug 2000 | WO |
2000062716 | Oct 2000 | WO |
0128453 | Apr 2001 | WO |
0141679 | Jun 2001 | WO |
0164278 | Sep 2001 | WO |
0174272 | Oct 2001 | WO |
0207795 | Jan 2002 | WO |
2002024118 | Mar 2002 | WO |
2002024119 | Mar 2002 | WO |
0247468 | Jun 2002 | WO |
2002045933 | Jun 2002 | WO |
0260506 | Aug 2002 | WO |
2002100301 | Dec 2002 | WO |
0303946 | Jan 2003 | WO |
2003007795 | Jan 2003 | WO |
2003047468 | Jun 2003 | WO |
03090834 | Nov 2003 | WO |
2004000375 | Dec 2003 | WO |
2005084595 | Sep 2005 | WO |
2005112827 | Dec 2005 | WO |
2006019626 | Feb 2006 | WO |
2006058322 | Jun 2006 | WO |
2006108090 | Oct 2006 | WO |
2007016251 | Feb 2007 | WO |
2008021002 | Feb 2008 | WO |
2008028964 | Mar 2008 | WO |
2008036870 | Mar 2008 | WO |
2008049045 | Apr 2008 | WO |
2008052421 | May 2008 | WO |
2008091589 | Jul 2008 | WO |
2008021006 | Aug 2008 | WO |
2008097589 | Aug 2008 | WO |
2008097592 | Aug 2008 | WO |
2008150529 | Dec 2008 | WO |
2009017827 | Feb 2009 | WO |
2009029199 | Mar 2009 | WO |
2009045332 | Apr 2009 | WO |
2009100210 | Aug 2009 | WO |
2009108355 | Sep 2009 | WO |
2010006783 | Jan 2010 | WO |
2010008570 | Jan 2010 | WO |
2010030766 | Mar 2010 | WO |
2010037141 | Apr 2010 | WO |
2010086460 | Aug 2010 | WO |
2010132707 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2010057262 | Jun 2011 | WO |
2011098565 | Aug 2011 | WO |
2011109450 | Sep 2011 | WO |
2011109801 | Sep 2011 | WO |
2011112706 | Sep 2011 | WO |
2012004460 | Jan 2012 | WO |
2012011261 | Jan 2012 | WO |
2012040643 | Mar 2012 | WO |
2012047644 | Apr 2012 | WO |
2012065080 | May 2012 | WO |
2012082952 | Jun 2012 | WO |
2012099979 | Jul 2012 | WO |
2012116368 | Aug 2012 | WO |
2012110767 | Aug 2012 | WO |
2012135603 | Oct 2012 | WO |
2012158944 | Nov 2012 | WO |
2012167131 | Dec 2012 | WO |
2013074663 | May 2013 | WO |
2013074990 | May 2013 | WO |
2013096854 | Jun 2013 | WO |
2013109337 | Jul 2013 | WO |
2014018189 | Jan 2014 | WO |
2014018432 | Jan 2014 | WO |
2014099150 | Jun 2014 | WO |
2014099163 | Jun 2014 | WO |
2014099722 | Jun 2014 | WO |
2014149319 | Sep 2014 | WO |
2014144937 | Sep 2014 | WO |
2014181188 | Nov 2014 | WO |
2015045002 | Apr 2015 | WO |
2015085138 | Jun 2015 | WO |
2015171743 | Nov 2015 | WO |
2015173794 | Nov 2015 | WO |
2016028591 | Feb 2016 | WO |
2016044223 | Mar 2016 | WO |
2016100913 | Jun 2016 | WO |
2016172349 | Oct 2016 | WO |
2016186909 | Nov 2016 | WO |
2017038145 | Mar 2017 | WO |
2017096157 | Jun 2017 | WO |
2019067219 | Apr 2019 | WO |
2019067220 | Apr 2019 | WO |
2019074607 | Apr 2019 | WO |
2019074869 | Apr 2019 | WO |
2019089138 | May 2019 | WO |
2019246268 | Dec 2019 | WO |
Entry |
---|
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US14/68727, mailed on Jun. 16, 2016, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/068727 dated Mar. 2, 2015, corresponding to U.S. Appl. No. 14/561,148; 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/050779, mailed on Dec. 7, 2018, 14 pages. |
International Search Report for PCT/US2013/075274 mailed Feb. 27, 2014, corresponding to U.S. Appl. No. 13/843,196, t pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US15/50113, mailed on Nov. 24, 2015, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/050769, mailed on Nov. 27, 2018, 11 pages. |
Certified Copy of Priority Document for U.S. Appl. No. 61/739,721, received by the International Bureau Jan. 3, 2014, 1 page. |
Certified Copy of the Application Data Sheet, Drawings, Specification, Claims, and Abstract filed under U.S. Appl. No. 13/843,196 on Mar. 15, 2013, 52 pages. |
English translation of RU2434604 (C1), filed Apr. 30, 2010, translation powered by EPO and Google, 8 pages. |
Opposition from EP17187595.8, filed Sep. 12, 2019, 50 pages. |
Patent Assignment recorded on Aug. 9, 2014, under Patent Reel 033502 and Frame 0077, U.S. Appl. No. 14/133,563, 5 pages. |
Patent Assignment recorded on May 23, 2013, under Patent Reel 030473 and Frame 0861, U.S. Appl. No. 13/843,196, 4 pages. |
Clough, Norman E. Introducing a New Family of Gore ePTFE Fibers (2007), pp. 1-10. |
European Search Report from EP16196687.4, mailed Nov. 21, 2017, 5 pages. |
International Preliminary Report on Patentability from PCT/US2015/045002, mailed Mar. 2, 2017, 11 pages. |
International Preliminary Report on Patentability issued in PCT/US2017/047174, mailed Mar. 7, 2019, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/068727 mailed Mar. 2, 2015, corresponding to U.S. Appl. No. 14/561,148; 12 pages. |
International Search Report and Written Opinion for PCT/US2015/050113, mailed Nov. 24, 2015, 14 pages. |
International Search Report and Written Opinion from PCT/US2018/050768, mailed Dec. 17, 2018, 12 pages. |
International Search Report and Written Opinion from PCT/US2018/050786 mailed Dec. 14, 2018, 13 pages. |
International Search Report and Written Opinion from PCT/US2018/053278, mailed Dec. 19, 2018, 12 pages. |
International Search Report and Written Opinion issued in PCT/US2018/050764, mailed Nov. 23, 2018, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2018/050766, mailed Mar. 11, 2019, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2018/050778, mailed Nov. 29, 2018, 11 pages. |
International Search Report for PCT/US2013/046389 mailed Jan. 21, 2014, corresponding to U.S. Appl. No. 13/797,633; 18 pages. |
International Search Report for PCT/US2013/051431 mailed Jan. 20, 2014, corresponding to U.S. Appl. No. 13/797,526; 6 pages. |
International Search Report for PCT/US2013/068390 mailed Apr. 29, 2014, corresponding to U.S. Appl. No. 13/835,988, 7 pages. |
International Search Report for PCT/US2013/068780 mailed Feb. 27, 2014, corresponding to U.S. Appl. No. 13/869,878, 4 pages. |
International Search Report for PCT/US2013/071632 mailed Apr. 28, 2014, corresponding to U.S. Appl. No. 13/841,334, 6 pages. |
International Search Report for PCT/US2013/074962 mailed Feb. 27, 2014, 4 pages. |
International Search Report for PCT/US2013/075274 mailed Feb. 27, 2014, corresponding to U.S. Appl. No. 13/843,196, 5 pages. |
International Search Report for PCT/US2013/075380 mailed Mar. 6, 2014, 5 pages. |
International Search Report for PCT/US2013/076504 mailed Apr. 28, 2014, corresponding to U.S. Appl. No. 14/133,491, 7 pages. |
International Search Report for PCT/US2013/076688 mailed Feb. 27, 2014, 5 pages. |
Cardiac Surgery in the Adult, Third Edition, Chapter 2 2008. |
EPO Form 1002 for EP16196687.4 Filed Dec. 28, 2016. |
European Search Report and Search Opinion Received for EP Application No. 18205790.1, mailed on Apr. 4, 2019, 7 pages. |
European Search Report and Search Opinion Received for EP Application No. 15186981.5, mailed on Feb. 10, 2016, 5 pages. |
European Search Report and Search Opinion Received for EP Application No. 17167842.8, mailed on Jun. 21, 2017, 5 pages. |
European Search Report and Search Opinion Received for EP Application No. 17176507.6, mailed on Sep. 6, 2017, 5 pages. |
European Search Report and Search Opinion Received for EP Application No. 17187595.8, mailed on Dec. 4, 2017, 5 pages. |
European Search Report and Search Opinion Received for EP Application No. 17194473.9, mailed on Feb. 26, 2018, 9 pages. |
Extended European Search Report issued in EP Application No. 18204192.1, issued May 29, 2019. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/68390, mailed on Jul. 2, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/71632, mailed on Jul. 2, 2015, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/74962, mailed on Jul. 2, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/75274, mailed on Jul. 2, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/75380, mailed on Jul. 2, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/76504, mailed on Jul. 2, 2015, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US13/76688, mailed on Jul. 2, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/046389, mailed on Feb. 5, 2015, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/051431, mailed on Feb. 5, 2015, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/045002, mailed on Dec. 17, 2015, 13 pages. |
International Search Report for PCT/US2013/075275 dated Jun. 11, 2014, corresponding to U.S. Appl. No. 13/843,196, 5 pages. |
Mano Thubrikar, “The Aortic Valve”, Chapter 1: Geometry of the Aortic Valve, CRC Press, Inc., Informa Healthcare, 2011, 40 pages. |
Norman E. Clough. Introducing a New Family of Gore (Trademark) ePTFE Fibers (2007). |
Opposition from EP16196687.4, mailed on Dec. 12, 2019, 38 pages. |
Forward citations for E12 obtained from: https://scholar.google.com/scholar?cites=5981833429320176658&assdt=2005&sciodt=0,5&hl= en. |
Google Image Search Results, “S-Shaped”, accessed Nov. 1, 2013. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/027921, mailed on Oct. 21, 2021, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/044603, mailed on Feb. 10, 2022, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/044603, mailed on Oct. 20, 2020, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/027921, mailed on Jul. 24, 2020, 16 pages. |
Nakayama, Yasuhide. Microporous Stent Achieves Brain Aneurysm Occlusion Without Disturbing Branching Flow. NeuroNews Nov. 2012; 8:1-2. |
Nishi S, Nakayama Y, Ishibashi-Ueda FI, Okamoto Y, Yoshida M. Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia. J Artif Organs 2011; 14:348-356. |
Number | Date | Country | |
---|---|---|---|
20190254815 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61676812 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13797526 | Mar 2013 | US |
Child | 16402967 | US |