The present application pertains to the technical field of mobile communication antenna transmissions, and more particularly relates to a multi-frequency antenna transmission.
With the development of mobile communication technologies, large-capacity and multi-band antennas have become an important development direction of mobile communication antennas. To accommodate more antennas in a limited space, it is not possible to simply assemble a plurality of segment antennas together, which will result in bulky, heavy, and inefficient antennas.
With regard to a large-capacity and multi-frequency antenna of an existing product, a plurality of frequency bands are collectively assembled in one antenna, and a regulator of each frequency band is connected to one rack. A plurality of racks are arranged side by side on a plane, and the plurality of racks are driven to move and achieve adjustment through a common drive gear. When disposed at a different position, the common gear meshes with different racks, thus achieving the adjustment of the different racks. Since the common gear has to move to the positions of the different racks, the positions of the gear and the racks are strictly required. When the position of the common gear of the existing product moves, it is prone to jamming, which affects the timeliness and accuracy of the antenna adjustment.
The purpose of the present application is to provide a multi-frequency antenna transmission, so as to solve the technical problem that the existing multi-frequency antenna adopts a gear and a rack to adjust the position, which has strict requirements on the positions of the gear and the rack, and that the common gear is prone to jamming when moving.
In order to achieve the above purpose, the technical solution adopted by the present application is that: a multi-frequency antenna transmission is provided, which includes:
drive gears;
a gear train with parallel gear shafts, including several transmission gears driven to rotate by the drive gear;
screw assemblies each arranged corresponding to a respective transmission gear, and wherein each of the screw assemblies includes a lead screw, a connection member selectively connected to or separated from the lead screw, a stopper connected with the corresponding transmission gear, and a first elastic member disposed between the connection member and the stopper; and
a shifter, configured to push one stopper of the stoppers, such that the corresponding first elastic member is compressed and disposed between said stopper and the corresponding connection member, and the connection member is connected to the corresponding lead screw.
The transmission gears are connected to the stoppers of the screw assemblies one by one, the drive gear drives the various transmission gears to rotate, and all the stoppers rotate. The shifter pushes the stopper of one of the screw assemblies, such that the first elastic member disposed between the connection member and the stopper is compressed, and the connection member is connected to the corresponding lead screw, thus the power of the stopper is transmitted to the corresponding lead screw through the compressed first elastic member and the connection member, and drives the lead screw to rotate. When the shifter does not push the stopper, the first elastic member is elongated, and the stopper is reset to cut off the power transmission. The screw assemblies of the multi-frequency antenna transmission may be arranged on a plane, and the thickness of its structure is thin, which makes the antenna space more flat, and is more convenient for installation. The shifter determines which screw assembly needs to be adjusted, and that one driving force completes the adjustment of a plurality of screw assemblies is achieved, i.e., one drives more. The connection among the first elastic member after compression, the connection member and the lead screw transmits the rotation, so that the adjusting action is smoother and the jamming phenomenon is avoided.
In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings used in the description of the embodiments or the prior art will be briefly described below. Obviously, the drawings in the following description are only some embodiments of the present application, and other drawings may be obtained based on these drawings for those skilled in the art without creative work.
In order to make the technical problem to be solved, the technical solutions and the technical effects of the present application more clear, the present application will be further described in detail below with reference to the accompanying drawings and the embodiments. It should be understood that the specific embodiments described herein are merely to illustrate the present application and are not intended to limit the present application.
It should be noted that, when an element is referred to as being “fixed” or “arranged” to another element, the element may be directly or indirectly on another element, and when an element is referred to as being “connected” to another element, the element may be directly or indirectly connected to another element.
It should be understood that, the orientation or position relationships indicated by the terms, such as “length”, “width”, “upper”, “lower”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside” and the like, are based on the orientation or position relationships shown in the drawings, and are merely for the convenience of describing the present application and simplifying the description. These orientation or position relationships do not indicate or imply that the indicated device or element must have a particular orientation or be constructed and operated in a particular orientation, and thus are not to be construed as limiting the present application.
Moreover, the terms “first” and “second” are merely used for the purpose of description, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of specific technical features. Thus, features defined with “first” and “second” may either explicitly or implicitly include one or more of the features. In the description of the present application, “a plurality of” means two or more, unless specifically defined otherwise.
Please refer to
The transmission gears 21 are connected to the stoppers 33 of the screw assemblies 30 one by one, the drive gear 10 drives the various transmission gears 21 to rotate, and all the stoppers 33 rotate. The shifter 40 pushes the stopper 33 of one of the screw assemblies 30, such that the first elastic member 34 disposed between the connection member 32 and the stopper 33 is compressed, and the connection member 32 is connected to the corresponding lead screw 31, thus the power of the stopper 33 is transmitted to the corresponding lead screw 31 through the compressed first elastic member 34 and the connection member 32, and drives the lead screw 31 to rotate. When the shifter 40 does not push the stopper 33, the first elastic member 34 is elongated, and the stopper 33 is reset to cut off the power transmission. The screw assemblies 30 of the multi-frequency antenna transmission may be arranged on a plane, and the thickness of its structure is thin, which makes the antenna space more flat, and is more convenient for installation. The shifter 40 determines which screw assembly 30 needs to be adjusted, and that one driving force completes the adjustment of a plurality of screw assemblies 30 is achieved, i.e., one drives more. The connection among the first elastic member 34 after compression, the connection member 32 and the lead screw 31 transmits the rotation, so that the adjusting action is smoother and the jamming phenomenon is avoided.
The plurality of screw assemblies 30 are arranged on the same plane side by side, and are arranged symmetrically on the left and right sides. This structure is compact and easy to assemble.
Each of the screw assemblies 30 is connected to certain drive gear 21 of the gear train at the position of the stopper 33. Each of the transmission gears 21 is opposite to the corresponding screw assembly 30, and the axes of which coincide. The lead screw 31, the connection member 32, the stopper 33 and the first elastic member 34 of the same screw assembly 30 are on the same axis. The lead screw 31 is disposed coaxially with the connection member 32, and the end of the lead screw 31 is selectively connected to or separated from the connection member 32 in the axial direction. The axis of each of the transmission gears 21 is parallel to the axis of the lead screw 31, and the positions of the various transmission gears 21 are fixed and are only pivoted about themselves. The axial position of the drive gear 10 is fixed.
The stopper 33 of the screw assembly 30 is connected to the transmission gear 21 of the gear train 20 with parallel gear shafts, and the stopper 33 is mounted with the first elastic member 34, and the other end of the first elastic member 34 is connected to the end surface of the connection member 32. The first set of screw assembly 30, from the left in
When the shifter 40 pushes the stopper 33 of certain screw assembly 30, for example the stopper 33 of the third set of screw assembly 30 from the left side of
The drive gear 10, the gear train 20 with parallel gear shafts and the screw assemblies 30 are amounted on a frame (not shown). In screw assemblies 30, the lead screws 31 are axially fixed and may be merely pivoted about it. Both the connection members 32 and the stoppers 33 may move in a predetermined range along the axial direction of the lead screws 31, and when the stoppers 33 is close to the connection members 32, the first elastic members 34 are compressed, and the power of the stoppers 33 is transmitted to the connection members 32 through the first elastic members 34.
Further, as a specific embodiment of the multi-frequency antenna transmission provided by the present application, each of the screw assemblies 30 further includes a second elastic member 35 connected to a side of the connection member 32 facing away from the first elastic member 34, and the second elastic member 35 is away from the end of the connection member 32 and faces toward the end of the lead screw 31, and the second elastic member 35 is compressed and disposed between the connection member 32 and the lead screw 31 when the connection member 32 is connected with the lead screw 31. The second elastic member 35 is not in contact with the screw shaft 31 in the normal state. When the shifter 40 pushes the stopper 33 of certain screw assembly 30, for example the stopper 33 of the third set of screw assembly 30 from the left side of
Further, as a specific embodiment of the multi-frequency antenna transmission provided by the present application, the lead screw 31 and the connection member 32 are selectively connected or separated by a coupling. The coupling may transmit the rotation of the connection member 32 to the lead screw 31. In the normal state, the connection member 32 is not in contact with the lead screw 31, for example the first set of lead screw assembly 30 is in the normal state as shown from the left side of
Further, please refer to
Further, as a specific embodiment of the multi-frequency antenna transmission device provided by the present application, the transmission gear 21 is fixedly connected with the connecting shaft 22, the stopper 33 is slidably connected to the connecting shaft 22 along the axial direction of the corresponding transmission gear 21, and the transmission gear 21 and the stopper 33 are connected and synchronously rotate through the connecting shaft 22. This solution is easy to machine and assemble. The stopper 33 is provided with a connecting hole 331, and the cross section of the connecting hole 331 is adapted to the cross section of the connecting shaft 22, and when the connecting shaft 22 is inserted through the connecting hole 331, the stopper 33 follows to rotate when the connecting shaft 22 rotates, and the stopper 33 may slide on the connecting shaft 22 along the axial direction of the connecting shaft 22. When the shifter 40 pushes the stopper 33 of certain screw assembly 30, for example, the stopper 33 of the third set of screw assembly 30 from the left side of
Further, please refer to
Further, as a specific embodiment of the multi-frequency antenna transmission provided by the present application, the number of the protrusions 45 is two, wherein when one of the protrusions 45 pushes one of the stoppers 33, the other of the protrusions 45 is disposed between the other two stoppers 33. The side of the holder 43 facing toward the screw assembly 30 has two protrusions 45, and the protrusions 45 may withstand the end face of the stopper 33. The distance between the two protrusions 45 is proportional to the distance of the two screw assemblies 30, such that when one of the protrusions 45 contacts the stopper 33, the other protrusion 45 is disposed between the two lead screws 31, i.e., at the same time, merely one protrusion 45 is in contact with one lead screw 31. When the drive gear 10 drives the transmission gear 21 of the gear train 20 with parallel gear shafts to rotate, the transmission gears 21 respectively drives the corresponding stoppers 33 to rotate, and merely the connection member 32 corresponding to the stopper 33 pushed by the protrusion 45 rotates, and other screw assemblies 30 are unaffected.
Further, please refer to
Further, as a specific embodiment of the multi-frequency antenna transmission provided by the present application, the drive gear 10 is connected with two gear transmission groups 20a, and the idle gears 23 and the transmission gears 21 are arranged sequentially alternated to form one gear transmission group 20a, and all the axes of the idler gears 23 are in the same plane with the axes of the transmission gears 21. The gears of the gear train 20 with parallel gear shafts are arranged in bilateral symmetry. The drive gear 10 is disposed on the center line of the bilateral symmetry, and meshes with the idle gears 23 on the left and right sides, the idle gear 23 meshes with the transmission gear 21 of the gear train, and the transmission gear 21 meshes with the next idle gear 23, which are arranged sequentially alternated. The axes of the various gears are parallel to the axes of the lead screws 31, and the various gears are axially fixed and may be merely pivoted about themselves.
Further, please refer to
The above description is merely preferred embodiments of the present application, and is not intended to limit the present application. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present application should be included in the scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
201711275780.0 | Dec 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/080476 | 3/26/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/109550 | 6/13/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
10199725 | Elsaadani | Feb 2019 | B2 |
10320076 | Fang | Jun 2019 | B2 |
10581163 | Schmutzler | Mar 2020 | B2 |
10734712 | Duan | Aug 2020 | B2 |
10989286 | Xie | Apr 2021 | B2 |
11022217 | Fu | Jun 2021 | B2 |
20130127377 | Zhao | May 2013 | A1 |
20160352011 | Duan | Dec 2016 | A1 |
20170365923 | Schmutzler | Dec 2017 | A1 |
20170373392 | Kim | Dec 2017 | A1 |
20190331220 | Fu | Oct 2019 | A1 |
20200028245 | Duan | Jan 2020 | A1 |
20200161758 | Schmutzler | May 2020 | A1 |
20200173526 | Xie | Jun 2020 | A1 |
20200212565 | Li | Jul 2020 | A1 |
20200220260 | Li | Jul 2020 | A1 |
20210408679 | Wang | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
105514610 | Apr 2016 | CN |
106252883 | Dec 2016 | CN |
206116629 | Apr 2017 | CN |
106641159 | May 2017 | CN |
107069221 | Aug 2017 | CN |
206516761 | Sep 2017 | CN |
206708328 | Dec 2017 | CN |
207634638 | Jul 2018 | CN |
108390154 | Aug 2018 | CN |
109611515 | Apr 2019 | CN |
110401037 | Nov 2019 | CN |
110504545 | Nov 2019 | CN |
110676585 | Jan 2020 | CN |
112886250 | Jun 2021 | CN |
20140084835 | Jul 2014 | KR |
Entry |
---|
International Search Report and Written Opinion of PCT/CN2018/080476, dated Jul. 30, 2018, 8 pages (Chinese). |
Extended European Search Report of EP18821982.8 dated Jul. 29, 2021, 16 pages. |
Chinese Office Action from Chinese Serial No. 201711275780.0 dated May 5, 2019, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20200227822 A1 | Jul 2020 | US |