This application is a U.S. National Phase Application under 35 USC 371 of International Application PCT/JP2010/053563 filed Mar. 4, 2010.
The present invention relates to an antenna with a function of transmitting/receiving wireless signals with multiple frequencies.
Various kinds of wireless communication systems, such as a wireless LAN and Bluetooth (registered trademark), are widely used.
Those wireless communication systems each have an advantage and a disadvantage.
Hence, it is popular to use plural wireless communication systems in combination, not to use one wireless communication system alone.
However, there is a difference in the frequency bands used by the individual wireless communication systems.
Accordingly, in order to use plural wireless systems, it is necessary to transmit/receive wireless signals in respective multiple frequency bands. In order to transmit/receive wireless signals with multiple frequencies, it is necessary either to use plural antennas each for a single frequency or to use a multi-frequency antenna coping with multiple frequencies. However, it is advantageous in terms of miniaturization, simplification and cost reduction of an antenna to use the multi-frequency antenna than to use the plural antennas each for a single frequency.
An illustrative multi-frequency antenna is disclosed in patent literature 1. This multi-frequency antenna comprises a conductor plate, a dielectric body provided on the conductor plate, and plural antenna elements contacting the dielectric body and having different characteristics from one another. The plural antenna elements operate at different frequency bands from one another. Consequently, a single antenna can operate at multiple frequency bands.
The multi-frequency antenna disclosed in patent literature 1 comprises the plural antenna elements. Accordingly, a large space for installing the plural antenna elements is required, and thus the size of the multi-frequency antenna becomes large. Moreover, the configuration of the multi-frequency antenna becomes complex.
The present invention has been made in view of the foregoing problem, and it is an object of the present invention to provide a small multi-frequency antenna with a non-complex configuration.
Moreover, it is another object of the present invention to provide a multi-frequency antenna which can be used at multiple frequency bands with a single antenna element.
To achieve the foregoing objects, a multi-frequency antenna according to the present invention comprises an antenna element; a first inductor that connects the antenna element and a grounded part together; a feeding point; and a series circuit including a second inductor and a capacitor which connects the feeding point and the antenna element together.
For example, inductances of the first inductor and the second inductor and a capacitance of the capacitor each has a value generating a plurality of resonance frequencies.
For example, the antenna element is rectangular or has a configuration with a width at an open-end side wider than a width at a feeding-point side.
For example, the multi-frequency antenna further comprises a dielectric plate, wherein the antenna element is formed on one face of the dielectric plate, the first inductor is arranged on another face of the dielectric plate and is connected to the antenna element through a via, the capacitor comprises a part of the antenna element, a conductive body which is arranged on the another face of the dielectric plate and which faces the part of the antenna element and a dielectric plate arranged between the part of the antenna element and the conductive body, and the second inductor is arranged on the one face of the dielectric plate and is connected between the capacitor and the feeding point.
For example, the second inductor is connected to the conductive body through a via or by capacitive coupling.
For example, at least one of the first inductor, the second inductor and the capacitor comprises a circuit component.
For example, at least one of the first inductor and the second inductor comprises a line.
For example, the multi-frequency antenna further comprises adjusting means which adjusts at least one element constant of the first inductor, the second inductor and the capacitor.
According to the present invention, it is possible to provide a small multi-frequency antenna with a non-complex configuration. Moreover, according to the present invention, it is possible to provide a multi-frequency antenna which can be utilized at multiple frequency bands by using a single antenna element.
An explanation will be given of a multi-frequency antenna 1 according to a first embodiment of the present invention.
First, an explanation will be given of a configuration of the multi-frequency antenna 1 of the first embodiment with reference to
As shown in the diagrams, the multi-frequency antenna 1 comprises a substrate 100, an antenna element 110, a via 115, a shunt inductor 120, a capacitor conductor 130, a via 135, a series inductor 140, a grounded part 150 and a feeding point 160.
The substrate 100 comprises a tabular dielectric material. In the present embodiment, the substrate 100 comprises a tabular glass-epoxy substrate (FR4) with a relative permittivity of 4.6, and with a size of 12 mm by 12 mm and a thickness of 1 mm.
The antenna element 110 comprises a rectangular conductor plate, and is arranged on one-side surface of the substrate 100. In the present embodiment, the antenna element 110 is formed of a rectangular copper foil with a width W1 of 3.0 mm and a depth D1 of 8.0 mm.
The via 115 is so formed at a substantial center of the antenna element 110 as to pass all the way through from the one-side surface of the substrate 100 to another-side surface thereof, and is filled with a conducting body having one end connected to the antenna element 110.
The shunt inductor 120 comprises a line conducting body, runs on another-side surface of the substrate 100, and has one end connected to another end of the via 115. In the present embodiment, the inductance of the shunt inductor 120 is set to be 5.1 nH.
The capacitor conductor 130 is so arranged on another-side surface of the substrate 100 as to face a part of the antenna element 110. A series capacitor C1 connected to the antenna element 110 in series is formed by a part where the antenna element 110 and the capacitor conductor 130 face each other, and a part of the substrate 100 located between those parts. In the present embodiment, the capacitance of the series capacitor C1 is 0.16 pF.
The via 135 is formed so as to pass all the way through from the one-side surface of the substrate 100 to another-side surface thereof. The via 135 is filled with a conducting body which has one end connected to one end of the capacitor conductor 130.
The series inductor 140 is formed on the one-side surface of the substrate 100, has one end connected to another end of the via 135 and has another end functioning as the feeding point 160. In the present embodiment, the inductance of the series inductor 140 is 5.7 nH.
The grounded part 150 has a ground conductor 151 arranged on one-side surface at a side of the substrate 100, a ground conductor 152 arranged on another-side surface at a side of the substrate 100 and plural vias 153 for connecting the ground conductor 151 and the ground conductor 152 together, and is grounded.
The feeding point 160 comprises another end of the series inductor 140, and is connected to a non-illustrated feeder wire. The multi-frequency antenna 1 emits a transmitting signal supplied between the grounded part 150 and the feeding point 160 to a space as a radio wave, converts a received radio wave into an electric signal and transmits the electric signal from the feeding point 160 to the feeder wire.
The multi-frequency antenna 1 employing the above-explained configuration is formed through, for example, the following steps a) to d).
a) Open the vias 115, 135, and 153 in the substrate 100.
b) Fill openings of those vias by plating or the like.
c) Paste copper foils to both surfaces of the substrate 100.
d) Form the antenna element 110, the shunt inductor 120, the capacitor conductor 130, the series inductor 140 and the ground conductor 151 by patterning the copper foils through PEP (photo etching process) or the like.
An electrical configuration of the multi-frequency antenna 1 employing the above-explained physical configuration can be expressed by an equivalent circuit shown in
As is illustrated, the multi-frequency antenna 1 electrically comprises a series inductor L1, the series capacitor C1, an equivalent circuit 111 for the antenna element, a shunt inductor L2, an equivalent circuit 112 expressing coupling with a space, the feeding point 160, and the grounded part 150.
Note that the series inductor L1 comprises the series inductor 140 and the shunt inductor L2 comprises the shunt inductor 120. Moreover, the series capacitor C1 comprises the series capacitor C1 formed by a part where the antenna element 110 and the capacitor conductor 130 face each other, and the substrate 100 between those parts.
The equivalent circuit 111 of the antenna element represents an input impedance of the antenna element 110 as a right-handed line, and includes an inductor LR1, an inductor LR2 and a capacitor CR.
The equivalent circuit 112 coupled with a space depends on the size of the antenna element 110 and on the shape thereof, and represents an impedance by coupling of the antenna element 110 with a space. The equivalent circuit 112 includes a capacitor C0, a reference impedance R0 and an inductor L0, and is connected to a inductance L2 in parallel therewith.
As shown in
Another end of the series circuit including the series inductor L1 and the series capacitor C1 is connected to one end of the inductor LR1 configuring the equivalent circuit 111 of the antenna element. Another end of the inductor LR1 is connected to one end of the capacitor CR and to one end of the inductor LR2. Another end of the capacitor CR is connected to the grounded part 150.
One end of the shunt inductor L2 is connected to another end of the inductor LR2 of the equivalent circuit 111 of the antenna element. Another end of the shunt inductor L2 is connected to the grounded part 150.
One end of the capacitor C0 of the equivalent circuit 112 coupled with a space is connected to a connection point between another end of the inductor LR2 and the one end of the shunt inductor L2. Another end of the capacitor C0 is connected to one end of the inductor L0 and to one end of the reference impedance R0. Another end of the inductor L0 and another end of the reference impedance R0 are both connected to the grounded part 150.
The inductance of the inductor LR1, the inductance of the inductor LR2 and the capacitance of the capacitor CR all in the equivalent circuit 111 of the antenna element substantially depend on the size of the antenna element 110 and on the shape thereof, and are substantially determined once the shape of the antenna element 110 and the size thereof are determined. Examples of the size (D1, W1) of the antenna element 110, the inductances of the respective inductors LR1, LR2, and the capacitance of the capacitor CR are shown in
Moreover, the value of the reference impedance R0 in the equivalent circuit 112 coupled with a space depends on the size of the antenna element 110 and on the shape thereof. The value of the reference impedance R0 corresponds to the actual component of an impedance representing, when a voltage with a target frequency is applied to the feeding point 160, a ratio between the applied voltage and a flowing current.
Note that in the present embodiment, target frequencies are set to be 2.5 GHz and 5.5 GHz.
A relationship between the size (D1, W1) of the antenna element 110 and the reference impedance R0 is shown in
Moreover, the capacitance of the capacitor C0 and the inductance of the inductor L0 both in the equivalent circuit 112 coupled with a space depend on a radius a of a sphere involving the antenna element 110 and on the reference impedance R0, and can be expressed by formulas (1) and (2), respectively.
C0=a/(c×R0) (1)
L0=(a×R0)/c (2)
where
C0: the capacitance [F] of the capacitor C0
L0: the inductance [H] of the inductor L0
R0: the resistance [Ω] value of the reference impedance R0
a: the radius [m] of the sphere involving the antenna element
c: the speed of light [m/s]
As explained above, the equivalent circuit 111 of the antenna element and the equivalent circuit 112 coupled with a space both depend on the shape of the antenna element 110 and on the size thereof. Consequently, the equivalent circuit 111 of the antenna element and the equivalent circuit 112 coupled with a space are substantially determined by setting the shape of the antenna element 110 and the size thereof.
Next, an explanation will be given of a frequency characteristic of reflection loss by the multi-frequency antenna 1 employing the above-explained physical configuration and electrical configuration.
The frequency characteristic of reflection loss by the multi-frequency antenna 1 is shown in
Note that with the width W1 of the antenna element 110 being as 3.0 mm and the depth D1 thereof being as 8.0 mm, the inductance of each inductor and the capacitance of each capacitor in the equivalent circuit 111 of the antenna element and in the equivalent circuit 112 coupled with a space are acquired from above-explained
Moreover, the horizontal axis of
As shown in
As explained above, according to the first embodiment of the present invention, it is possible to provide a multi-frequency antenna which can carry out communication with respect to desired multiple frequencies by using the single antenna element 110.
In the above-explained illustrative configuration, the configuration enabling acquisition of a gain at the two frequency bands: 2.5 GHz and 5.5 GHz was exemplified. The present embodiment is not limited to this configuration. The present embodiment can cope with a combination of any two arbitrary frequency bands.
As explained above, element constants of the equivalent circuit 111 of the antenna element 110 and of the equivalent circuit 112 coupled with a space are automatically determined by the size of the antenna element 110. Accordingly, it is possible for the multi-frequency antenna to acquire sufficient gains at arbitrary multiple frequency bands by setting the inductance of the shunt inductor L2 (120), the capacitance of the series capacitor C1 and the inductance of the series inductor L1 (140) accordingly in such a way that a resonance point is generated in vicinities of multiple target frequencies in consideration of the individual element constants which are determined by the size of the antenna element 110.
Moreover, when the size of the antenna element 110 is changeable, it is appropriate if the individual element constants determined by the size of the antenna element 110, the inductance of the shunt inductor L2 (120), the capacitance of the series capacitor C1 and the inductance of the series inductor L1 (140) are set accordingly so that the resonance point is generated in the vicinities of the multiple target frequencies.
In the first embodiment, the shape of the antenna element 110 is rectangular. The rectangular antenna element 110 is easily manufactured, but has a difficulty in adjusting the impedance of the antenna element 110 as well as the impedance value by coupling with a space.
An explanation will be given of a multi-frequency antenna 2 according to a second embodiment which can overcome the foregoing problem.
As shown in a plan view of
An equivalent circuit of the multi-frequency antenna 2 is the same as the equivalent circuit shown in
However, the inductance of a series inductor L1 (140) is set to be 3.70 nH, the capacitance of a series capacitor C1 is set to be 0.169 pF and the inductance of a shunt inductor L2 (120) is set to be 4.78 nH.
A relationship among a central angle θ of the sectorial antenna element 210, a reference impedance R0, respective inductances of inductors LR1, LR2 and the capacitance of a capacitor CR is shown in
As is clear from
In general, an inductor has a larger power loss than a capacitor. Accordingly, as the reference impedance R0 becomes small, the entire power loss of the equivalent circuit 112 coupled with a space is reduced. That is, the loss can be reduced by adjusting the central angle θ. Therefore, it is desirable that the central angle θ should be increased within a range permitted by the size of the multi-frequency antenna 2.
A frequency characteristic of reflection loss by the multi-frequency antenna 2 adjusted as explained above is shown in
This characteristic is the frequency characteristic of reflection loss with the width W2 of the antenna element 210 at the feeding-point side being set to be 2.0 mm, the depth D2 being set to be 8.0 mm, the central angle θ being set to be 60 degree, the inductance of the series inductor L1 (140) being set to be 3.70 nH, the capacitance of the series capacitor C1 being set to be 0.169 pF, and the inductance of the shunt inductor L2 (120) being set to be 4.78 nH.
The horizontal axis of
According to the frequency characteristic shown in
As explained above, according to the second embodiment of the present invention, it is possible to provide the multi-frequency antenna 2 which transmits/receives wireless signals at multiple frequency bands by using the single antenna element with low loss.
In addition, such loss can be adjusted by adjusting the central angle θ of the sector.
In the above-explained illustrative configuration, the configuration enabling acquisition of a gain at the two frequency bands: 2.5 GHz; and 5.5 GHz was exemplified. The present embodiment is not limited to this configuration. The present embodiment can cope with a combination of any arbitrary two frequency bands.
That is, the element constant of the equivalent circuit 111 of the antenna element and that of the equivalent circuit 112 coupled with a space are automatically determined based on the size of the antenna element 210 and on the central angle θ thereof. Accordingly, it is possible for the multi-frequency antenna to acquire sufficient gains at arbitrary multiple frequency bands by setting the inductance of the shunt inductor L2 (120), the capacitance of the series capacitor C1 and the inductance of the series inductor L1 (140) accordingly so that the resonance point is generated in respective vicinities of multiple target frequencies in consideration of individual element constants determined by the size of the antenna element 210 and by the central angle θ thereof.
Moreover, when the size of the antenna element 210 and the central angle θ thereof are changeable, it is appropriate if the size of the antenna element 210 and the central angle thereof are set in consideration of a loss and a permitted maximum size, and the inductance of the shunt inductor L2 (120), the capacitance of the series capacitor C1 and the inductance of the series inductor L1 (140) are set accordingly so that the resonance point is generated in the vicinities of the multiple target frequencies in consideration of the individual element constants determined by the size of the antenna element 210.
Furthermore, for example, in the second embodiment, although the antenna element 210 is sectorial, it is appropriate if a width at the open-end side is wide with respect to the feeding-point side, and the antenna element may be triangular, trapezoidal, etc.
The present invention is not limited to the foregoing first and second embodiments, and can be changed and modified in various forms.
For example, the configuration of the multi-frequency antenna of the present invention is not limited to the configurations shown in
For example, in the first and second embodiments, although the capacitor conductor 130 and one end of the series inductor 140 are connected together through the via 135, the via 135 may be omitted, and the capacitor conductor 130 and the series inductor 140 may be coupled together through a capacitance therebetween.
Moreover, in the foregoing embodiments, although the configurations of the multi-frequency antenna having a resonance point (an operating point) at the two frequency bands were exemplified, the present invention can be applied to a multi-frequency antenna having a resonance point at equal to or more than three frequency bands. For example, as shown in
Furthermore, in the foregoing embodiments, the inductors, the conductors, etc., are realized by lines (circuit patterns), but some of or all of the inductors and conductors may be realized by, for example, chip components. A circuit may be configured by arranging, for example, as shown in
Moreover, in the first and second embodiments, although the circuit is arranged on the one-side surface of the substrate 100 and on another-side surface thereof, as is exemplified in
Furthermore, in the foregoing embodiments, although the circuit elements have respective predetermined physical characteristic values (inductances and capacitances), each circuit element may be changed to an active circuit element with a function of adjusting the physical characteristic value, and may be tuned by feeding back a reflected signal from the antenna element.
In this case, for example, as shown in
According to this configuration, the antenna can be adjusted so as to automatically have an appropriate gain with respect to a desired frequency.
In the foregoing embodiments, although the configuration with the circuit elements arranged on the substrate comprising a dielectric material was exemplified, no substrate may be arranged as far as the individual circuit elements can be held.
This application is based on Japanese Patent Application No. 2009-180009 filed on Jul. 31, 2009. The specification, claims, and drawings of this Japanese Patent Application No. 2009-180009 are entirely incorporated herein by reference in this specification.
A multi-frequency antenna of the present invention can be used for wireless communication.
Number | Date | Country | Kind |
---|---|---|---|
2009-180009 | Jul 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/053563 | 3/4/2010 | WO | 00 | 5/3/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/013395 | 2/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3909830 | Campbell | Sep 1975 | A |
4145693 | Fenwick | Mar 1979 | A |
20020044092 | Kushihi | Apr 2002 | A1 |
20020105474 | Kitamura et al. | Aug 2002 | A1 |
20030231142 | McKinzie et al. | Dec 2003 | A1 |
20060262028 | Takei | Nov 2006 | A1 |
20090278755 | Shoji | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
08-213820 | Aug 1996 | JP |
2002-076750 | Mar 2002 | JP |
2002-232313 | Aug 2002 | JP |
2007-068037 | Mar 2007 | JP |
WO2004036687 | Apr 2004 | WO |
Entry |
---|
Japanese Office Action dated Aug. 28, 2012 (and English translation thereof) in counterpart Japanese Application No. 2009-180009. |
International Search Report dated Jun. 1, 2010 issued in International Appln. No. PCT/JP2010/053563-. |
Number | Date | Country | |
---|---|---|---|
20110210899 A1 | Sep 2011 | US |