1. Field of the Invention
The present invention relates generally to an antenna, and more particularly to a multi-frequency antenna for a wireless communication device.
2. Description of Prior Art
With the high-speed development of the mobile communication, people more and more expect to use a computer or other portable terminals to optionally connect to Internet. GPRS (General Packer Radio Service) and WLAN (Wireless Local Area Network) allow users to access data wirelessly over both cellular networks and 802.11b WLAN system. When operating in GPRS, the data transmitting speed is up to 30 Kbps˜50 Kbps, while when connected to a WLAN access point, the data transmitting speed is up to 11 Mbps. People can select different PC cards and cooperate with the portable terminals such as the notebook computer and etc. to optionally connect to Internet. Since WLAN has a higher transmitting speed, WLAN is usually used to provide public WLAN high-speed data service in some hot areas (for example, hotel, airport, coffee bar, commerce heartland, conference heartland and etc.). When leaving from these hot areas, network connection is automatically switched to GPRS.
As it is known to all, an antenna plays an important role in wireless communication. As a result, the PC card may choose individual antennas to respectively operate at WWAN (Wireless Wide Area Network), namely GPRS, and WLAN. However, the two individual antennas will inevitably occupy more space than a single antenna in general. Hence, it is necessary to be concerned by researchers skilled in the art how to incorporate two antennas respectively operating at WWAN and WLAN into a single antenna.
An object of the present invention is to provide a multi-frequency antenna which can integrate the antenna for WWAN and the antenna for WLAN together, thereby reducing the installation space of the antenna and the antenna having the excellent performance.
To achieve the aforementioned object, the present invention provides a multi-frequency antenna comprises a first antenna and a second antenna both operating at wireless wide area network, a third antenna and a fourth antenna both operating at wireless local area network. The first antenna, the second antenna, the third antenna and the fourth antenna are integrally made from a metal sheet and have a common grounding portion. The first and the second antennas have a first connecting portion on which a feeding point is located, and the third and the fourth antenna have a second connecting portion on which another feeding point is located.
Additional novel features and advantages of the present invention will become apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
The multi-frequency antenna 10 has a first installing portion 61 and a second installing portion 62 at opposite ends thereof, which form an installing plane. The multi-frequency antenna to comprises a common grounding portion 50 for the first, the second, the third and the fourth antennas 1, 2, 3, 4. A lengthwise portion 14 extends perpendicularly and upwardly from the grounding portion 50, which is connected to the first installing portion 61 at one end thereof. The first antenna 1 and the second antenna 2 include a first connecting portion 12 extending upwardly from the lengthwise portion 14. The first antenna I comprises a first radiating element 11, which is coupled to the grounding portion 50 by the first connecting portion 12 and the lengthwise portion 14. The first radiating element 11 is designed in a tri-dimensional manner and extends in a lengthwise direction, thereby reducing the width of the installing plane in a traverse direction. A plane in which the first connecting portion 12 and the lengthwise portion 14 are located is defined as a first plane, a plane in which the first radiating element 11 is located is defined as a second plane, and a plane in which the grounding portion 50 is located is defined as a third plane. The first plane is respectively orthogonal to the second plane and the third plane, and the first plane and the installing plane are coplanar. The radiating element 11 of the first antenna 1 extends towards the second installing portion 62 in the first plane with a free end 110 thereof adjacent to the second installing portion 62. The central frequency the first antenna 1 operates at is about 900 MHz. The second antenna 2 comprises a second radiating element 21, which extends from the first connecting portion 12 towards the first installing portion 61 with a free end 210 thereof close to the installing portion 61. The central frequency the second antenna 2 operates at is about 1900 MHz. A feeding point 120 for the first antenna 1 and the second antenna 2 is located on the first connecting portion 12. The first and the second antennas 1, 2 are provided power by a coaxial cable 70 with an inner conductor 701 of the coaxial cable 70 welded to the feeding point 120 and an outer conductor 702 welded to the grounding portion 50. Both of the first antenna 1 and the second antenna 2 are inverted-F antennas.
The third antenna 3 comprises a third radiating element 31, and the fourth antenna 4 comprises a fourth radiating element 41. The third and the fourth antennas have a second connecting portion 34 connected to an end of the lengthwise portion 14. The third and fourth radiating element 31, 41 is connected to the grounding portion 50 by the second connecting portion 34 and the lengthwise portion 14, thereby forming two inverted-F antennas. The third and the fourth radiating element 31, 41 are arranged in a line and extend from an end of the second connecting portion 34 in opposite directions. The third radiating element 31 extends towards the first installing portion 61 and the fourth radiating element 41 extends towards the second installing portion 62. A feeding point 340 for the third antenna 3 and the fourth antenna 4 is located on the second connecting portion 34. Likewise, the third and the fourth antennas 3, 4 are provided power by a coaxial cable 71 with an inner conductor 711 of the coaxial cable 71 welded to the feeding point 340 and an outer conductor 712 welded to the grounding portion 50. The third antenna operates at the central frequency of 2.4 GHz and the fourth antenna operates at the central frequency of 5.2 GHz.
The first radiating element 11 of the first antenna 1 operating at WWAN and the third radiating element 31 of the third antenna 3 operating at WLAN are interlaced with each other so as to make the distance between the two free ends 110, 310 as far as possible for reducing the interference between the two antennas 1, 3. The interval between the central frequencies of the second antenna 2 and the third antenna 3 is smallest so that the interference between the two antennas can be produced easily. In the preferred embodiment, the space between the second antenna 2 and the third antenna 3 may make both of the antennas work perfectly. The second radiating element 21 of the second antenna 2, the third radiating element 31 of the third antenna, the fourth radiating element 41 of the fourth antenna 4, the first and second connecting portions 12, 34 and the lengthwise portion 14 are positioned on an identical planar, namely the first planar. The multi-frequency antennas of the preferred embodiment can be attached to two opposite sides in an upper end of the display of a computer, and can be fed power by feeding lines so as to make the multi-frequency antenna be employed at different wireless network cards.
While the foregoing description includes details which will enable those skilled in the art to practice the invention, it should be recognized that the description is illustrative in nature and that many modifications and variations thereof will be apparent to those skilled in the art having the benefit of these teachings. It is accordingly intended that the invention herein be defined solely by the claims appended hereto and that the claims be interpreted as broadly as permitted by the prior art.
Number | Date | Country | Kind |
---|---|---|---|
94116677 | May 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5181044 | Matsumoto | Jan 1993 | A |
6404394 | Hill | Jun 2002 | B1 |
6600448 | Ikegaya | Jul 2003 | B2 |
6724348 | Fang | Apr 2004 | B2 |
6812892 | Tai | Nov 2004 | B2 |
6861986 | Fang | Mar 2005 | B2 |
6891504 | Cheng | May 2005 | B2 |
7030830 | Azoulay et al. | Apr 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7119747 | Lin et al. | Oct 2006 | B2 |
7136025 | Lin | Nov 2006 | B2 |
7161543 | Cheng et al. | Jan 2007 | B2 |
20040090378 | Dai et al. | May 2004 | A1 |
20040160370 | Ghosh et al. | Aug 2004 | A1 |
20050093752 | Cheng | May 2005 | A1 |
20050104788 | Hung | May 2005 | A1 |
20050116865 | Fang | Jun 2005 | A1 |
20050190108 | Lin | Sep 2005 | A1 |
20060250309 | Fang | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060262016 A1 | Nov 2006 | US |