The present invention lies in the field of combustion turbines in particular for generating electrical energy and more particularly, to combustor baskets employed therein.
Future energy demand, scarcity of available fuels and environmental regulations put pressure on power plant producers to come up with solutions for safe, efficient and clean ways to generate power. The scarcity of fuels mainly applies to oil and to a lesser extend to natural gas. With an availability of coal in abundance, electricity production from coal is mostly done using steam power plants. A cleaner and more efficient option to generate power from coals is to use them in an integrated gasification combine cycle (IGCC). In an IGCC, coals are first gasified to yield syngas, consisting mainly of CO (carbon monoxide) and H2 (hydrogen).
Syngas typically has a significantly lower calorific value as compared to conventional natural gas fuels. By removing the CO content from the syngas prior to combusting it, one also has an effective means for CO2 (carbon-dioxide) capture. The IGCC concept with pre-combustion CO2 capture is one of the most cost-effective ways to produce electricity and avoid the emission of CO2 in the future. The economical potential of the IGCC plant with CO2 capture can increase even further when natural gas prices rise faster than expected or with increased carbon tax regulation.
Due to the low calorific value and high hydrogen content, the combustion of syngas fuels requires the development of adapted or completely new combustion systems which are able to handle the wide range of syngas fuels, and produce little emissions and can handle the high reactivity of the fuels.
The syngas fuel composition depends on the type of gasifier used and on whether or not the CO is separated from the fuel. Besides syngas fuels, the combustion system might run on a second conventional fuel for backup and start up. The ideal possibility is to have all the different types of fuels combusted in a stable way by one combustion system. To increase the efficiency and compensate for the efficiency loss due to the gasifier and CO2 separation techniques, the trend will be to increase pressure and turbine inlet temperatures, even beyond values where currently natural gas experience is available. With these increasing pressures and temperatures, it becomes even more important to design a combustion system that is able to combust the syngas and hydrogen fuel, as danger for burner overheating and thermo acoustic excitation typically increases with pressure and temperature.
In view of the foregoing, an embodiment herein includes a multi-fuel combustion system comprising: a combustor basket adapted to combust at least two type of fuels, said combustor basket having a circumferential wall comprising a plurality of openings; a first conduit adapted to provide a first type of fuel directly to the combustor basket; a second conduit adapted to provide a second type of fuel directly to the combustor basket; and a third conduit adapted to inject at least one of the first type of fuel and the second type of fuel trough the openings into the combustor basket. Within the combustion system third conduit 25 is just an optional choice.
In view of the foregoing, another embodiment herein includes a method of operating a multi-fuel combustion system comprising a first phase and a second phase, wherein the first phase comprises: providing ignition to a combustor basket to ignite a first type of fuel, where the first type of fuel is supplied to the combustor basket through a first conduit; supplying steam to the first conduit in addition to the first type of fuel and supplying steam to the second conduit after the ignition; and wherein the second phase comprises: supplying a second type of fuel to the combustor basket after ignition of the first fuel through the second conduit, while stopping the supply of the first fuel.
The present invention is further described hereinafter with reference to illustrated embodiments shown in the accompanying drawings, in which:
In general terms, a combustion turbine comprises three sections: a compressor section, a combustor section having a typical combustor basket and a turbine section. Air drawn into the compressor section is compressed. The compressed air from the compressor section flows through the combustor section where the temperature of the air mass is further increased after combustion of a fuel. From the combustor section the hot pressurized gas flow into the turbine section where the energy of the expanding gases is transformed into rotational motion of a turbine rotor that drives an electric generator.
The lower calorific value of the syngas fuels and the necessity to also operate the burner on a backup fuel like natural gas, significantly affects the design of the burners. The burner should be able to handle large fuel mass flows and the fuel passages consequently need to have a large capacity. A too small capacity results in a high fuel pressure drop. Due to the large fuel mass flow involved, a high pressure drop has a much larger impact on the total efficiency of the engine as compared to a typical natural gas fired engine.
Optional third conduit 25 is adapted to inject at least one of the first type of fuel and the second type of fuel into a compressor discharge air that flow through at least one of the openings 18 associated with at least one of the cylindrical regions 14. The third conduit 25 has a fuel injector nozzle 27 at the end having 1 to 5 injector holes that are aimed at an angle of 0 to 90° relative to a centerline of the opening 18. The first conduits 24 and the second conduit 26 under consideration consist of concentric circles of circular holes at the region of nozzle 28 of the conduits which acts as injectors for the fuels. The nozzle 28 helps to inject the respective fuels directly into the combustor basket 12 and is positioned at the upstream end 20 of the combustor basket 12.
In another preferred embodiment, the holes in the region of nozzle 28 of the first conduit 24 comprises multiple holes positioned at, at least two different radial distances from the center of the nozzle for injecting a fuel flow into a region of combustion in the combustor basket 12. This nozzle design promotes a greater amount of fuel flow towards the center of the nozzle, which cools the nozzle in a cost effective and simple manner Most importantly the hole arrangement maintains the aerodynamic performance of the nozzle.
Coming back to
At a minimum, the length of the scoops is half the diameter of the scoop. For example,
The combustion system 10 further comprises a cover plate 29 coupled to the combustor basket 12 and the first, second and third conduits. This enables the combustor basket and the conduits to be attached to a casing.
The multi-fuel combustion system 10 further comprises a flow conditioner 45 positioned to encircle the combustor basket 12 and having a conical section 46 and a cylindrical section 47 having plurality of holes 48 adapted to allow the compressor discharge air to flow towards a region of combustion in the combustor basket 12. The flow conditioner 45 is used to achieve the pressure drop required for cooling and to provide a uniform air flow towards the region of combustion in the combustor basket 12. Holes 48 in both the cylindrical section 47 and the conical section 46 are used as flow passage for air.
In addition, as shown in
The multi-fuel combustion system 1 of
The method of operating the multi-fuel combustion system 10 is now described. The operation could be divided into two main phases a first phase and a second phase. During the first phase an ignition is provided to a combustor basket by an ignition coil to ignite a first type of fuel, for example natural gas supplied to the combustor basket 12 through the first conduit 24. The method also involves supplying steam to the first conduit 24 in addition to the first type of fuel and supplying steam to the second conduit 26 after the ignition. Steam is provided to the second conduit 26 at a time earlier than the steam provided to the first conduit 24. The method further involves supplying a medium, for example an inert gas, nitrogen, steam or seal air to the second conduit 26 during the first phase for stabilizing the combustion system 10 for any pressure difference in the combustor basket 12. In a typical industrial arrangement the combustion system or the turbine comprises a plurality of combustor baskets, and while in operation there could be pressure differences that could be built up between these combustor baskets. The supply of the medium also takes care of this pressure difference in the combustor basket due to this type of arrangement. The supply of the medium in the second conduit 26 is shut off once the steam supply is stabilized in the first conduit 24 and the second conduit 26 during the first stage of operation.
In the second phase of operation, a second type of fuel for example syngas is supplied to the combustor basket through the second conduit 26, while stopping the supply of the first fuel. The method further comprises supplying a portion of the second type of fuel to the combustor basket 12 through the first conduit 24 during the second phase. The steam is continuously supplied in the first conduit 24 from the first phase until the beginning of supplying the portion of the second type of fuel through the first conduit 24 during the second phase. Also the third conduit 25 may also be used to supply any one of the first or second type of fuel for enabling an effective and more complete combustion by introducing the said fuels through the openings 18 if required. This further helps in reducing NOx emissions.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternate embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It is therefore contemplated that such modifications can be made without departing from the embodiments of the present invention as defined.
This application is the U.S. National Stage of International Application No. PCT/EP2010/065764, filed Oct. 20, 2010 and claims the benefit thereof. The International Application claims the benefits of US application No. 12/581,978 filed Oct. 20, 2009. All of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/065764 | 10/20/2010 | WO | 00 | 6/26/2012 |
Number | Date | Country | |
---|---|---|---|
Parent | 12581978 | Oct 2009 | US |
Child | 13502555 | US |