Multi-function bi-polar forceps

Information

  • Patent Grant
  • 10881449
  • Patent Number
    10,881,449
  • Date Filed
    Tuesday, May 10, 2016
    8 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
An end effector is disclosed. The end effector includes a first jaw member. The first jaw member comprises a first electrode. The first jaw member defines a first aperture at a distal end. The end effector includes a second jaw member. The second jaw member comprises a second electrode. The second jaw member defines a second aperture at a distal end. The second jaw member is operatively coupled to the first jaw member. The first and second apertures are configured to define a single aperture when the first and second jaw members are in a closed position. The first and second electrodes are configured to deliver energy.
Description
BACKGROUND

Electrosurgical devices are used in many surgical operations. Electrosurgical devices apply electrical energy to tissue in order to treat tissue. An electrosurgical device may comprise an instrument having a distally-mounted end effector comprising one or more electrodes. The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active (or source) electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flow through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device may further comprise a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.


Electrical energy applied by an electrosurgical device can be transmitted to the instrument by a generator. The electrical energy may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 100 kHz to 1 MHz. During its operation, an electrosurgical device can transmit low frequency RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.


SUMMARY

In various embodiments, an end effector is disclosed. The end effector includes a first jaw member. The first jaw member comprises a first electrode. The first jaw member defines a first aperture at a distal end. The end effector includes a second jaw member. The second jaw member comprises a second electrode. The second jaw member defines a second aperture at a distal end. The second jaw member is operatively coupled to the first jaw member. The first and second apertures are configured to define a single aperture when the first and second jaw members are in a closed position. The first and second electrodes are configured to deliver energy.


In various embodiments, an end effector is disclosed. The end effector includes a first jaw member. The first jaw member comprises a first proximal contact surface and a first distal contact surface. The first proximal contact surface and the first distal contact surface define a first opening therebetween. The end effector includes a second jaw member comprising a second proximal contact surface and a second distal contact surface. The second jaw member is operatively coupled to the first jaw member. The second proximal contact surface and the second distal contact surface define a second opening therebetween. When the first and second jaw members are in a closed position, the first and second openings define an aperture. A first proximal electrode is coupled to the first proximal contact surface. The first proximal electrode is configured to deliver energy.


In various embodiments, an end effector is disclosed. The end effector includes a first jaw member operatively coupled to a second jaw member. The first and second jaw members each comprise a proximal contact region defined by a first width and a distal contact region defined by a second width. The first width is greater than the second width. A first electrode is coupled to the first jaw member. The first electrode is configured to deliver energy


In various embodiments, an end effector is disclosed. The end effector comprises a first jaw member. The first jaw member comprises a band electrode coupled to an outer surface of the first jaw member. The band electrode is configured to lay flush with the first jaw member in a first position. The band electrode is configured to flex outwardly from the first jaw member in a second position. The band electrode is configured to deliver energy. A second jaw member is operatively coupled to the first jaw member.





FIGURES

The features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1 illustrates a perspective view of one embodiment of an electrical energy surgical instrument.



FIG. 2 illustrates a side-view of a handle of one embodiment of the surgical instrument of FIG. 1 with a half of a handle body removed to illustrates some of the components therein.



FIG. 3 illustrates a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 1 with the jaws open and the distal end of an axially movable member in a retracted position.



FIG. 4 illustrates a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 1 with the jaws closed and the distal end of an axially moveable member in a partially advanced position.



FIG. 5 illustrates a perspective view of one embodiment of the axially moveable member of the surgical instrument of FIG. 1.



FIG. 6 illustrates a section view of one embodiment of the end effector of the surgical instrument of FIG. 1.



FIG. 7 illustrates a perspective view of one embodiment of a cordless electrical energy surgical instrument.



FIG. 8A illustrates a side view of a handle of one embodiment of the surgical instrument of FIG. 7 with half of the handle body removed to illustrate various components therein.



FIG. 8B illustrates one embodiment of an RF drive and control circuit.



FIG. 8C illustrates one embodiment of the main components of a control circuit.



FIG. 9 illustrates one embodiment of an end effector comprising an aperture.



FIG. 10 illustrates a perspective view of the end effector of FIG. 9.



FIG. 11 illustrates a top view of the end effector of FIG. 9.



FIG. 12 illustrates one embodiment of the end effector of FIG. 9 comprising a plurality of electrodes.



FIG. 13a illustrates one embodiment of the end effector of FIG. 9 coupled to an elongate shaft and in an open position.



FIG. 13b illustrates one embodiment of the end effector of FIG. 13a in a closed position.



FIG. 14 illustrates one embodiment of an end effector comprising a proximal grasping area and a distal grasping area and defining an aperture therebetween.



FIG. 15 illustrates a side view of the end effector of FIG. 14 in an open position.



FIG. 16 illustrates a side view of the end effector of FIG. 14 in a closed position.



FIG. 17 illustrates a perspective view of the end effector of FIG. 14 in a closed position.



FIG. 18 illustrates a top view of the end effector of FIG. 14.



FIG. 19A illustrates one embodiment of an end effector comprising a proximal grasping area and a distal grasping area, defining an aperture therebetween, in an open position.



FIG. 19B illustrates one embodiment of the end effector of FIG. 19A in a closed position.



FIG. 19C illustrates one embodiment of the end effector of FIG. 19A in a fired position.



FIG. 20 illustrates an exploded view of the end effector of FIG. 19A.



FIG. 21 illustrates one embodiment of an end effector comprising a proximal grasping area including a proximal electrode and a distal grasping area including a distal electrode.



FIG. 22 illustrates a top view of the end effector of FIG. 21.



FIG. 23 illustrates a perspective view of the end effector of FIG. 21.



FIG. 24 illustrates an exploded view of the end effector of FIG. 21.



FIG. 25 illustrates one embodiment of an end effector comprising a proximal contact region and a distal contact region.



FIG. 26 illustrates a top view of the end effector of FIG. 25.



FIG. 27 illustrates a side view of the end effector of FIG. 25 in an open position.



FIG. 28 illustrates a side view of the end effector of FIG. 25 in a closed position.



FIG. 29 illustrates one embodiment of an end effector comprising a proximal contact region and a distal contact region, the proximal and distal contact regions comprising a continuous electrode.



FIG. 30A illustrates one embodiment of an end effector comprising a proximal contact region and a distal contact region in an open position.



FIG. 30B illustrates the end effector of FIG. 30A in a closed position.



FIG. 30C illustrates the end effector of FIG. 30A in a fired position.



FIG. 31 illustrates an exploded view of the end effector of FIG. 30A.



FIG. 32 illustrates one embodiment of an end effector comprising a band electrode in a deployed position.



FIG. 33 illustrates the end effector of FIG. 32 in a retracted position.





DESCRIPTION

Reference will now be made in detail to several embodiments, including embodiments showing example implementations of electrosurgical medical instruments for cutting and coagulating tissue. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict example embodiments of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.


Various embodiments of surgical instruments that utilize therapeutic and/or subtherapeutic electrical energy to treat tissue or provide feedback to the generators (e.g., electrosurgical instruments) are disclosed. The embodiments are adapted for use in a manual or hand-operated manner, although electrosurgical instruments may be utilized in robotic applications as well. FIG. 1 is a perspective view of one example embodiment of a surgical instrument system 100 comprising an electrical energy surgical instrument 110. The electrosurgical instrument 110 may comprise a proximal handle 112, a distal working end or end effector 126 and an introducer or elongated shaft 114 disposed in-between.


The electrosurgical system 100 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously, for example. In one example embodiment, the electrosurgical system 100 includes a generator 120 in electrical communication with the electrosurgical instrument 110. The generator 120 is connected to the electrosurgical instrument 110 via a suitable transmission medium such as a cable 122. In one example embodiment, the generator 120 is coupled to a controller, such as a control unit 125, for example. In various embodiments, the control unit 125 may be formed integrally with the generator 120 or may be provided as a separate circuit module or device electrically coupled to the generator 120 (shown in phantom to illustrate this option). Although in the presently disclosed embodiment, the generator 120 is shown separate from the electrosurgical instrument 110, in one example embodiment, the generator 120 (and/or the control unit 125) may be formed integrally with the electrosurgical instrument 110 to form a unitary electrosurgical system 100, where a battery located within the electrosurgical instrument 110 is the energy source and a circuit coupled to the battery produces the suitable electrical energy, ultrasonic energy, or heat energy. One such example is described herein below in connection with FIGS. 7-8C.


The generator 120 may comprise an input device 135 located on a front panel of the generator 120 console. The input device 135 may comprise any suitable device that generates signals suitable for programming the operation of the generator 120, such as a keyboard, or input port, for example. In one example embodiment, various electrodes in the first jaw 164a and the second jaw 164b may be coupled to the generator 120. The cable 122 may comprise multiple electrical conductors for the application of electrical energy to positive (+) and negative (−) electrodes of the electrosurgical instrument 110. The control unit 125 may be used to activate the generator 120, which may serve as an electrical source. In various embodiments, the generator 120 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example, which may be activated independently or simultaneously.


In various embodiments, the electrosurgical system 100 may comprise at least one supply conductor 131 and at least one return conductor 133, wherein current can be supplied to the electrosurgical instrument 100 via the supply conductor 131 and wherein the current can flow back to the generator 120 via the return conductor 133. In various embodiments, the supply conductor 131 and the return conductor 133 may comprise insulated wires and/or any other suitable type of conductor. In certain embodiments, as described below, the supply conductor 131 and the return conductor 133 may be contained within and/or may comprise the cable 122 extending between, or at least partially between, the generator 120 and the end effector 126 of the electrosurgical instrument 110. In any event, the generator 120 can be configured to apply a sufficient voltage differential between the supply conductor 131 and the return conductor 133 such that sufficient current can be supplied to the end effector 126.



FIG. 2 is a side view of one example embodiment of the handle 112 of the surgical instrument 110. In FIG. 2, the handle 112 is shown with half of a first handle body 112a (see FIG. 1) removed to illustrate various components within the second handle body 112b. The handle 112 may comprise a lever arm 121 (e.g., a trigger) which may be pulled along a path 33. The lever arm 121 may be coupled to an axially moveable member 178 (FIGS. 3-6) disposed within the elongated shaft 114 by a shuttle 184 operably engaged to an extension 198 of lever arm 121. The shuttle 184 may further be connected to a biasing device, such as a spring 188, which may also be connected to the second handle body 112b, to bias the shuttle 184 and thus the axially moveable member 178 in a proximal direction, thereby urging the jaws 164a and 164b to an open position as seen in FIG. 1. Also, referring to FIGS. 1-2, a locking member 190 (see FIG. 2) may be moved by a locking switch 128 (see FIG. 1) between a locked position, where the shuttle 184 is substantially prevented from moving distally as illustrated, and an unlocked position, where the shuttle 184 may be allowed to freely move in the distal direction, toward the elongated shaft 114. The handle 112 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers or sliders for actuating the first jaw 164a and the second jaw 164b. In some embodiments, the handle 112 may comprise a pencil-style handle. The elongated shaft 114 may have a cylindrical or rectangular cross-section, for example, and can comprise a thin-wall tubular sleeve that extends from handle 112. The elongated shaft 114 may include a bore extending therethrough for carrying actuator mechanisms, for example, the axially moveable member 178, for actuating the jaws and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 126.


The end effector 126 may be adapted for capturing and transecting tissue and for contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). The first jaw 164a and the second jaw 164b may close to thereby capture or engage tissue about a longitudinal axis “T” defined by the axially moveable member 178. The first jaw 164a and second jaw 164b may also apply compression to the tissue. In some embodiments, the elongated shaft 114, along with the first jaw 164a and second jaw 164b, can be rotated a full 360° degrees, as shown by the arrow 196 (see FIG. 1), relative to the handle 112. For example, a rotation knob 148 may be rotatable about the longitudinal axis of the shaft 114 and may be coupled to the shaft 114 such that rotation of the knob 148 causes corresponding rotation of the shaft 114. The first jaw 164a and the second jaw 164b can remain openable and/or closeable while rotated.



FIG. 3 shows a perspective view of one example embodiment of the end effector 126 with the jaws 164a, 164b open, while FIG. 4 shows a perspective view of one embodiment of the end effector 126 with the jaws 164a, 164b closed. As noted above, the end effector 126 may comprise the upper first jaw 164a and the lower second jaw 164b, which may be straight or curved. The first jaw 164a and the second jaw 164b may each comprise an elongated slot or channel 162a and 162b, respectively, disposed outwardly along their respective middle portions. Further, the first jaw 164a and the second jaw 164b may each have tissue-gripping elements, such as teeth 163, disposed on the inner portions of the first jaw 164a and the second jaw 164b. The first jaw 164a may comprise an upper first jaw body 162a with an upper first outward-facing surface and an upper first energy delivery surface 165a. The second jaw 164b may comprise a lower second jaw body 162b with a lower second outward-facing surface and a lower second energy delivery surface 165b. The first energy delivery surface 165a and the second energy delivery surface 165b may both extend in a “U” shape about the distal end of the end effector 126.


The lever arm 121 of the handle 112 (FIG. 2) may be adapted to actuate the axially moveable member 178, which also may function as a jaw-closing mechanism. For example, the axially moveable member 178 may be urged distally as the lever arm 121 is pulled proximally along the path 33 via the shuttle 184, as shown in FIG. 2 and discussed above. FIG. 5 is a perspective view of one example embodiment of the axially moveable member 178 of the surgical instrument 110. The axially moveable member 178 may comprise one or several pieces, but in any event, may be movable or translatable with respect to the elongated shaft 114 and/or the jaws 164a, 164b. Also, in at least one example embodiment, the axially moveable member 178 may be made of 17-4 precipitation hardened stainless steel. The distal end of axially moveable member 178 may comprise a flanged “I”-beam configured to slide within the channels 162a and 162b in jaws 164a and 164b. The axially moveable member 178 may slide within the channels 162a, 162b to open and close the first jaw 164a and the second jaw 164b. The distal end of the axially moveable member 178 may also comprise an upper flange or “c”-shaped portion 178a and a lower flange or “c”-shaped portion 178b. The flanges 178a, 178b respectively define inner cam surfaces 167a and 167b for engaging outward facing surfaces of the first jaw 164a and the second jaw 164b. The opening-closing of jaws 164a and 164b can apply very high compressive forces on tissue using cam mechanisms which may include movable “I-beam” axially moveable member 178 and the outward facing surfaces 169a, 169b of jaws 164a, 164b.


More specifically, referring now to FIGS. 3-5, collectively, the inner cam surfaces 167a and 167b of the distal end of axially moveable member 178 may be adapted to slideably engage the first outward-facing surface 369a and the second outward-facing surface 169b of the first jaw 164a and the second jaw 164b, respectively. The channel 162a within first jaw 164a and the channel 162b within the second jaw 164b may be sized and configured to accommodate the movement of the axially moveable member 178, which may comprise a tissue-cutting element 171, for example, comprising a sharp distal edge. FIG. 4, for example, shows the distal end of the axially moveable member 178 advanced at least partially through channels 162a and 162b (FIG. 3). The advancement of the axially moveable member 178 may close the end effector 126 from the open configuration shown in FIG. 3. In the closed position shown by FIG. 4, the upper first jaw 164a and the lower second jaw 164b define a gap or dimension D between the first energy delivery surface 165a and second energy delivery surface 165b of the first jaw 164a and the second jaw 164b, respectively. In various embodiments, dimension the D can equal from about 0.0005″ to about 0.040″, for example, and in some embodiments, between about 0.001″ to about 0.010″, for example. Also, the edges of the first energy delivery surface 165a and the second energy delivery surface 165b may be rounded to prevent the dissection of tissue.



FIG. 6 is a section view of one example embodiment of the end effector 126 of the surgical instrument 110. The engagement, tissue-contacting, surface 165b of the lower jaw 164b is adapted to deliver energy to tissue, at least in part, through a conductive-resistive matrix, such as a variable resistive PTC body, as discussed in more detail below. At least one of the upper and lower jaws 164a, 164b may carry at least one electrode 173 configured to deliver the energy from the generator 120 to the captured tissue. The engagement, tissue-contacting, surface 165a of the upper jaw 164a may carry a similar conductive-resistive matrix (i.e., a PTC material), or in some embodiments the surface may be a conductive electrode or an insulative layer, for example. Alternatively, the engagement surfaces of the jaws can carry any of the energy delivery components disclosed in U.S. Pat. No. 6,773,409, filed Oct. 22, 2001, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, the entire disclosure of which is incorporated herein by reference.


The first energy delivery surface 165a and the second energy delivery surface 165b each may be in electrical communication with the generator 120. The first energy delivery surface 165a and the second energy delivery surface 165b may be configured to contact tissue and deliver electrosurgical energy to captured tissue which are adapted to seal or weld the tissue. The control unit 125 regulates the electrical energy delivered by electrical generator 120 which in turn delivers electrosurgical energy to the first energy delivery surface 165a and the second energy delivery surface 165b. The energy delivery may be initiated by an activation button 128 (FIG. 2) operably engaged with the lever arm 121 and in electrical communication with the generator 120 via a cable 122. In one example embodiment, the electrosurgical instrument 110 may be energized by the generator 120 by way of a foot switch 129 (FIG. 1). When actuated, the foot switch 129 triggers the generator 120 to deliver electrical energy to the end effector 126, for example. The control unit 125 may regulate the power generated by the generator 120 during activation. Although the foot switch 129 may be suitable in many circumstances, other suitable types of switches can be used, such as, for example, a thumb switch.


As mentioned above, the electrosurgical energy delivered by electrical generator 120 and regulated, or otherwise controlled, by the control unit 125 may comprise radio frequency (RF) energy, or other suitable forms of electrical energy. Further, the opposing first and second energy delivery surfaces 165a and 165b may carry variable resistive PTC bodies that are in electrical communication with the generator 120 and the control unit 125. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,112; and U.S. Patent Application Publication. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein by reference in their entirety and made part of this specification.


In one example embodiment, the generator 120 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one example embodiment, the ESU can be a bipolar ERBE ICC 150 sold by ERBE USA, Inc. of Marietta, Ga. In some embodiments, such as for bipolar electrosurgery applications, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, adjacent to and/or in electrical communication with, the tissue to be treated such that current can flow from the active electrode, through the PTC bodies and to the return electrode through the tissue. Thus, in various embodiments, the electrosurgical system 100 may comprise a supply path and a return path, wherein the captured tissue being treated completes, or closes, the circuit. In one example embodiment, the generator 120 may be a monopolar RF ESU and the electrosurgical instrument 110 may comprise a monopolar end effector 126 in which one or more active electrodes are integrated. For such a system, the generator 120 may require a return pad in intimate contact with the patient at a location remote from the operative site and/or other suitable return path. The return pad may be connected via a cable to the generator 120. In other embodiments, the operator may provide subtherapeutic RF energy levels for purposes of evaluating tissue conditions and providing feedback in the electrosurgical system 100. Such feed back may be employed to control the therapeutic RF energy output of the electrosurgical instrument 110.


During operation of electrosurgical instrument 100, the user generally grasps tissue, supplies energy to the grasped tissue to form a weld or a seal (e.g., by actuating button 128 and/or pedal 129), and then drives a tissue-cutting element 171 at the distal end of the axially moveable member 178 through the grasped tissue. According to various embodiments, the translation of the axial movement of the axially moveable member 178 may be paced, or otherwise controlled, to aid in driving the axially moveable member 178 at a suitable rate of travel. By controlling the rate of the travel, the likelihood that the captured tissue has been properly and functionally sealed prior to transection with the cutting element 171 is increased.



FIG. 7 is a perspective view of one example embodiment of a surgical instrument system 200 comprising a cordless electrical energy surgical instrument 210. The electrosurgical system 200 is similar to the electrosurgical system 100. The electrosurgical system 200 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously as described in connection with FIG. 1, for example. The electrosurgical instrument 210 may utilize the end effector 126 and elongated shaft 114 described here in conjunction with a cordless proximal handle 212. In one example embodiment, the handle 212 includes a generator circuit 220 (see FIG. 8A). The generator circuit 220 performs a function substantially similar to that of generator 120. In one example embodiment, the generator circuit 220 is coupled to a controller, such as a control circuit. In the illustrated embodiment, the control circuit is integrated into the generator circuit 220. In other embodiments, the control circuit may be separate from the generator circuit 220.


In one example embodiment, various electrodes in the end effector 126 (including the first and second jaws 164a, 164b thereof) may be coupled to the generator circuit 220. The control circuit may be used to activate the generator 220, which may serve as an electrical source. In various embodiments, the generator 220 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example. In one example embodiment, a button 128 may be provided to activate the generator circuit 220 to provide energy to the end effector 126.



FIG. 8A is a side view of one example embodiment of the handle 212 of the cordless surgical instrument 210. In FIG. 8A, the handle 212 is shown with half of a first handle body removed to illustrate various components within the second handle body 234. The handle 212 may comprise a lever arm 224 (e.g., a trigger) which may be pulled along a path 33 around a pivot point. The lever arm 224 may be coupled to an axially moveable member 278 disposed within the elongated shaft 114 by a shuttle operably engaged to an extension of lever arm 221. In one example embodiment, the lever arm 221 defines a shepherd's hook shape comprising a distal trigger hook 221a and a proximal trigger portion 221b. As illustrated, the distal trigger hook 221a may have a first length while the proximal trigger portion 221b may have a second length with the second length greater than the first length.


In one example embodiment, the cordless electrosurgical instrument comprises a battery 237. The battery 237 provides electrical energy to the generator circuit 220. The battery 237 may be any battery suitable for driving the generator circuit 220 at the desired energy levels. In one example embodiment, the battery 237 is a 1030 mAhr, triple-cell Lithium Ion Polymer battery. The battery may be fully charged prior to use in a surgical procedure, and may hold a voltage of about 12.6V. The battery 237 may have two fuses fitted to the cordless electrosurgical instrument 210, arranged in line with each battery terminal. In one example embodiment, a charging port 239 is provided to connect the battery 237 to a DC current source (not shown).


The generator circuit 220 may be configured in any suitable manner. In some embodiments, the generator circuit comprises an RF drive and control circuit 240 and a controller circuit 282. FIG. 8B illustrates an RF drive and control circuit 240, according to one embodiment. FIG. 8B is a part schematic part block diagram illustrating the RF drive and control circuitry 240 used in this embodiment to generate and control the RF electrical energy supplied to the end effector 126. As will be explained in more detail below, in this embodiment, the drive circuitry 240 is a resonant mode RF amplifier comprising a parallel resonant network on the RF amplifier output and the control circuitry operates to control the operating frequency of the drive signal so that it is maintained at the resonant frequency of the drive circuit, which in turn controls the amount of power supplied to the end effector 126. The way that this is achieved will become apparent from the following description.


As shown in FIG. 8B, the RF drive and control circuit 240 comprises the above described battery 237 are arranged to supply, in this example, about 0V and about 12V rails. An input capacitor (Cin) 242 is connected between the 0V and the 12V for providing a low source impedance. A pair of FET switches 243-1 and 243-2 (both of which are N-channel in this embodiment to reduce power losses) is connected in series between the 0V rail and the 12V rail. FET gate drive circuitry 245 is provided that generates two drive signals—one for driving each of the two FETs 243. The FET gate drive circuitry 245 generates drive signals that causes the upper FET (243-1) to be on when the lower FET (243-2) is off and vice versa. This causes the node 247 to be alternately connected to the 12V rail (when the FET 243-1 is switched on) and the 0V rail (when the FET 243-2 is switched on). FIG. 8B also shows the internal parasitic diodes 248-1 and 248-2 of the corresponding FETs 243, which conduct during any periods that the FETs 243 are open.


As shown in FIG. 8B, the node 247 is connected to an inductor-inductor resonant circuit 250 formed by inductor Ls 252 and inductor Lm 254. The FET gate driving circuitry 245 is arranged to generate drive signals at a drive frequency (fd) that opens and crosses the FET switches 243 at the resonant frequency of the parallel resonant circuit 250. As a result of the resonant characteristic of the resonant circuit 250, the square wave voltage at node 247 will cause a substantially sinusoidal current at the drive frequency (fd) to flow within the resonant circuit 250. As illustrated in FIG. 8B, the inductor Lm 254 is the primary of a transformer 255, the secondary of which is formed by inductor Lsec 256. The inductor Lsec 256 of the transformer 255 secondary is connected to an inductor-capacitor-capacitor parallel resonant circuit 257 formed by inductor L2 258, capacitor C4 260, and capacitor C2 262. The transformer 255 up-converts the drive voltage (Vd) across the inductor Lm 254 to the voltage that is applied to the output parallel resonant circuit 257. The load voltage (VL) is output by the parallel resonant circuit 257 and is applied to the load (represented by the load resistance Rload 259 in FIG. 8B) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the end effector 126. As shown in FIG. 8B, a pair of DC blocking capacitors Cbl 280-1 and 280-2 is provided to prevent any DC signal being applied to the load 259.


In one embodiment, the transformer 255 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:


Core Diameter, D (mm)

D=19.9×10−3


Wire diameter, W (mm) for 22 AWG wire

W=7.366×10−4


Gap between secondary windings, in gap=0.125

G=gap/25.4


In this embodiment, the amount of electrical power supplied to the end effector 126 is controlled by varying the frequency of the switching signals used to switch the FETs 243. This works because the resonant circuit 250 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 250, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 250, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 245 is controlled by a controller 281 based on a desired power to be delivered to the load 259 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 283 and current sensing circuitry 285. The way that the controller 281 operates will be described in more detail below.


In one embodiment, the voltage sensing circuitry 283 and the current sensing circuitry 285 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 283 and the current sensing circuitry 285. In one-embodiment, a step-down regulator (e.g., LT1502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 237.



FIG. 8C illustrates the main components of the controller 281, according to one embodiment. In the embodiment illustrated in FIG. 8C, the controller 281 is a microprocessor based controller and so most of the components illustrated in FIG. 8C are software based components. Nevertheless, a hardware based controller 281 may be used instead. As shown, the controller 281 includes synchronous I,Q sampling circuitry 291 that receives the sensed voltage and current signals from the sensing circuitry 283 and 285 and obtains corresponding samples which are passed to a power, Vrms and Irms calculation module 293. The calculation module 293 uses the received samples to calculate the RMS voltage and RMS current applied to the load 259 (FIG. 8B; end effector 126 and tissue/vessel gripped thereby) and from them the power that is presently being supplied to the load 259. The determined values are then passed to a frequency control module 295 and a medical device control module 297. The medical device control module 297 uses the values to determine the present impedance of the load 259 and based on this determined impedance and a pre-defined algorithm, determines what set point power (Pset) should be applied to the frequency control module 295. The medical device control module 297 is in turn controlled by signals received from a user input module 299 that receives inputs from the user (for example pressing buttons or activating the control levers 114, 110 on the handle 104) and also controls output devices (lights, a display, speaker or the like) on the handle 104 via a user output module 261.


The frequency control module 295 uses the values obtained from the calculation module 293 and the power set point (Pset) obtained from the medical device control module 297 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 263 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 295 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 263 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 263 is output to the FET gate drive circuitry 245, which amplifies the signal and then applies it to the FET 243-1. The FET gate drive circuitry 245 also inverts the signal applied to the FET 243-1 and applies the inverted signal to the FET 243-2.


The electrosurgical instrument 210 may comprise additional features as discussed with respect to the electrosurgical system 100 illustrated in FIGS. 1-6. Those skilled in the art will recognize that electrosurgical instrument 210 may include a rotation knob 148, an elongated shaft 114, and an end effector 126. These elements function in a substantially similar manner to that discussed above with respect to the electrosurgical system 100 illustrated in FIGS. 1-6. In one example embodiment, the cordless electrosurgical instrument 210 may include visual indicators 235. The visual indicators 235 may provide a visual indication signal to an operator. In one example embodiment, the visual indication signal may alert an operator that the device is on, or that the device is applying energy to the end effector. Those skilled in the art will recognize that the visual indicators 235 may be configured to provide information on multiple states of the device.



FIG. 9 illustrates one embodiment of an end effector 326 comprising an aperture. The end effector 326 is configured for use with an electrosurgical instrument, such as, for example, the electrosurgical instruments 110, 210 illustrated in FIGS. 1-8C. The end effector 326 comprises a first jaw member 364a and a second jaw member 364b. The first jaw member 364a comprises a first aperture 366a defined by the distal portion of the first jaw member 364a. The second jaw member 364b comprises a second aperture 366b defined by the distal portion of the second jaw member 364b. The end effector 326 is similar to the end effector 126 illustrated in FIGS. 3-5. For example, the end effector 326 may comprise one or more staples 363, I-beam channels 362a, 362b formed on both the first and second jaws 364a, 364b, and/or a cutting instrument (see FIG. 11) deployable within the channels 362a, 362b.



FIG. 10 illustrates the end effector 326 in a closed position. The end effector 326 is transitioned from an open position, as shown in FIG. 9, to the closed position shown in FIG. 10 by, for example, actuating one or more levers on the handle 112. When the end effector 326 is in a closed position, the first aperture 366a and the second aperture 366b align to define a single aperture 366. The aperture 366 provides improved tip grasping to the end effector 326. FIG. 11 illustrates a top-down view of the end effector 326. The distal end of the end effector 326 defining the aperture 366 is configured to grasp a material, such as, for example, tissue, before, during, and after application of energy, such as, for example, electrosurgical and/or ultrasonic energy. The end effector 326 may be referred to as a fenestrated end effector.



FIG. 11 illustrates a top view of the end effector 326 of FIG. 9. The first channel 362a and the second channel 362b align to define a longitudinal channel 362. A cutting member 371 is slideably receivable within the longitudinal channel 362. The cutting member 371 is deployable to cut tissue and/or other materials located between the first jaw member 364a and the second jaw member 364b. In some embodiments, the cutting member 371 comprises an I-Beam. FIG. 11 illustrates the alignment of the first aperture 366a and the second aperture 366b to define a single aperture 366. In some embodiments, the end effector 326 comprises a width suitable for insertion through a trocar. For example, the end effector may comprise a width of about 4.50 millimeters.



FIG. 12 illustrates one embodiment of the end effector 326 comprising energy deliver surfaces, such as, for example, a first electrode 365a and a second electrode 365b. The electrodes 365a, 365b are configured to deliver energy to a tissue section grasped between the first jaw member 364a and the second jaw member 364b. The electrodes 365a, 365b may be configured to provide monopolar RF energy, bipolar RF energy, ultrasonic energy, or any combination thereof to a tissue section. In some embodiments, the electrodes 365a, 365b are configured as source electrodes and are coupled to a generator 120, for example, through a supply conductor 131. The second jaw member 364b and/or a second contact surface 365c in the second jaw member 364b may be configured as a return electrode coupled to the generator 120 through a return conductor 133. In some embodiments, the energy contact surfaces 365a-365c comprise a positive temperature coefficient (PTC) material. The PTC material may limit the energy delivered by the energy contact surfaces 365a-365c as the temperature of the energy contact surfaces 365a-365c increases during treatment. The energy contact surfaces 365a-365c may be configured to provide therapeutic RF energy, subtherapeutic RF energy, ultrasonic energy, or any combination thereof.



FIG. 13A illustrates one embodiment of the end effector 326 coupled to an elongate shaft 314. The end effector 326 is shown in an open position. An actuator within the elongate shaft 314 is configured to transition the end effector 326 from an open position, shown in FIG. 13a, to a closed position, as shown in FIG. 13B. In one embodiment, one or more actuators extend through the shaft 314. The one or more actuators are configured to transition the first and second jaws 364a, 364b of the end effector 326 from an open position to a closed position. In one embodiment, the one or more actuators are coupled to one or more actuation handles 368a, 368b. A first actuation handle 368a is moved from a first position, shown in FIG. 13A, to a second position, shown in FIG. 13B. The movement of the first actuation handle 368a causes the first jaw member 364a to transition to a closed position. A second actuator handle 368b may be configured, for example, to advance a cutting instrument 371 into the longitudinal channel 362.


In operation, the end effector 326 is positioned by a surgeon at a surgical site. The end effector 326 is positioned through, for example, endoscopic, laparoscopic, or open surgery techniques. A surgeon positions a tissue section between the first jaw member 364a and the second jaw member 364b. The surgeon operates an actuator, such as, for example, a trigger coupled to handle or a first actuation ring 368a coupled to the elongate shaft 314, to cause the first jaw member 364a to rotate or transition to a closed position to grasp the tissue section between the first jaw member 364a and the second jaw member 364b. In some embodiments, the end effector 326 comprises an energy delivery surface, such as, for example, one or more electrodes 365a, 365b configured to deliver energy. The surgeon may activate delivery of energy to the electrodes 365a, 365b. The electrodes 365a, 365b deliver the energy to the tissue section grasped between the first jaw member 364a and the second jaw member 364b. The delivered energy may weld, cauterize, dissect, and/or otherwise treat the tissue section. In some embodiments, the first jaw member 364a defines a first channel 362a and the second jaw member 364b defines a second channel 362b. The first and second channels 362a, 362b define a longitudinal channel 362. A cutting member 371 is slideably receivable within the longitudinal channel 362. The cutting member 371 is deployable to cut the tissue section before, during, or after treatment of the tissue.



FIG. 14 illustrates one embodiment of an end effector 426 comprising a proximal grasping area and a distal grasping area. The end effector 426 comprises a first jaw member 464a and a second jaw member 464b. The first and second jaw members 464a, 464b are operable to grasp tissue and/or other materials therebetween. The end effector 426 is configured to provide atraumatic grasping. The first jaw member 464a comprises a first proximal contact surface 465a and a first distal contact surface 467a. The first proximal contact surface 465a and the first distal contact surface 467a define a first opening 466a therebetween. The second jaw member 464b comprises a second proximal contact surface 465b and a second distal contact surface 467b. The second proximal contact surface 465b and the second distal contact surface 467b define a second opening 466b therebetween. When the first and second jaw members 464a, 464b are in a closed position, the first and second openings 466a, 466b define an aperture 466. The aperture 466 is configured to receive tissue therein. The aperture 466 provides atraumatic grasping. The end effector 426 may be referred to as a Babcock end effector.


The proximal contact surfaces 465a, 465b are located in the proximal portions of respective first and second jaw members 464a, 464b and define a proximal grasping area 469. In some embodiments, the proximal contact surfaces 465a, 465b comprise an energy delivery surface configured to deliver energy. The proximal contact surfaces 465a, 465b may be configured to provide monopolar RF energy, bipolar RF energy, ultrasonic energy, or any combination thereof to a tissue section grasped between the first jaw member 464a and the second jaw member 464b. The proximal contact surfaces 465a, 465b define a longitudinal channel 462. A cutting member 471 (see FIG. 18) is slideably received within the channel 462. The cutting member 471 is deployable within the longitudinal channel 462 to cut tissue grasped between the proximal contact surfaces 465a, 465b.



FIGS. 15-18 illustrate various views of the end effector 426 comprising a proximal grasping area 469 and a distal grasping area 470. FIG. 16 illustrates the end effector 426 in a closed position. The first opening 466a and the second opening 466b align when the end effector 426 is in a closed position to define the aperture 466. The proximal grasping area 469 is located proximally of the aperture 466 and the distal grasping area 470 is located distally of the aperture 466. Grasping tissue with the distal grasping area 470 reduces the surface area of tissue that is grasped and provides for atraumatic grasping. FIGS. 17 and 18 illustrate a top view of the end effector 426. A longitudinal channel 462 is configured to slideably receive a cutting member 471 therein. In the illustrated embodiment, the longitudinal channel 462 extends along the proximal grasping area 469 and does not extend into the aperture 466 or the distal grasping area 470. Cutting of tissue is therefore limited to tissue grasped within the proximal grasping area.


In some embodiments, the first proximal contact surface 465a and/or the second proximal contact surface 465b comprise energy delivery surfaces. The energy deliver surfaces 465a, 465b are configured to deliver energy. The energy delivery surfaces 465a, 465b comprise, for example, one or more electrodes. The energy deliver surfaces 465a, 465b may be configured to deliver monopolar RF energy, bipolar RF energy, ultrasonic energy, or any combination thereof to a tissue section grasped between the first and second jaw members 464a, 464b. The delivered energy may comprise a therapeutic signal configured to seal or weld the tissue section and/or a subtherapeutic signal. In some embodiments, the first proximal contact surface 465a and/or the second proximal contact surface 465b comprise a PTC material configured to limit the delivered energy as the temperature of the treated tissue increases. In some embodiments, the first proximal contact surface 465a and/or the second proximal contact surface 465b may comprise a metal contact electrode and/or an insulative layer.


In various embodiments, the distal contact surfaces 467a, 467b define a distal grasping area 470. The distal grasping area 470 is configured to provide atraumatic grasping. An aperture 466 is defined between the proximal grasping area 469 and the distal grasping area 470. The distal grasping area 470 and the aperture 466 enable the grasping of a tissue section atraumatically. In some embodiments, the distal grasping area 470 is configured to deliver electrosurgical energy to a tissue section grasped therein. In other embodiments, the distal grasping area 470 is electrically inactive.



FIG. 19A illustrates one embodiment of the end effector 426 comprising a proximal grasping area and a distal grasping area coupled to an elongate shaft 414. In operation, the end effector 426 is positioned with a tissue section, or other material, located between the first jaw member 464a and the second jaw member 464b. The first jaw member 464a is pivoted to a closed position, as shown in FIG. 19B, to grasp tissue between the first jaw member 464a and the second jaw member 464b. The first jaw member 464a may be pivoted by, for example, actuating a trigger on a handle coupled to the elongate shaft 414 or an actuation ring 468a coupled to the elongate shaft 414. Tissue may be grasped by the proximal grasping area 469, the distal grasping area 470, or both the proximal grasping area 469 and the distal grasping area 470. In some embodiments, the proximal grasping area 469 is configured to treat tissue grasped within the proximal grasping area 469, for example, by delivering energy, stapling, and/or cutting a tissue section grasped in the proximal grasping area. FIG. 19C illustrates the end effector 426 in a fired position. In some embodiments, a cutting instrument 471 is slideably receivable within the longitudinal channel 462 defined by the first and second jaw members 464a, 464b. The cutting instrument 471 is deployable by, for example, advancing a second actuation ring 468b. The second actuation ring 468b causes the cutting instrument 471 to traverse the longitudinal channel 462 and to cut tissue grasped therein.



FIG. 20 illustrates an exploded view of the end effector 426 and elongate shaft 414. As illustrated in FIG. 20, the end effector 426 comprises a first jaw member 464a and a second jaw member 464b. A plurality of electrodes 465a, 465c are coupled to the first jaw member 464a to define a proximal energy delivery surface. A source conductor 431 couples the plurality of electrode 465a, 465c to a generator (not shown). A return electrode 465b is coupled to the second jaw member 464b. A return conductor 433 couples the return electrode 465b to the generator. An actuator 424 is coupled to first jaw member 464a to pivot the first jaw member 464a from an open position to a closed position.



FIGS. 21-24 illustrate one embodiment of an end effector 526 comprising a proximal grasping area configured to deliver energy and a distal grasping area configured to deliver energy. A first jaw member 564a comprises a first proximal contact area 565a and a first distal contact area 567a. The first proximal contact area 565a and the first distal contact area 567a define a first opening 566a therebetween. A second jaw member 564b comprises a second proximal contact area 565b and a second distal contact area 567b. The second proximal contact area 565b and the second distal contact area 567b define a second opening 566b therebetween. The first and second openings 566a, 566b define an aperture 566 when the first jaw member 564a and the second jaw member 564b are in a closed position. The first and second proximal contact areas 565a, 565b define a proximal grasping area 569 and the first and second distal contact areas 567a, 567b define a distal grasping area 570.


In some embodiments, the first proximal contact surface 565a and/or the second proximal contact surface 565b comprise energy deliver surfaces. The energy delivery surfaces 565a, 565b are configured to deliver energy. The energy delivery surfaces 565a, 565b may be configured to deliver monopolar RF energy, bipolar RF energy, ultrasonic energy, or any combination thereof to a tissue section grasped between the first and second jaw members 564a, 564b. The delivered energy may comprise a therapeutic signal configured to seal or weld the tissue section and/or a sub-therapeutic signal. In some embodiments, the first proximal contact surface 565a and/or the second proximal contact surface 565b comprise a PTC material configured to limit the delivered energy as the temperature of the treated tissue increases. In some embodiments, the first proximal contact surface 565a and/or the second proximal contact surface 565b may comprise a metal contact electrode and/or an insulative layer. In some embodiments, the first proximal contact surface 565a and/or the second proximal contact surface 565b may comprise a return electrode.


In various embodiments, the distal contact surfaces 567a, 567b define a distal grasping area 570. The distal grasping area 570 is configured to provide atraumatic grasping. An aperture 566 is defined between the proximal grasping area 569 and the distal grasping area 570. The distal grasping area 570 and the aperture 566 enable the grasping of a tissue section atraumatically. In some embodiments, the distal grasping area 570 is configured to deliver electrosurgical energy to a tissue section grasped therein. In other embodiments, the distal grasping area 570 is electrically inactive.


In some embodiments, the first distal contact surface 567a and/or the second distal contact surface 567b comprise energy delivery surfaces, such as, for example, one or more electrodes. The distal energy delivery surfaces 567a, 567b are configured to deliver energy. Energy is delivered to a tissue section grasped within distal grasping area 570. The distal energy delivery surfaces 567a, 567b may be configured to deliver monopolar RF energy, bipolar RF energy, ultrasonic energy, or any combination thereof. The distal energy delivery surfaces 667a, 667b may be configured to provide a therapeutic signal configured to weld or seal a tissue section and/or a sub-therapeutic signal. In some embodiments, the distal grasping area 570 enables an operator to spot weld and/or perform touch-up cauterization after general treatment by the proximal grasping area 569.


In some embodiments, the proximal grasping area 569 and the distal grasping area 570 comprise energy delivery surfaces. The proximal energy deliver surfaces 565a, 565b are operable independently of the distal energy delivery surfaces 567a, 567b. For example, in some embodiments, a handle, such as the handle 112 shown in FIG. 1, comprises a first button for controlling delivery of energy to the proximal grasping area 569 and a second button for controlling delivery of energy to the distal grasping area 570. In other embodiments, a single button is configured to control delivery of energy to both the proximal grasping area 569 and the distal grasping area 570.


With reference now to FIG. 22, in some embodiments, the first jaw member 564a and the second jaw member 564b define a longitudinal channel 562. A cutting instrument 571 is slideably receivable within the longitudinal channel 562. The cutting instrument 571 is deployable to cut tissue grasped within the proximal grasping area 569. In the illustrated embodiment, the longitudinal channel 562 extends along the length of the proximal grasping area 569, but does not extend into the aperture 566. Therefore, cutting of tissue is limited to tissue grasped in the proximal grasping area 569.


As shown in FIG. 23, in some embodiments, the first proximal contact area 565a comprises a first electrode 572a and a second electrode 572b. The first and second electrodes 572a, 572b are configured to deliver energy. The first and second electrodes 572a, 572b are configured to deliver energy to, for example, a tissue section grasped within the proximal grasping area 569. In one embodiment, the first electrode 572a comprises a source electrode and the second electrode 572b comprises a return electrode. In other embodiments, the first and second electrodes 572a, 572b both comprise source electrodes. The second proximal contact area 565b is configured as a return electrode. In some embodiments, the first and second electrodes 572a, 572b comprise a PTC material.



FIG. 24 illustrates an exploded view of the end effector 526 and elongate shaft 514. As illustrated in FIG. 24, the end effector 526 comprises a first jaw member 564a and a second jaw member 564b. A plurality of electrodes 565a, 565c are coupled to the first jaw member 564a to define a proximal energy delivery surface. A source conductor 531 couples the plurality of electrode 565a, 565c to a generator (not shown). A return electrode 565b is coupled to the second jaw member 564b. A return conductor 533 couples the return electrode 565b to the generator. An actuator 524 is coupled to first jaw member 564a to pivot the first jaw member 564a from an open position to a closed position.



FIGS. 25-28 illustrate one embodiment of an end effector 626 comprising a proximal contact region and a distal contact region. The end effector 626 comprises a first jaw member 664a and a second jaw member 664b. The first jaw member 664a comprises a first proximal contact region 665a and a first distal contact region 667a. The second jaw member 664b comprises a second proximal contact region 665b and a second distal contact region 667b. The first and second proximal contact regions 665a, 665b comprise a first width. The first and second distal contact regions 667a, 667b comprise a second width. The first width is greater than the second width. The proximal contact regions 665a, 665b of the first and second jaw members 664a, 664b provide a contact region for grasping large sections of tissue. The distal contact regions 667a, 667b of the first and second jaw members 664a, 664b provide a contact region for grasping and treating smaller sections of tissue. In some embodiments, the distal contact regions 667a, 667b may comprise a hook shape. The smaller width of the distal contact regions 667a, 667b allows a surgeon to manipulate the end effector 626 to treat difficult to reach tissue sections and/or to apply energy to a smaller tissue section as compared to the proximal contact regions 665a, 665b. For example, in one embodiment, the first width is about 5.0 mm and the second width is about 3.0 mm, allowing a surgeon to access smaller areas not easily accessible by a 5.0 mm surgical instrument.



FIG. 26 illustrates a top view of the end effector 626. The first jaw member 646a and the second jaw member 664b define a longitudinal channel 662. A cutting member 671 is slideably receivable within the longitudinal channel 662. The cutting member 671 may comprise, for example, an I-beam. The cutting member 671 is deployable to cut tissue grasped between the first and second jaw members 664a, 664b. In some embodiments, the cutting member 671 comprises an ultrasonic blade. In the illustrated embodiment, the longitudinal channel 662 extends through both the proximal grasping area 669 and the distal grasping area 670, enabling the cutting member 671 to cut tissue grasped in both the proximal grasping area 669 and the distal grasping area 670.



FIG. 29 illustrates a perspective view of the end effector 626. In some embodiments, the end effector 626 comprises one or more continuous electrodes 666. The continuous electrode 666 is configured to provide energy to a tissue section grasped between the first jaw member 664a and the second jaw member 664b. The continuous electrode 666 extends over the first proximal contact area 665a and the first distal contact area 667a. The continuous electrode 666 is configured to provide energy to tissue grasped between any section of the first and second jaw members 664a, 664b. In some embodiments, the continuous electrode 666 comprises a monopolar electrode. In other embodiments, the continuous electrode 666 comprises a bi-polar electrode. The second jaw member 664b may comprise a return electrode (not shown). The continuous electrode 666 may be configured to deliver therapeutic RF energy, subtherapeutic RF energy, ultrasonic energy, or any combination thereof.



FIGS. 30A-30C illustrate operation of the end effector 626. The end effector 626 is coupled to an elongate shaft 614. FIG. 30A illustrates the first jaw member 664a and the second jaw member 664b in an open position. In operation, the end effector 626 is positioned by a surgeon at a surgical site. The end effector 626 is positioned through, for example, endoscopic, laparoscopic, or open surgery techniques. A surgeon positions a tissue section between the first jaw member 664a and the second jaw member 664b. The surgeon operates a second actuation handle 668b to cause the first jaw member 664a to rotate or transition to a closed position to grasp the tissue section between the first jaw member 664a and the second jaw member 664b, as illustrated in FIG. 30B. Tissue may be grasped between the proximal contact areas 665a, 665b, the distal contact areas 667a, 667b, or both. In some embodiments, the end effector 626 comprises one or more continuous electrodes 666 configured to deliver energy. The surgeon may activate delivery of energy to the electrodes 666. The continuous electrode 666 delivers the energy to the tissue section grasped between the first jaw member 664a and the second jaw member 664b. The delivered energy may weld, cauterize, dissect, and/or otherwise treat the tissue section. In some embodiments, the first jaw member 664a and the second jaw member 664b define a longitudinal channel 662. A cutting member 671 is slideably receivable within the longitudinal channel 662. The cutting member 671 is deployable to cut the tissue section. The cutting member 671 may be deployed, for example, by sliding a first actuation handle 668a distally, causing the cutting member 671 to slideably, distally advance into the longitudinal channel 662. FIG. 30C illustrates the end effector 626 in a fired position, in which the cutting member 671 has been advanced to the distal end of the longitudinal channel 662.



FIG. 31 illustrates an exploded view of the end effector 626 and elongate shaft 614. As illustrated in FIG. 31, the end effector 626 comprises a first jaw member 664a and a second jaw member 664b. A continuous electrode 666 is coupled to the first jaw member 664a to define a proximal energy delivery surface. A source conductor 631 couples the continuous electrode 666 to a generator (not shown). A return electrode 665 is coupled to the second jaw member 664b. A return conductor 633 couples the return electrode 665 to the generator. An actuator 624 is coupled to first jaw member 664a to pivot the first jaw member 664a from an open position to a closed position.



FIG. 32 illustrates one embodiment of an end effector 726 comprising band electrode 766. The end effector 726 comprises a first jaw member 764a and a second jaw member 764b. A band electrode 766 is coupled to an outer surface of the first jaw member 764a. The band electrode 766 may be coupled, for example, to a top portion of the first jaw member 764a. The band electrode 766 is deployable to deliver energy. The band electrode 766 is configured to deliver energy, for example, to a tissue section in contact with the band electrode 766. FIG. 33 illustrates the band electrode 766 in a retracted position. In some embodiments, the band electrode 766 is configured to lay flush with the first jaw member 764a in a first, or retracted, position. The band electrode 766 is configured to flex outwardly from the first jaw member 764a in a second, or deployed, position, as illustrated in FIG. 32.


The first jaw member 764a comprises a first contact area 765a and the second jaw member 764b comprises a second contact area 765b. The first and second jaw members 764a, 764b are configured to grasp tissue therebetween. In some embodiments, the first contact area 765a and/or the second contact area 765b comprise energy delivery surfaces configured to deliver energy. The energy delivery surfaces 765a, 765b may deliver, for example, therapeutic RF energy, sub-therapeutic RF energy, ultrasonic energy, or any combination thereof. The first and second contact areas 765a, 765b may be configured to provide energy to a tissue section grasped between the first jaw member 764a and the second jaw member 764b. In some embodiments, the first contact area 765a and/or the second contact area 765b comprises a return electrode for energy delivered to a tissue section by the band electrode 766.


In some embodiments, a distal end of the band electrode 766 is fixedly connected to a distal end of the first jaw member 764a. The band electrode 766 is slideably moveable longitudinally relative to the fixed distal end. When the band electrode 766 is slideably moved in a distal direction, the fixed distal end of the band electrode 766 causes the band electrode 766 to flex away from the first jaw member 764a. When the band electrode is slideably moved in a proximal direction, the fixed distal end causes the band electrode 766 to lay flush with the first jaw member 764a.


In some embodiments, the first jaw member 764a comprises a band channel 768. The band electrode 766 is receivable within the band channel 768 in a retracted state. For example, if the band electrode 766 is moved in a proximal direction with respect to the fixed distal end, the band electrode 766 will lay flush against the first jaw member 764a. The band channel 768 receives the band electrode 766. When the band electrode 766 is in a retracted state, the band electrode 766 is flush with or below the outer surface of the first jaw member 764a. In various embodiments, the band channel 768 comprises a longitudinal channel defined by the outer surface of the first jaw member 764a.


It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.


Various embodiments of surgical instruments and robotic surgical systems are described herein. It will be understood by those skilled in the art that the various embodiments described herein may be used with the described surgical instruments and robotic surgical systems. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed embodiments are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one example embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example embodiment may be combined, in whole or in part, with features, structures, or characteristics of one or more other embodiments without limitation.


While various embodiments herein have been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, it is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present invention has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to an instrument for use only in conjunction with an endoscopic tube (e.g., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.


It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.


While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


1. An end effector comprising: a first jaw member defining a first aperture at a distal end, the first jaw member comprising a first electrode located proximally of the first aperture, wherein the first electrode comprises a positive temperature coefficient (PTC) material; and a second jaw member defining a second aperture at a distal end, the second jaw member comprising a second electrode located proximally of the second aperture, wherein the second jaw member is operatively coupled to the first jaw member, wherein the first and second apertures are configured to define a single aperture when the first and second jaw members are in a closed position, wherein the second electrode comprises a PTC material, and wherein the first and second electrodes are configured to deliver energy.


2. The end effector of clause 1, wherein the first and second jaw members define a longitudinal channel, the end effector comprising a cutting member slideably receivable within the longitudinal channel, wherein the cutting member is deployable along the longitudinal channel, and wherein the longitudinal channel is located proximally of the first and second apertures.


3. The end effector of clause 2, wherein the first electrode comprises a first PTC (positive temperature coefficient) electrode and a second a PTC electrode, wherein the first PTC electrode is located on a first side of the channel and the second PTC electrode is located on a second side of the channel, and wherein the first and second PTC electrodes define a treatment region.


4. The end effector of clause 2, wherein the cutting member comprises an I-beam.


5. The end effector of clause 1, wherein the energy delivered by the first electrode comprises at least one of monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof


6. An end effector comprising: a first jaw member comprising a first proximal contact surface and a first distal contact surface, wherein the first proximal contact surface and the first distal contact surface define a first opening therebetween; a second jaw member comprising a second proximal contact surface and a second distal contact surface, wherein the second jaw member is operatively coupled to the first jaw member, wherein the second proximal contact surface and the second distal contact surface define a second opening therebetween, and wherein when the first and second jaw members are in a closed position the first and second openings define an aperture; and a first proximal electrode coupled to the first proximal contact surface, wherein the first proximal electrode is configured to deliver energy.


7. The end effector of clause 6, wherein when the first and second jaw members are in a closed position, the proximal contact surfaces define a proximal grasping region and the distal contact surfaces define a distal grasping region.


8. The end effector of clause 6, wherein the energy delivered to the first end effector comprises at least one of monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof.


9. The end effector of clause 8, comprising a second proximal electrode coupled to the second proximal contact surface, wherein the second proximal electrode is configured as a return electrode for electrosurgical energy delivered by the first proximal electrode.


10. The end effector of clause 8, comprising a first distal electrode coupled to the first distal contact surface, wherein the first distal electrode is configured to deliver energy, wherein the energy delivered to the first distal electrode comprises at least one of monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof.


11. The end effector of clause 10, comprising a second distal electrode coupled to the second distal contact surface, wherein the second distal electrode is configured as a return electrode for electrosurgical signal delivered by the first distal electrode.


12. The end effector of clause 6, wherein the first and second jaw members define a longitudinal channel, the end effector comprising a cutting member slideably receivable within the longitudinal channel, wherein the cutting member is deployable along the longitudinal channel.


13. An end effector comprising: a first jaw member operatively coupled to a second jaw member, the first and second jaw members each comprising a proximal contact region defined by a first width and a distal contact region defined by a second width, wherein the first width is greater than the second width, and wherein the distal contact region comprises a hook shape; a first electrode coupled to the first jaw member, the first electrode configured to deliver energy; and a cutting member slideably receivable within a longitudinal channel defined by the first and second jaw members, wherein the cutting member is deployable along the longitudinal channel.


14. The end effector of clause 13, wherein the cutting member comprises an I-beam.


15. The end effector of clause 13, wherein the first electrode comprises a continuous electrode coupled to the proximal contact region and the distal contact region of the first jaw member.


16. The end effector of clause 15, wherein the energy delivered by the first electrode comprises one of monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof.


17. The end effector of clause 16, wherein the second electrode comprises a continuous electrode coupled to the proximal contact region and the distal contact region of the second jaw member.


18. The end effector of clause 16, comprising a second electrode coupled to the second jaw member, wherein the first electrode comprises a source electrode configured to deliver bipolar electrosurgical energy, and wherein the second electrode comprises a return electrode.


19. The end effector of clause 11, wherein the first width is about three millimeters, and wherein the second width is about five millimeters.


20. An end effector comprising: a first jaw member comprising a band electrode coupled to an outer surface of the first jaw member, wherein the band electrode is configured to lay flush with the first jaw member in a first position, and wherein the band electrode is configured to flex outwardly from the first jaw member in a second position, and wherein the band electrode is configured to deliver energy; and a second jaw member operatively coupled to the first jaw member.


21. The end effector of clause 20, wherein the energy delivered by the band electrode comprises monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof.


22. The end effector of clause 20, comprising: a first electrode disposed on an inner surface of the first jaw member; and a second electrode disposed on an inner surface of the second jaw member, wherein the first and second electrodes are configured to deliver energy.


23. The end effector of clause 20, wherein a distal end of the band electrode is fixedly connected to a distal end of the first jaw member, wherein the band electrode is slideably moveable longitudinally relative to the fixed distal end.


24. The end effector of clause 23, wherein the longitudinal movement of the band electrode relative to the fixed distal end causes the band electrode to flex outwardly from the first jaw member.


25. The end effector of clause 24, wherein the first jaw member defines a channel on the outer surface, and wherein the band electrode is positioned within the channel in the first position.

Claims
  • 1. An end effector, comprising: a first jaw member, comprising: a proximal portion;a distal portion;a first tissue-contacting surface extending between the proximal portion and the distal portion that defines a first aperture at the distal portion of the first jaw member, and defines a first channel running longitudinally from the proximal portion to the first aperture such that the first channel connects with the first aperture;a first electrode positioned on a first side of the first tissue-contacting surface relative to the first channel; anda second electrode positioned on a second side of the first tissue-contacting surface opposite the first side, relative to the first channel;wherein the first aperture is defined distal to the first and second electrodes such that a distal end of the first electrode and a distal end of the second electrode are both proximal to a proximal end of the first aperture and a non-electrode space of the first tissue-contacting surface is defined between the first aperture and the first and second electrodes; anda second jaw member operably coupled to the first jaw member, wherein the second jaw member comprises: a proximal portion;a distal portion; anda second tissue-contacting surface extending between the proximal portion and the distal portion, wherein the second tissue-contacting surface defines a second aperture at the distal portion of the second jaw member, and defines a second channel running longitudinally from the proximal portion of the second jaw member to the second aperture such that the second channel connects with the second aperture;wherein:the first jaw member and second jaw member are actuatable to a closed position, the first aperture and the second aperture define a common aperture in the closed position,the first and second jaw members define a longitudinal channel in the closed position formed by the first and second channels,the first aperture is bounded at a distal end of the first aperture at three bounding portions and intersects the longitudinal channel at the proximal end of the first aperture;the second aperture is bounded at a distal end of the second aperture at three bounding portions and intersects the longitudinal channel at a proximal end of the second aperture;the common aperture extends through the first jaw member, from the first tissue-contacting surface to a surface opposite the first tissue-contacting surface, and the second jaw member, from the second tissue-contacting surface to a surface opposite the second tissue-contacting surface, in a direction that the first jaw member and the second jaw member actuate in,the defined longitudinal channel is proximal to the defined common aperture, andthe defined longitudinal channel is configured to slideably receive a cutting member.
  • 2. The end effector of claim 1, wherein the first and second electrodes are configured to deliver at least one of monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or any combination thereof.
  • 3. The end effector of claim 2, wherein the first and second electrodes are configured to deliver bipolar electrosurgical energy and the second jaw member further comprises an energy return path surface electrically coupled to a return conductor.
  • 4. The end effector of claim 1, wherein the defined common aperture is configured to grip tissue.
  • 5. A surgical instrument, comprising: a handle;an actuator; andan end effector, comprising: a first jaw comprising a proximal end, a distal end, and a first tissue-contact surface extending from the proximal end to the distal end of the first jaw, wherein the first tissue-contact surface comprises a first electrode and defines at least one opening at the distal end of the first jaw, and defines a first channel running longitudinally from the proximal end to the at least one opening such that the first channel connects with the at least one opening; anda second jaw movably coupled to the first jaw, wherein the second jaw comprises a proximal end, a distal end, and a second tissue-contact surface extending from the proximal end to the distal end of the second jaw, wherein the second tissue-contact surface comprises a second electrode and defines an opening at the distal end of the second jaw, and defines a second channel running longitudinally from the proximal end of the second jaw to the opening such that the second channel connects with the opening;wherein:the actuator is configured to transition the first jaw and the second jaw to a closed position,the at least one opening at the distal end of the first jaw interfaces with the opening at the distal end of the second jaw to define a mutual aperture in the closed position,the first and second jaw define a longitudinal channel in the closed position formed by the first and second channels,the at least one opening of the first jaw is defined distal to the first electrode such that a distal end of the first electrode is proximal to a proximal end of the at least one opening of the first jaw and a non-electrode space of the first tissue-contact surface is defined between the at least one opening of the first jaw and the first electrode;the opening of the second jaw is defined distal to the second electrode such that a distal end of the second electrode is proximal to a proximal end of the opening of the second jaw and a non-electrode space of the second tissue-contact surface is defined between the opening of the second jaw and the second electrode;the at least one opening of the first jaw is bounded at a distal end of the at least one opening at three bounding portions, the distal end of the at least one opening is narrower in width than the proximal end of the at least one opening, and the at least one opening intersects the longitudinal channel at the proximal end of the at least one opening;the opening of the second jaw is bounded at a distal end of the opening at three bounding portions, the distal end of the opening is narrower in width than the proximal end of the opening, and the opening intersects the longitudinal channel at the proximal end of the opening;the mutual aperture extends through the first jaw, from the first tissue-contact surface to a surface opposite the first tissue-contact surface, and the second jaw, from the second tissue-contact surface to a surface opposite the second tissue-contact surface, in a direction that the first jaw and the second jaw actuate in,the defined longitudinal channel is proximal to the defined mutual aperture, andthe defined longitudinal channel is configured to slideably receive a cutting member.
  • 6. The surgical instrument of claim 5, wherein at least one of the first electrode or the second electrode comprises a conductive-resistive matrix.
  • 7. The surgical instrument of claim 5, wherein the first and second electrodes are configured to deliver monopolar electrosurgical energy, bipolar electrosurgical energy, ultrasonic energy, or a combination thereof.
  • 8. The surgical instrument of claim 5, wherein the defined mutual aperture is configured to grip tissue.
  • 9. An end effector, comprising: a first jaw, comprising: a proximal portion;a distal portion; anda first engagement surface comprising a first energy contact surface and defines a first aperture at the distal portion of the first jaw, and defines a first channel running longitudinally from the proximal portion to the first aperture such that the first channel connects with the first aperture; anda second jaw coupled to the first jaw, wherein the second jaw comprises: a proximal portion;a distal portion; anda second engagement surface comprising a second energy contact surface and defines a second aperture at the distal portion of the second jaw, and defines a second channel running longitudinally from the proximal portion of the second jaw to the second aperture such that the second channel connects with the second aperture;wherein:the first and second jaw are actuatable to a closed position,the first and second jaw define a longitudinal channel in the closed position that is formed by the first and second channels, and the first and second aperture define a common aperture in the closed position,the first aperture is defined distal to the first energy contact surface such that a distal end of the first energy contact surface is proximal to a proximal end of the first aperture and a non-energy contact space of the first engagement surface is defined between the first aperture and the first energy contact surface;the second aperture is defined distal to the second energy contact surface such that a distal end of the second energy contact surface is proximal to a proximal end of the second aperture and a non-energy contact space of the second engagement surface is defined between the second aperture and the second energy contact surface;the first aperture is bounded at a distal end of the first aperture at three bounding portions defining sides of a trapezoidal shape together with the proximal end of the first aperture defining a base of the trapezoidal shape, and the first aperture intersects the longitudinal channel at the proximal end of the first aperture;the second aperture is bounded at a distal end of the second aperture at three bounding portions defining sides of a trapezoidal shape together with the proximal end of the second aperture defining a base of the trapezoidal shape, and the second aperture intersects the longitudinal channel at the proximal end of the second aperture;the common aperture extends through the first jaw, from the first engagement surface to a surface opposite the first engagement surface, and the second jaw, from the second engagement surface to a surface opposite the second engagement surface, in a direction that the first jaw and the second jaw actuate in,the defined longitudinal channel is proximal to the defined common aperture, andthe defined longitudinal channel is configured to slideably receive a cutting member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation patent application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/032,391, filed Sep. 20, 2013, entitled MULTI-FUNCTION BI-POLAR FORCEPS, which issued on Nov. 15, 2016 as U.S. Pat. No. 9,492,224, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application 61/707,030, filed on Sep. 28, 2012, entitled MULTI-FUNCTION BI-POLAR FORCEPS, which are hereby incorporated by reference in their entirety.

US Referenced Citations (2293)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4281785 Brooks Aug 1981 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776155 Beaupre et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6117152 Huitema Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7621930 Houser Nov 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7871392 Sartor Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8397971 Yates et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8597193 Grunwald et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Iino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iljima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110190653 Harper Aug 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130338647 Bacher et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140114327 Boudreaux et al. Apr 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140276659 Juergens et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20140330271 Dietz et al. Nov 2014 A1
20150032100 Coulson et al. Jan 2015 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150088124 Wham Mar 2015 A1
20150088178 Stulen et al. Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150182276 Wiener et al. Jul 2015 A1
20150182277 Wiener et al. Jul 2015 A1
20150230853 Johnson et al. Aug 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20150320480 Cosman, Jr. et al. Nov 2015 A1
20150320481 Cosman, Jr. et al. Nov 2015 A1
20150340586 Wiener et al. Nov 2015 A1
20160030076 Faller et al. Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160051317 Boudreaux Feb 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160144204 Akagane May 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175024 Yates et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160175032 Yang Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160228171 Boudreaux Aug 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287311 Friedrichs Oct 2016 A1
20160296249 Robertson Oct 2016 A1
20160296250 Olson et al. Oct 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160302844 Strobl et al. Oct 2016 A1
20160317217 Batross et al. Nov 2016 A1
20160338726 Stulen et al. Nov 2016 A1
20160346001 Vakharia et al. Dec 2016 A1
20160367273 Robertson et al. Dec 2016 A1
20160367281 Gee et al. Dec 2016 A1
20160374708 Wiener et al. Dec 2016 A1
20160374709 Timm et al. Dec 2016 A1
20160374712 Stulen et al. Dec 2016 A1
20160374752 Hancock et al. Dec 2016 A1
20170000512 Conlon et al. Jan 2017 A1
20170000513 Conlon et al. Jan 2017 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170000554 Yates et al. Jan 2017 A1
20170056056 Wiener et al. Mar 2017 A1
20170056058 Voegele et al. Mar 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170086910 Wiener et al. Mar 2017 A1
20170086911 Wiener et al. Mar 2017 A1
20170086912 Wiener et al. Mar 2017 A1
20170086913 Yates et al. Mar 2017 A1
20170086914 Wiener et al. Mar 2017 A1
20170090507 Wiener et al. Mar 2017 A1
20170095267 Messerly et al. Apr 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170105782 Scheib et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170105791 Yates et al. Apr 2017 A1
20170143371 Witt et al. May 2017 A1
20170143877 Witt et al. May 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170189096 Danziger et al. Jul 2017 A1
20170189101 Yates et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170196587 Witt et al. Jul 2017 A1
20170202570 Shelton, IV et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202592 Shelton, IV et al. Jul 2017 A1
20170202593 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170202609 Shelton, IV et al. Jul 2017 A1
20170207467 Shelton, IV et al. Jul 2017 A1
20170209167 Nield Jul 2017 A1
20170238991 Worrell et al. Aug 2017 A1
20170245875 Timm et al. Aug 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170319228 Worrell et al. Nov 2017 A1
20170319265 Yates et al. Nov 2017 A1
20170348064 Stewart et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180036061 Yates et al. Feb 2018 A1
20180036065 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180064961 Wiener et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180098808 Yates et al. Apr 2018 A1
20180116706 Wiener et al. May 2018 A9
20180146976 Clauda et al. May 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20180280083 Parihar et al. Oct 2018 A1
Foreign Referenced Citations (438)
Number Date Country
2003241752 Sep 2003 AU
2535467 Apr 1993 CA
1233944 Nov 1999 CN
1253485 May 2000 CN
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1640365 Jul 2005 CN
1694649 Nov 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
1951333 Apr 2007 CN
101035482 Sep 2007 CN
101040799 Sep 2007 CN
101396300 Apr 2009 CN
101467917 Jul 2009 CN
101474081 Jul 2009 CN
101674782 Mar 2010 CN
101883531 Nov 2010 CN
102160045 Aug 2011 CN
202027624 Nov 2011 CN
102834069 Dec 2012 CN
101313865 Jan 2013 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
4323585 Jan 1995 DE
19608716 Apr 1997 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0342448 Nov 1989 EP
0443256 Aug 1991 EP
0456470 Nov 1991 EP
0238667 Feb 1993 EP
0340803 Aug 1993 EP
0598976 Jun 1994 EP
0630612 Dec 1994 EP
0424685 May 1995 EP
0677275 Oct 1995 EP
0482195 Jan 1996 EP
0695535 Feb 1996 EP
0705571 Apr 1996 EP
0741996 Nov 1996 EP
0612570 Jun 1997 EP
0557806 May 1998 EP
0640317 Sep 1999 EP
1108394 Jun 2001 EP
1138264 Oct 2001 EP
0908148 Jan 2002 EP
1229515 Aug 2002 EP
0722696 Dec 2002 EP
1285634 Feb 2003 EP
0908155 Jun 2003 EP
0705570 Apr 2004 EP
0765637 Jul 2004 EP
0870473 Sep 2005 EP
0624346 Nov 2005 EP
1594209 Nov 2005 EP
1199044 Dec 2005 EP
1609428 Dec 2005 EP
1199043 Mar 2006 EP
1293172 Apr 2006 EP
0875209 May 2006 EP
1433425 Jun 2006 EP
1256323 Aug 2006 EP
1698289 Sep 2006 EP
1704824 Sep 2006 EP
1749479 Feb 2007 EP
1767157 Mar 2007 EP
1254637 Aug 2007 EP
1815950 Aug 2007 EP
1839599 Oct 2007 EP
1844720 Oct 2007 EP
1862133 Dec 2007 EP
1875875 Jan 2008 EP
1878399 Jan 2008 EP
1915953 Apr 2008 EP
1532933 May 2008 EP
1199045 Jun 2008 EP
1707143 Jun 2008 EP
1943957 Jul 2008 EP
1964530 Sep 2008 EP
1972264 Sep 2008 EP
1974771 Oct 2008 EP
1435852 Dec 2008 EP
1498082 Dec 2008 EP
1707131 Dec 2008 EP
1477104 Jan 2009 EP
2014218 Jan 2009 EP
1849424 Apr 2009 EP
2042112 Apr 2009 EP
2042117 Apr 2009 EP
2060238 May 2009 EP
1832259 Jun 2009 EP
2074959 Jul 2009 EP
1810625 Aug 2009 EP
2090256 Aug 2009 EP
2092905 Aug 2009 EP
2105104 Sep 2009 EP
1747761 Oct 2009 EP
2106758 Oct 2009 EP
2111813 Oct 2009 EP
2131760 Dec 2009 EP
1769766 Feb 2010 EP
2151204 Feb 2010 EP
2153791 Feb 2010 EP
2200145 Jun 2010 EP
1214913 Jul 2010 EP
2238938 Oct 2010 EP
2243439 Oct 2010 EP
2298154 Mar 2011 EP
2305144 Apr 2011 EP
1510178 Jun 2011 EP
1946708 Jun 2011 EP
2335630 Jun 2011 EP
1502551 Jul 2011 EP
1728475 Aug 2011 EP
2353518 Aug 2011 EP
2361562 Aug 2011 EP
2365608 Sep 2011 EP
2420197 Feb 2012 EP
2422721 Feb 2012 EP
1927321 Apr 2012 EP
2436327 Apr 2012 EP
2529681 Dec 2012 EP
1767164 Jan 2013 EP
2316359 Mar 2013 EP
2090238 Apr 2013 EP
2578172 Apr 2013 EP
1586275 May 2013 EP
1616529 Sep 2013 EP
1997438 Nov 2013 EP
2508143 Feb 2014 EP
2583633 Oct 2014 EP
2076195 Dec 2015 EP
2113210 Mar 2016 EP
2510891 Jun 2016 EP
2227155 Jul 2016 EP
2859858 Dec 2016 EP
2115068 Jun 1998 ES
1482943 Aug 1977 GB
2032221 Apr 1980 GB
2317566 Apr 1998 GB
2379878 Nov 2004 GB
2472216 Feb 2011 GB
2447767 Aug 2011 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04150847 May 1992 JP
H04152942 May 1992 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H06217988 Aug 1994 JP
H06507081 Aug 1994 JP
H 07500514 Jan 1995 JP
H07508910 Oct 1995 JP
H07308323 Nov 1995 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336544 Dec 1996 JP
H08336545 Dec 1996 JP
H09503146 Mar 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
H10295700 Nov 1998 JP
H11501543 Feb 1999 JP
H11128238 May 1999 JP
H11192235 Jul 1999 JP
H11253451 Sep 1999 JP
H11318918 Nov 1999 JP
2000041991 Feb 2000 JP
2000070279 Mar 2000 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2001502216 Feb 2001 JP
2001309925 Nov 2001 JP
2002059380 Feb 2002 JP
2002177295 Jun 2002 JP
2002186901 Jul 2002 JP
2002204808 Jul 2002 JP
2002238919 Aug 2002 JP
2002263579 Sep 2002 JP
2002301086 Oct 2002 JP
2002306504 Oct 2002 JP
2002330977 Nov 2002 JP
2002542690 Dec 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003510158 Mar 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003530921 Oct 2003 JP
2003310627 Nov 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005040222 Feb 2005 JP
2005066316 Mar 2005 JP
2005074088 Mar 2005 JP
2005507679 Mar 2005 JP
2005534451 Nov 2005 JP
2005337119 Dec 2005 JP
2006006410 Jan 2006 JP
2006068396 Mar 2006 JP
2006075376 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006512149 Apr 2006 JP
2006116194 May 2006 JP
2006158525 Jun 2006 JP
2006217716 Aug 2006 JP
2006218296 Aug 2006 JP
2006288431 Oct 2006 JP
2007050181 Mar 2007 JP
2007-524459 Aug 2007 JP
2007229454 Sep 2007 JP
2007527747 Oct 2007 JP
2007296369 Nov 2007 JP
200801876 Jan 2008 JP
2008018226 Jan 2008 JP
200833644 Feb 2008 JP
2008036390 Feb 2008 JP
2008508065 Mar 2008 JP
2008119250 May 2008 JP
2008515562 May 2008 JP
2008521503 Jun 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2008212679 Sep 2008 JP
2008536562 Sep 2008 JP
2008284374 Nov 2008 JP
2009511206 Mar 2009 JP
2009082711 Apr 2009 JP
2009517181 Apr 2009 JP
4262923 May 2009 JP
2009523567 Jun 2009 JP
2009148557 Jul 2009 JP
2009236177 Oct 2009 JP
2009254819 Nov 2009 JP
2010000336 Jan 2010 JP
2010009686 Jan 2010 JP
2010514923 May 2010 JP
2010121865 Jun 2010 JP
2010534522 Nov 2010 JP
2010540186 Dec 2010 JP
2011505198 Feb 2011 JP
2012075899 Apr 2012 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
5208761 Jun 2013 JP
5714508 May 2015 JP
2015515339 May 2015 JP
5836543 Dec 2015 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2304934 Aug 2007 RU
2405603 Dec 2010 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9222259 Dec 1992 WO
WO-9307817 Apr 1993 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9316646 Sep 1993 WO
WO-9320877 Oct 1993 WO
WO-9322973 Nov 1993 WO
WO-9400059 Jan 1994 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9509572 Apr 1995 WO
WO-9510978 Apr 1995 WO
WO-9534259 Dec 1995 WO
WO-9630885 Oct 1996 WO
WO-9635382 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9710764 Mar 1997 WO
WO-9800069 Jan 1998 WO
WO-9816156 Apr 1998 WO
WO-9826739 Jun 1998 WO
WO-9835621 Aug 1998 WO
WO-9837815 Sep 1998 WO
WO-9840020 Sep 1998 WO
WO-9847436 Oct 1998 WO
WO-9857588 Dec 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-9940857 Aug 1999 WO
WO-9940861 Aug 1999 WO
WO-9952489 Oct 1999 WO
WO-0024330 May 2000 WO
WO-0024331 May 2000 WO
WO-0025691 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0074585 Dec 2000 WO
WO-0124713 Apr 2001 WO
WO-0128444 Apr 2001 WO
WO-0154590 Aug 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-0224080 Mar 2002 WO
WO-0238057 May 2002 WO
WO-02062241 Aug 2002 WO
WO-02080797 Oct 2002 WO
WO-03001986 Jan 2003 WO
WO-03013374 Feb 2003 WO
WO-03020339 Mar 2003 WO
WO-03028541 Apr 2003 WO
WO-03030708 Apr 2003 WO
WO-03068046 Aug 2003 WO
WO-03082133 Oct 2003 WO
WO-2004011037 Feb 2004 WO
WO-2004012615 Feb 2004 WO
WO-2004026104 Apr 2004 WO
WO-2004032754 Apr 2004 WO
WO-2004032762 Apr 2004 WO
WO-2004032763 Apr 2004 WO
WO-2004037095 May 2004 WO
WO-2004060141 Jul 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2004112618 Dec 2004 WO
WO-2005052959 Jun 2005 WO
WO-2005117735 Dec 2005 WO
WO-2005122917 Dec 2005 WO
WO-2006012797 Feb 2006 WO
WO-2006021269 Mar 2006 WO
WO-2006036706 Apr 2006 WO
WO-2006042210 Apr 2006 WO
WO-2006055166 May 2006 WO
WO-2006058223 Jun 2006 WO
WO-2006063199 Jun 2006 WO
WO-2006083988 Aug 2006 WO
WO-2006101661 Sep 2006 WO
WO-2006119139 Nov 2006 WO
WO-2006119376 Nov 2006 WO
WO-2006129465 Dec 2006 WO
WO-2007008703 Jan 2007 WO
WO-2007008710 Jan 2007 WO
WO-2007038538 Apr 2007 WO
WO-2007040818 Apr 2007 WO
WO-2007047380 Apr 2007 WO
WO-2007047531 Apr 2007 WO
WO-2007056590 May 2007 WO
WO-2007087272 Aug 2007 WO
WO-2007089724 Aug 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008016886 Feb 2008 WO
WO-2008020964 Feb 2008 WO
WO-2008042021 Apr 2008 WO
WO-2008045348 Apr 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008051764 May 2008 WO
WO-2008089174 Jul 2008 WO
WO-2008099529 Aug 2008 WO
WO-2008101356 Aug 2008 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2009010565 Jan 2009 WO
WO-2009018067 Feb 2009 WO
WO-2009018406 Feb 2009 WO
WO-2009022614 Feb 2009 WO
WO-2009027065 Mar 2009 WO
WO-2009036818 Mar 2009 WO
WO-2009039179 Mar 2009 WO
WO-2009046234 Apr 2009 WO
WO-2009059741 May 2009 WO
WO-2009073402 Jun 2009 WO
WO-2009082477 Jul 2009 WO
WO-2009088550 Jul 2009 WO
WO-2009120992 Oct 2009 WO
WO-2009141616 Nov 2009 WO
WO-2009149234 Dec 2009 WO
WO-2010017149 Feb 2010 WO
WO-2010017266 Feb 2010 WO
WO-2010068783 Jun 2010 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044338 Apr 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2011084768 Jul 2011 WO
WO-2011089717 Jul 2011 WO
WO-2011100321 Aug 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044597 Apr 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2012061722 May 2012 WO
WO-2012128362 Sep 2012 WO
WO-2012135705 Oct 2012 WO
WO-2012135721 Oct 2012 WO
WO-2012150567 Nov 2012 WO
WO-2012166510 Dec 2012 WO
WO-2013018934 Feb 2013 WO
WO-2013034629 Mar 2013 WO
WO-2013062978 May 2013 WO
WO-2013102602 Jul 2013 WO
WO-2013154157 Oct 2013 WO
WO-2014092108 Jun 2014 WO
WO-2015197395 Dec 2015 WO
WO-2016009921 Jan 2016 WO
Non-Patent Literature Citations (52)
Entry
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=Ml&sp=1 . . . , accessed Aug. 25, 2009.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Glaser and Subak-Sharpe,lntegrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Related Publications (1)
Number Date Country
20160270843 A1 Sep 2016 US
Provisional Applications (1)
Number Date Country
61707030 Sep 2012 US
Continuations (1)
Number Date Country
Parent 14032391 Sep 2013 US
Child 15151105 US