Embodiments of the present invention relate generally to the field of medical devices, and particularly to catheters for recording intracardiac electrocardiogram (ECG) signals and/or ablating cardiac tissue.
In some applications, a basket catheter, comprising a large number of electrodes disposed on a plurality of splines, is used to acquire intracardiac electrocardiogram (ECG) signals. Such signals may be used, for example, to construct an electroanatomical map of the heart.
In other applications, a balloon catheter, comprising a plurality of electrodes disposed on a balloon, is used to ablate cardiac tissue, and/or to acquire intracardiac ECG signals.
US Patent Application Publication 2011/0118590, whose disclosure is incorporated herein by reference, describes an interventional system for internal anatomical examination that includes a catheterization device for internal anatomical insertion. The catheterization device includes at least one magnetic field sensor for generating an electrical signal in response to rotational movement of the at least one sensor about an axis through the catheterization device within a magnetic field applied externally to patient anatomy, and a signal interface for buffering the electrical signal for further processing. A signal processor processes the buffered electrical signal to derive a signal indicative of angle of rotation of the catheterization device relative to a reference. The angle of rotation is about an axis through the catheterization device. A reproduction device presents a user with data indicating the angle of rotation of the catheterization device.
US Patent Application Publication 2003/0093067, whose disclosure is incorporated herein by reference, describes systems and methods for imaging a body cavity and for guiding a treatment element within a body cavity. A system may include an imaging subsystem having an imaging device and an image processor that gather image data for the body cavity. A mapping subsystem may be provided, including a mapping device and a map processor, to identify target sites within the body cavity, and provide location data for the sites. The system may also include a location processor coupled to a location element on a treatment device to track the location of the location element. The location of a treatment element is determined by reference to the location element. A treatment subsystem including a treatment device having a treatment element and a treatment delivery source may also be provided. A registration subsystem receives and registers data from the other subsystems, and displays the data.
U.S. Pat. No. 6,272,371, whose disclosure is incorporated herein by reference, describes an invasive probe apparatus including a flexible elongate probe having a distal portion adjacent to a distal end thereof for insertion into the body of a subject, which portion assumes a predetermined curve form when a force is applied thereto. First and second sensors are fixed to the distal portion of the probe in known positions relative to the distal end, which sensors generate signals responsive to bending of the probe. Signal processing circuitry receives the bend responsive signals and processes them to find position and orientation coordinates of at least the first sensor, and to determine the locations of a plurality of points along the length of the distal portion of the probe.
US Patent Application Publication 2006/0025677, whose disclosure is incorporated herein by reference, describes a surgical navigation system for navigating a region of a patient that may include a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits. The dynamic reference frame may be placed on the patient in a precise location for guiding the instruments. The dynamic reference frames may be fixedly placed on the patient. Also the dynamic reference frames may be placed to allow generally natural movements of soft tissue relative to the dynamic reference frames. Also methods are provided to determine positions of the dynamic reference frames. Anatomical landmarks may be determined intra-operatively and without access to the anatomical structure.
U.S. Pat. No. 6,892,091, whose disclosure is incorporated herein by reference, describes an apparatus and method for rapidly generating an electrical map of a chamber of a heart that utilizes a catheter including a body having a proximal end and a distal end. The distal end has a distal tip and an array of non-contact electrodes having a proximal end and a distal end and at least one location sensor. Preferably, two location sensors are utilized. The first location sensor is preferably proximate to the catheter distal tip and the second location sensor is preferably proximate to the proximal end of the non-contact electrode array. The catheter distal end further preferably includes a contact electrode at its distal tip. Preferably, at least one and preferably both of the location sensors provide six degrees of location information. The location sensor is preferably an electromagnetic location sensor. The catheter is used for rapidly generating an electrical map of the heart within at least one cardiac cycle and preferably includes cardiac ablation and post-ablation validation.
There is provided, in accordance with some embodiments of the present invention, apparatus that includes an expandable structure, configured for insertion into a body of a subject, and a plurality of conducting elements coupled to the expandable structure. Each of the conducting elements includes a respective coil, and has an insulated portion that is electrically insulated from tissue of the subject, and an uninsulated portion configured to exchange signals with the tissue, while in contact with the tissue.
In some embodiments, the expandable structure includes a balloon.
In some embodiments, the expandable structure includes a basket.
In some embodiments, each of the conducting elements includes an electrode connected to the coil, the electrode being configured to exchange the signals with the tissue, and the coil being configured to carry the exchanged signals.
In some embodiments, the coil is situated proximally to the electrode to which the coil is connected.
In some embodiments, the coil is a single-loop coil.
In some embodiments, the coil is a helical coil.
In some embodiments, the coil is flat.
In some embodiments, the apparatus further includes two leads connected to each conducting element of the conducting elements, configured to carry the signals between the conducting element and a proximal end of the apparatus.
In some embodiments, at least part of each conducting element of the conducting elements has an electrical resistance that varies in response to strain to which the conducting element is subjected inside the body of the subject.
In some embodiments, each of the conducting elements includes a thermocouple junction.
In some embodiments, the coil includes the uninsulated portion.
There is further provided, in accordance with some embodiments of the present invention, a method that includes receiving from a conducting element, via two leads that connect the conducting element to a proximal end of a catheter, a voltage difference that was induced across the conducting element by a magnetic field. The method further includes, in response to the voltage difference, ascertaining a location of the conducting element, and, while the conducting element is in contact with tissue of a subject, exchanging a signal with the tissue via the conducting element and at least one of the leads.
In some embodiments, the signal is an electrocardiogram (ECG) signal, and exchanging the signal includes acquiring the ECG signal from the tissue.
In some embodiments, the signal is an ablation signal, and exchanging the signal includes passing the ablation signal into the tissue.
In some embodiments, exchanging the signal includes exchanging the signal while the conducting element is inside a body of a subject.
In some embodiments, the conducting element is a single-loop coil.
In some embodiments, the conducting element is a helical coil.
In some embodiments, the voltage difference is a first voltage difference, and the method further includes measuring a temperature, by measuring a second voltage difference across the leads.
In some embodiments, the method further includes measuring a strain exerted on the conducting element, by measuring an electrical resistance of the conducting element.
In some embodiments, the method further includes measuring an impedance between the conducting element and a patch coupled to skin of the subject, by passing an electric current between the conducting element and the patch, wherein the ascertaining of the location is further in response to the measured impedance.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
Embodiments described herein include catheters comprising conducting elements that perform, e.g., simultaneously, a plurality of functions. For example, the conducting elements may function as electromagnetic sensors, by outputting, in the presence of a magnetic field, signals that may be used to ascertain the location and/or orientation of the catheter on which the conducting elements are disposed. In addition, the conducting elements may function as electrodes. For example, the conducting elements may be used to exchange signals with tissue, such as by acquiring ECG signals from tissue, or passing ablating signals into tissue. Alternatively or additionally, the conducting elements may be used to measure impedance, temperature, strain, and/or other relevant parameters.
More particularly, embodiments described herein include a basket catheter that may be used, for example, to build an electroanatomical map. The basket catheter comprises a plurality of splines at its distal end, and further comprises a plurality of helical conducting elements, which are disposed on the splines. During the electroanatomical mapping procedure, the helical conducting elements function as inductors, in that a generated magnetic field induces respective voltage differences across the conducting elements. Based on the induced voltage differences, the respective locations and orientations of the conducting elements—and hence, the location and orientation of the basket catheter—may be precisely determined.
The helical conducting elements additionally function as electrodes for acquiring ECG signals, such that it may not be necessary to equip the basket catheter with separate ECG-acquiring electrodes. For example, an electrically-insulative layer may cover the majority of each of the helical conducting elements, but leave a small portion of each of the helical conducting elements exposed. This exposed portion, when brought into contact with the intracardiac tissue, acquires ECG signals from the tissue.
The helical conducting elements described herein may thus function in two capacities—e.g., simultaneously—during a single procedure. First, they may function as ECG electrodes, by sensing the intracardiac ECG signals. Second, they may function as magnetic-field sensors, by outputting location-indicating signals (in the form of the above-described induced voltages) in response to the generated magnetic field. The conducting elements may thus be described as ECG electrodes that additionally function as magnetic-field sensors, or as magnetic-field sensors that additionally function as ECG electrodes. (Notwithstanding the above, in some embodiments, the conducting elements are used only as magnetic-field sensors, and separate electrodes coupled to the splines are used to acquire the ECG signals.)
Other embodiments described herein include a balloon catheter, comprising a balloon, and a plurality of conducting elements coupled to the balloon. Each one of the conducting elements comprises an electrode, configured to exchange signals with tissue, and a coil that is connected to the electrode. The coil carries the signals that are exchanged with the tissue, and also outputs signals (in the form of induced voltages) in response to a magnetic field. The conducting elements thus function as both magnetic-field sensors and as electrodes. Alternatively or additionally, the conducting elements may measure other parameters, such as impedance, temperature, or strain.
Embodiments described herein further include circuitry for processing signals received from the multi-function conducting elements. For example, the circuitry described herein may generate, based on signals received from the above-described helical conducting elements, a plurality of outputs, which are used by a processor to construct an electroanatomical map. These outputs include a plurality of first outputs, which indicate the electrical activity of the tissue, a plurality of second outputs, which indicate the respective induced voltage differences across the conducting elements, and a plurality of third outputs, which indicate the proximity to the tissue of each of the conducting elements.
Reference is initially made to
While the intracardiac ECG signals are being acquired, a magnetic field is generated by a plurality of magnetic-field generators 30 located underneath subject 26 or otherwise in the vicinity of the subject. (As shown in
Splines 28 may be arranged to define any suitably-shaped basket, such as the spheroidal basket shown in
In some embodiments, the conducting elements are printed onto the splines. For example, each of the conducting elements may comprise electrically-conductive paint that is helically painted onto the splines. In other embodiments, the conducting elements comprise wires that are wound (i.e., coiled) around, and glued or otherwise attached to, the splines. In any case, for embodiments in which the helical conducting elements are on the surface of the splines, an electrically-insulative layer 44 typically covers at least a majority of each of the helical conducting elements. Electrically-insulative layer 44 prevents the turns of any given conducting element from being shorted with each other.
Typically, the electrically-insulative layer does not cover a portion of exactly one respective turn of each of the helical conducting elements. Thus, the electrically-insulative layer prevents shorting of the turns (in that no more than one turn of each conducting element is exposed), but also allows the conducting elements to acquire ECG signals. For example, the enlarged portion of
As noted above, the exposed portion of the conducting element is confined to one turn of the conducting element. This means that the distance between the distalmost exposed portion of the conducting element and the proximal most exposed portion of the conducting element is less than the distance D that separates between successive turns of the conducting element.
In some embodiments, the electrically-insulative layer is contiguous across a plurality of conducting elements. In other embodiments, as depicted in
In some embodiments, alternatively to being disposed on the splines as in
Reference is now made to
Typically, circuitry 48 comprises a first differential amplifier 52a and a second differential amplifier 52b. Connections 50a and 50b are connected to second differential amplifier 52b, while one of the connections—e.g., first connection 50a—is also connected to first differential amplifier 52a. Connections 50a and 50b thus carry inputs to the differential amplifiers, as further described below.
As described above, the exposed portion of each conducting element 24 is brought into contact with intracardiac tissue 56, such that an ECG voltage (referred to above as an “ECG signal”) is transferred to the conducting element from the tissue. (The ECG voltage is generally constant across the conducting element, i.e., the ECG voltage at the terminal of the conducting element is not significantly different from the ECG voltage at the exposed portion of the conducting element.) First connection 50a carries the ECG voltage to first differential amplifier 52a, which generates a first output 54a based on the ECG voltage, by amplifying a difference between the received ECG voltage and a reference voltage. The processor derives electrical-activity information from first output 54a, and uses this information to build the electroanatomical map. Typically, the reference voltage is the voltage at a reference electrode 58 disposed on the basket catheter, e.g., on a central spline of the catheter shaft (not shown in
Connection 50a also carries, to second differential amplifier 52b, the voltage induced by the magnetic field at one terminal of the conducting element, while connection 50b carries the voltage induced at the other terminal. In other words, connections 50a and 50b collectively carry, to the second differential amplifier, the voltage difference that is induced across the conducting element. Based on this voltage difference, second differential amplifier 52b generates a second output 54b, by amplifying the voltage difference. Second output 54b includes anatomical information, in that the second output indicates the position of the conducting element, and hence, the location of the source of the ECG signal. The processor derives this anatomical information from the second output, and then, in building the electroanatomical map, combines this anatomical information with the electrical-activity information derived from the first output.
Typically, circuitry 48 further comprises a current source, or, as in
It is noted that the ECG voltage, the induced voltage, and the proximity-indicating voltage are of sufficiently different frequencies, such that the three voltages may be simultaneously carried on connection 50a (and hence, simultaneously received by the circuitry). Thus, first output 54a, second output 54b, and third output 54c may be generated at the same time. In some embodiments, an adder 61 adds the first output, the second output, and the third output, yielding a combined output 64 having a plurality of components at various frequencies. Combined output 64 is then passed to an analog-to-digital converter (ADC) 66, which converts the combined output to a digital signal that is passed to the processor.
Although, for simplicity, only a single helical conducting element 24 is shown in
As indicated by the three-dot sequences in the figure, the configuration shown in
It is emphasized that the principles described herein may be applied in many ways. For example, the scope of the present disclosure includes using each of one or more coils, and/or other conducting elements, for both (i) magnetic tracking, and (ii) exchanging signals with tissue, in any relevant application. (Circuitry described with reference to
For example, reference is now made to
In some embodiments, each conducting element 74 comprises an electrode 78, configured to exchange signals with tissue, and a coil 80 electrically connected to electrode 78. As opposed to coils 80, which are generally electrically insulated from the tissue, electrodes 78 are not insulated, such that the electrodes may make electrical contact with the tissue. Leads (or “connections”) 88, which run proximally-distally through shaft 82, connect the conducting elements to the proximal end of the catheter, which is connected to console 36 (
Following the insertion of catheter 72 into the heart of a subject (as generally depicted in
As shown in
Coils 80 also output location-indicating signals in response to a magnetic field. In particular, in the presence of an externally-applied magnetic field, an alternating current (AC) voltage is induced in the coil, creating an AC voltage difference between the two terminals 92 of each coil, this voltage difference indicating the location and/or orientation of the coil relative to magnetic-field generators 30 (
(The “terminals” of the coil are the two points, at the proximal end of the coil, at which the coil becomes effectively closed, such that the coil meets, or “becomes,” leads 88. At the proximal end of the coil, leads 88 may be in mechanical (but not electrical) contact with one another, and, in some embodiments, may cross over one another.)
The location-indicating signals from the conducting elements may be used to guide the conducting elements to the appropriate location(s) for signal exchange. For example, while a particular conducting element is in contact with tissue, a location-indicating signal may be received from the conducting element. If the location indicated by the location-indicating signal is a desired location for signal exchange, a signal may be exchanged with the tissue via the conducting element (and in particular, the electrode belonging to the conducting element) and at least one of its leads. Otherwise, the position and/or orientation of catheter 72 may be adjusted as appropriate, prior to the signal exchange.
Each coil may be situated proximally or distally to the electrode to which the coil is connected. Typically, as shown, the coil is flat, i.e., it is not a barrel coil, such that the coil does not overly protrude from the surface of the balloon. Typically, as shown, each coil is a single-loop coil. In some embodiments, as shown, the coil is shaped to define a polygon, e.g., a five-sided polygon. Alternatively, the coil may have any other suitable shape, such as that of a circle or ellipse. As shown, the coil may be connected to the electrode (e.g., at the “base” of the polygon) by a connecting wire 90.
In some embodiments, each coil 80 also functions as an electrode. For example, each coil may comprise, in addition to an insulated portion that is electrically insulated from the tissue, an uninsulated portion. This uninsulated portion, while in contact with the tissue, exchanges signals, such as ECG signals and ablation signals, with the tissue. The coil thus performs at least three functions: (i) the exchange of signals with the tissue, (ii) the carrying of these signals to or from the tissue, and (iii) the output of voltage differences in response to a magnetic field. It is noted that a conducting element 74 that comprises such a coil does not necessarily comprise an electrode 78 that is separate from the coil, since the coil may already perform the function of electrode 78.
In some embodiments, at least part of each of the conducting elements has an electrical resistance that varies in response to strain to which the conducting element is subjected inside the body of the subject. For example, coil 80, in whole or in part, may be made of a biocompatible strain-sensitive material, and/or may have a form that renders the coil sensitive to strain. In such embodiments, the strain exerted on each of the conducting elements may be measured, by measuring the electrical resistance of the conducting elements. For example, a current of known amplitude (and a frequency different from that of the generated magnetic field) may be passed through each of the conducting elements via the leads connected thereto, and the resulting voltage between the proximal terminals of the leads may be measured. This voltage, divided by the amplitude of the current (and taking into account the electrical resistance of the leads), gives the electrical resistance of the conducting element, which in turn indicates the magnitude of the strain applied to the conducting element. The strain applied to the catheter may then be derived from the strains that were measured for the conducting elements.
Alternatively or additionally, each of the conducting elements may comprise a thermocouple junction. In other words, each of the conducting elements may comprise two portions, made of different metals, connected to one another at a temperature-sensing junction, such that each of the conducting elements functions as a thermocouple temperature sensor. For example, a portion of coil 80 may be made of copper, and another portion of the coil may be made of constantan, the copper and constantan being connected to one another at a thermocouple junction. Such a junction may be located, for example, at the distal end of coil 80, e.g., at the point at which coil 80 meets connecting wire 90. Alternatively, such a junction may be located anywhere else along coil 80, or along one of leads 88. In such embodiments, a thermocouple junction may be used to measure the temperature of the tissue and/or of the ambient environment. For example, while a thermocouple junction is contacting the subject's tissue, the temperature of the tissue may be measured, by measuring the voltage difference across the leads. (This voltage is a direct current (DC) voltage, such that it may be differentiated from the alternating voltage induced by the generated magnetic field.)
Alternatively or additionally, an electric current may be passed between the conducting element and a patch coupled to skin of the subject, such as to measure the impedance between the conducting element and the patch. Such an impedance measurement may be used, for example, for an impedance-based tracking system, whereby the location of the conducting element is ascertained in response to the measured impedance, alternatively or additionally to being ascertained in response to the voltage induced in the conducting element by a generated magnetic field.
It is noted that the above-described strain, temperature, and impedance measurements may also be performed by conducting elements 24, described above with respect to
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of embodiments of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description. Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that to the extent any terms are defined in these incorporated documents in a manner that conflicts with the definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.
The present application is a continuing application under 35 USC § 120 and claims the benefits of prior U.S. patent application Ser. No. 15/359,838 filed Nov. 23, 2016, now allowed, which prior application is a continuation-in-part of, and claims the benefit of, U.S. patent application Ser. No. 15/177,775, entitled “Dual-function sensors for a basket catheter,” filed Jun. 9, 2016, whose disclosure is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D123782 | Paul | Dec 1940 | S |
3316896 | Louis | May 1967 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4587975 | Salo et al. | May 1986 | A |
4699147 | Chilson et al. | Oct 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4805621 | Heinze et al. | Feb 1989 | A |
4940064 | Desai | Jul 1990 | A |
5178957 | Kolpe et al. | Jan 1993 | A |
5215103 | Desai | Jun 1993 | A |
5255679 | Imran | Oct 1993 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5324284 | Imran | Jun 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5365926 | Desai | Nov 1994 | A |
5396887 | Imran | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5415166 | Imran | May 1995 | A |
5429617 | Hammersmark et al. | Jul 1995 | A |
5456254 | Pietroski et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5476495 | Kordis et al. | Dec 1995 | A |
5499981 | Kordis | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5526810 | Wang | Jun 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5549108 | Edwards et al. | Aug 1996 | A |
5558073 | Pomeranz et al. | Sep 1996 | A |
5577509 | Panescu et al. | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5609157 | Panescu et al. | Mar 1997 | A |
5628313 | Webster, Jr. | May 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5725525 | Kordis | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5782899 | Imran | Jul 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5823189 | Kordis | Oct 1998 | A |
5860974 | Abele | Jan 1999 | A |
5881727 | Edwards | Mar 1999 | A |
5893847 | Kordis | Apr 1999 | A |
5904680 | Kordis et al. | May 1999 | A |
5911739 | Kordis et al. | Jun 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5968040 | Swanson et al. | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6042580 | Simpson | Mar 2000 | A |
6050267 | Nardella et al. | Apr 2000 | A |
6070094 | Swanson et al. | May 2000 | A |
6119030 | Morency | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6171275 | Webster, Jr. | Jan 2001 | B1 |
6176832 | Habu et al. | Jan 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6216044 | Kordis | Apr 2001 | B1 |
6226542 | Reisfeld | May 2001 | B1 |
6233491 | Kordis et al. | May 2001 | B1 |
6272371 | Shlomo | Aug 2001 | B1 |
6301496 | Reisfeld | Oct 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6332880 | Yang et al. | Dec 2001 | B1 |
6380957 | Banning | Apr 2002 | B1 |
6402740 | Ellis et al. | Jun 2002 | B1 |
6428537 | Swanson et al. | Aug 2002 | B1 |
D462389 | Provence et al. | Sep 2002 | S |
6456864 | Swanson et al. | Sep 2002 | B1 |
6471693 | Carroll et al. | Oct 2002 | B1 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6569160 | Goldin et al. | May 2003 | B1 |
6574492 | Ben-Haim et al. | Jun 2003 | B1 |
6584345 | Govari | Jun 2003 | B2 |
6600948 | Ben-Haim et al. | Jul 2003 | B2 |
6656174 | Hegde et al. | Dec 2003 | B1 |
6735465 | Panescu | May 2004 | B2 |
6738655 | Sen et al. | May 2004 | B1 |
6741878 | Fuimaono et al. | May 2004 | B2 |
6748255 | Fuimaono et al. | Jun 2004 | B2 |
6780183 | Jimenez, Jr. et al. | Aug 2004 | B2 |
6785571 | Glossop | Aug 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6866662 | Fuimaono et al. | Mar 2005 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6893433 | Lentz | May 2005 | B2 |
6970730 | Fuimaono et al. | Nov 2005 | B2 |
6973340 | Fuimaono et al. | Dec 2005 | B2 |
6980858 | Fuimaono et al. | Dec 2005 | B2 |
6986744 | Krivitski | Jan 2006 | B1 |
6987995 | Drysen | Jan 2006 | B2 |
6997924 | Schwartz et al. | Feb 2006 | B2 |
7048734 | Fleischman et al. | May 2006 | B1 |
7142903 | Rodriguez et al. | Nov 2006 | B2 |
7149563 | Fuimaono et al. | Dec 2006 | B2 |
7156816 | Schwartz et al. | Jan 2007 | B2 |
7255695 | Falwell et al. | Aug 2007 | B2 |
7257434 | Fuimaono et al. | Aug 2007 | B2 |
7274957 | Drysen | Sep 2007 | B2 |
7340307 | Maguire et al. | Mar 2008 | B2 |
7377906 | Selkee | May 2008 | B2 |
7399299 | Daniel et al. | Jul 2008 | B2 |
7410486 | Fuimaono et al. | Aug 2008 | B2 |
7442190 | Abbound et al. | Oct 2008 | B2 |
7522950 | Fuimaono et al. | Apr 2009 | B2 |
7536218 | Govari et al. | May 2009 | B2 |
7591799 | Selkee | Sep 2009 | B2 |
7593760 | Rodriguez et al. | Sep 2009 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
RE41334 | Beatty et al. | May 2010 | E |
7720517 | Drysen | May 2010 | B2 |
7756576 | Levin | Jul 2010 | B2 |
7842031 | Abboud et al. | Nov 2010 | B2 |
7846157 | Kozel | Dec 2010 | B2 |
7853302 | Rodriguez et al. | Dec 2010 | B2 |
7930018 | Harlev et al. | Apr 2011 | B2 |
8000765 | Rodriguez et al. | Aug 2011 | B2 |
8007495 | McDaniel et al. | Aug 2011 | B2 |
8021327 | Selkee | Sep 2011 | B2 |
8048032 | Root et al. | Nov 2011 | B2 |
8048063 | Aeby et al. | Nov 2011 | B2 |
8097926 | De Graff et al. | Jan 2012 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8167845 | Wang et al. | May 2012 | B2 |
8224416 | De La Rama et al. | Jul 2012 | B2 |
8231617 | Satake | Jul 2012 | B2 |
8235988 | Davis et al. | Aug 2012 | B2 |
8267932 | Baxter et al. | Sep 2012 | B2 |
8275440 | Rodriguez et al. | Sep 2012 | B2 |
8346339 | Kordis et al. | Jan 2013 | B2 |
8348888 | Selkee | Jan 2013 | B2 |
8357152 | Govari et al. | Jan 2013 | B2 |
D682289 | DiJulio et al. | May 2013 | S |
D682291 | Baek et al. | May 2013 | S |
8435232 | Aeby et al. | May 2013 | B2 |
8447377 | Harlev et al. | May 2013 | B2 |
8498686 | Grunewald | Jul 2013 | B2 |
8517999 | Pappone et al. | Aug 2013 | B2 |
D690318 | Kluttz et al. | Sep 2013 | S |
8545490 | Mihajlovic et al. | Oct 2013 | B2 |
8560086 | Just et al. | Oct 2013 | B2 |
8567265 | Aeby et al. | Oct 2013 | B2 |
D694652 | Tompkin | Dec 2013 | S |
8641709 | Sauvageau et al. | Feb 2014 | B2 |
8712550 | Grunewald | Apr 2014 | B2 |
8721590 | Seward et al. | May 2014 | B2 |
8755861 | Harlev et al. | Jun 2014 | B2 |
8777161 | Pollock et al. | Jul 2014 | B2 |
8825130 | Just et al. | Sep 2014 | B2 |
D716340 | Bresin et al. | Oct 2014 | S |
8852181 | Malecki et al. | Oct 2014 | B2 |
8906011 | Gelbart et al. | Dec 2014 | B2 |
8918184 | Torgerson et al. | Dec 2014 | B1 |
D720766 | Mandal et al. | Jan 2015 | S |
D721379 | Moon et al. | Jan 2015 | S |
8945120 | McDaniel et al. | Feb 2015 | B2 |
D724618 | Shin | Mar 2015 | S |
8979839 | De La Rama et al. | Mar 2015 | B2 |
8998893 | Avitall | Apr 2015 | B2 |
D729263 | Ahn et al. | May 2015 | S |
9037264 | Just et al. | May 2015 | B2 |
9060756 | Bencini et al. | Jun 2015 | B2 |
9089350 | Willard | Jul 2015 | B2 |
D736780 | Wang | Aug 2015 | S |
9126023 | Sahatjian et al. | Sep 2015 | B1 |
9131980 | Bloom | Sep 2015 | B2 |
D740308 | Kim et al. | Oct 2015 | S |
D743424 | Danielyan et al. | Nov 2015 | S |
D744000 | Villamor et al. | Nov 2015 | S |
9173758 | Brister et al. | Nov 2015 | B2 |
9179963 | Ben-Ezra et al. | Nov 2015 | B2 |
9204929 | Solis | Dec 2015 | B2 |
D747742 | Fan et al. | Jan 2016 | S |
D750644 | Bhutani et al. | Mar 2016 | S |
9277960 | Weinkam et al. | Mar 2016 | B2 |
9283034 | Katoh et al. | Mar 2016 | B2 |
9289141 | Lowery et al. | Mar 2016 | B2 |
D753690 | Vazquez et al. | Apr 2016 | S |
9314208 | Altmann et al. | Apr 2016 | B1 |
9320631 | Moore et al. | Apr 2016 | B2 |
9339331 | Tegg et al. | May 2016 | B2 |
9345540 | Mallin et al. | May 2016 | B2 |
D759673 | Looney et al. | Jun 2016 | S |
D759675 | Looney et al. | Jun 2016 | S |
D764500 | Wang | Aug 2016 | S |
D765709 | Gagnier | Sep 2016 | S |
D767616 | Jones et al. | Sep 2016 | S |
D768696 | Gagnier | Oct 2016 | S |
9486282 | Solis | Nov 2016 | B2 |
9554718 | Bar-Tal et al. | Jan 2017 | B2 |
D782686 | Werneth et al. | Mar 2017 | S |
9585588 | Marecki et al. | Mar 2017 | B2 |
9597036 | Aeby et al. | Mar 2017 | B2 |
D783037 | Hariharan et al. | Apr 2017 | S |
9655677 | Salahieh et al. | May 2017 | B2 |
9687297 | Just et al. | Jun 2017 | B2 |
D791805 | Segars | Jul 2017 | S |
9693733 | Altmann et al. | Jul 2017 | B2 |
9782099 | Williams et al. | Oct 2017 | B2 |
9788895 | Solis | Oct 2017 | B2 |
9795442 | Salahieh et al. | Oct 2017 | B2 |
9801681 | Laske et al. | Oct 2017 | B2 |
9814618 | Nguyen et al. | Nov 2017 | B2 |
9833161 | Govari | Dec 2017 | B2 |
9894756 | Weinkam et al. | Feb 2018 | B2 |
9895073 | Solis | Feb 2018 | B2 |
9907609 | Cao et al. | Mar 2018 | B2 |
9907610 | Beeckler et al. | Mar 2018 | B2 |
9956035 | Govari et al. | May 2018 | B2 |
9974460 | Wu et al. | May 2018 | B2 |
9986949 | Govari et al. | Jun 2018 | B2 |
9993160 | Salvestro et al. | Jun 2018 | B2 |
10014607 | Govari et al. | Jul 2018 | B1 |
10028376 | Weinkam et al. | Jul 2018 | B2 |
10034637 | Harlev et al. | Jul 2018 | B2 |
10039494 | Altmann et al. | Aug 2018 | B2 |
10045707 | Govari | Aug 2018 | B2 |
10078713 | Auerbach et al. | Sep 2018 | B2 |
10111623 | Jung et al. | Oct 2018 | B2 |
10130420 | Basu et al. | Nov 2018 | B2 |
10136828 | Houben et al. | Nov 2018 | B2 |
10143394 | Solis | Dec 2018 | B2 |
10172536 | Maskara et al. | Jan 2019 | B2 |
10182762 | Just et al. | Jan 2019 | B2 |
10194818 | Williams et al. | Feb 2019 | B2 |
10201311 | Chou et al. | Feb 2019 | B2 |
10219860 | Harlev et al. | Mar 2019 | B2 |
10219861 | Just et al. | Mar 2019 | B2 |
10231328 | Weinkam et al. | Mar 2019 | B2 |
10238309 | Bar-Tal et al. | Mar 2019 | B2 |
10278590 | Salvestro et al. | May 2019 | B2 |
D851774 | Werneth et al. | Jun 2019 | S |
10314505 | Williams et al. | Jun 2019 | B2 |
10314507 | Govari et al. | Jun 2019 | B2 |
10314648 | Ge et al. | Jun 2019 | B2 |
10314649 | Bakos et al. | Jun 2019 | B2 |
10349855 | Zeidan et al. | Jul 2019 | B2 |
10350003 | Weinkam et al. | Jul 2019 | B2 |
10362991 | Tran et al. | Jul 2019 | B2 |
10375827 | Weinkam et al. | Aug 2019 | B2 |
10376170 | Quinn et al. | Aug 2019 | B2 |
10376221 | Iyun et al. | Aug 2019 | B2 |
10398348 | Osadchy et al. | Sep 2019 | B2 |
10403053 | Katz et al. | Sep 2019 | B2 |
D861717 | Brekke et al. | Oct 2019 | S |
10441188 | Katz et al. | Oct 2019 | B2 |
10470682 | Deno et al. | Nov 2019 | B2 |
10470714 | Altmann et al. | Nov 2019 | B2 |
10482198 | Auerbach et al. | Nov 2019 | B2 |
10492857 | Guggenberger et al. | Dec 2019 | B2 |
10542620 | Weinkam et al. | Jan 2020 | B2 |
10575743 | Basu et al. | Mar 2020 | B2 |
10575745 | Solis | Mar 2020 | B2 |
10582871 | Williams et al. | Mar 2020 | B2 |
10582894 | Ben Zrihem et al. | Mar 2020 | B2 |
10596346 | Aeby et al. | Mar 2020 | B2 |
10602947 | Govari et al. | Mar 2020 | B2 |
10617867 | Viswanathan et al. | Apr 2020 | B2 |
10660702 | Viswanathan et al. | May 2020 | B2 |
10667753 | Werneth et al. | Jun 2020 | B2 |
10674929 | Houben et al. | Jun 2020 | B2 |
10681805 | Weinkam et al. | Jun 2020 | B2 |
10682181 | Cohen et al. | Jun 2020 | B2 |
10687892 | Long et al. | Jun 2020 | B2 |
10688278 | Beeckler et al. | Jun 2020 | B2 |
10702178 | Dahlen et al. | Jul 2020 | B2 |
10716477 | Salvestro et al. | Jul 2020 | B2 |
10758304 | Aujla | Sep 2020 | B2 |
10765371 | Hayam et al. | Sep 2020 | B2 |
10772566 | Aujila | Sep 2020 | B2 |
10799281 | Goertzen et al. | Oct 2020 | B2 |
10842558 | Harlev et al. | Nov 2020 | B2 |
10842561 | Viswanathan et al. | Nov 2020 | B2 |
10863914 | Govari et al. | Dec 2020 | B2 |
10881376 | Shemesh et al. | Jan 2021 | B2 |
10898139 | Guta et al. | Jan 2021 | B2 |
10905329 | Bar-Tal et al. | Feb 2021 | B2 |
10912484 | Ziv-Ari et al. | Feb 2021 | B2 |
10918306 | Govari et al. | Feb 2021 | B2 |
10939871 | Altmann et al. | Mar 2021 | B2 |
10952795 | Cohen et al. | Mar 2021 | B2 |
10973426 | Williams et al. | Apr 2021 | B2 |
10973461 | Baram et al. | Apr 2021 | B2 |
10987045 | Basu et al. | Apr 2021 | B2 |
11006902 | Bonyak et al. | May 2021 | B1 |
11040208 | Govari et al. | Jun 2021 | B1 |
11045628 | Beeckler et al. | Jun 2021 | B2 |
11051877 | Sliwa et al. | Jul 2021 | B2 |
11109788 | Rottmann et al. | Sep 2021 | B2 |
11116435 | Urman et al. | Sep 2021 | B2 |
11129574 | Cohen et al. | Sep 2021 | B2 |
11160482 | Solis | Nov 2021 | B2 |
11164371 | Yellin et al. | Nov 2021 | B2 |
20010031961 | Hooven | Oct 2001 | A1 |
20020002369 | Hood | Jan 2002 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020068931 | Wong et al. | Jun 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020160134 | Ogushi et al. | Oct 2002 | A1 |
20030018327 | Truckai et al. | Jan 2003 | A1 |
20030028183 | Sanchez et al. | Feb 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030060820 | Maguire et al. | Mar 2003 | A1 |
20030093067 | Panescu | May 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20040122445 | Butler et al. | Jun 2004 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040210121 | Fuimaono et al. | Oct 2004 | A1 |
20040225285 | Gibson | Nov 2004 | A1 |
20050033135 | Govari | Feb 2005 | A1 |
20050070887 | Taimisto et al. | Mar 2005 | A1 |
20050119686 | Clubb | Jun 2005 | A1 |
20060009689 | Fuimaono et al. | Jan 2006 | A1 |
20060009690 | Fuimaono et al. | Jan 2006 | A1 |
20060013595 | Trezza et al. | Jan 2006 | A1 |
20060025677 | Verard et al. | Feb 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060100669 | Fuimaono et al. | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20070071792 | Varner et al. | Mar 2007 | A1 |
20070080322 | Walba | Apr 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070093806 | Desai et al. | Apr 2007 | A1 |
20070276212 | Fuimaono et al. | Nov 2007 | A1 |
20070287994 | Patel | Dec 2007 | A1 |
20080018891 | Hell et al. | Jan 2008 | A1 |
20080021313 | Eidenschink et al. | Jan 2008 | A1 |
20080039790 | Hasebe | Feb 2008 | A1 |
20080051707 | Phan et al. | Feb 2008 | A1 |
20080140072 | Stangenes et al. | Jun 2008 | A1 |
20080183132 | Davies et al. | Jul 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080202637 | Hector et al. | Aug 2008 | A1 |
20080208186 | Slater | Aug 2008 | A1 |
20080234564 | Beatty et al. | Sep 2008 | A1 |
20080249463 | Pappone et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080281312 | Werneth et al. | Nov 2008 | A1 |
20090163890 | Clifford et al. | Jun 2009 | A1 |
20090182318 | Abboud et al. | Jul 2009 | A1 |
20090221907 | Bar-Tal | Sep 2009 | A1 |
20090270850 | Zhou et al. | Oct 2009 | A1 |
20100069836 | Satake | Mar 2010 | A1 |
20100114269 | Wittenberger et al. | May 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100222664 | Lemon et al. | Sep 2010 | A1 |
20100234746 | Sebelius | Sep 2010 | A1 |
20100256629 | Wylie et al. | Oct 2010 | A1 |
20100324552 | Kauphusman et al. | Dec 2010 | A1 |
20110004087 | Fish et al. | Jan 2011 | A1 |
20110028848 | Shaquer et al. | Feb 2011 | A1 |
20110118590 | Zhang | May 2011 | A1 |
20110118632 | Sinelnikov et al. | May 2011 | A1 |
20110118726 | De La Rama et al. | May 2011 | A1 |
20110130648 | Beeckler et al. | Jun 2011 | A1 |
20110160574 | Harlev et al. | Jun 2011 | A1 |
20110190625 | Harlev et al. | Aug 2011 | A1 |
20110245756 | Arora et al. | Oct 2011 | A1 |
20110264000 | Paul et al. | Oct 2011 | A1 |
20110282338 | Fojtik | Nov 2011 | A1 |
20110295248 | Wallace et al. | Dec 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20110301597 | McDaniel et al. | Dec 2011 | A1 |
20110313286 | Whayne et al. | Dec 2011 | A1 |
20120017923 | Sobe | Jan 2012 | A1 |
20120019107 | Gabl et al. | Jan 2012 | A1 |
20120029511 | Smith et al. | Feb 2012 | A1 |
20120065503 | Rogers et al. | Mar 2012 | A1 |
20120071870 | Salahieh et al. | Mar 2012 | A1 |
20120079427 | Carmichael et al. | Mar 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120101538 | Ballakur et al. | Apr 2012 | A1 |
20120130229 | Zellers et al. | May 2012 | A1 |
20120143177 | Avitall | Jun 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120172761 | Meller et al. | Jul 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20120197100 | Razavi et al. | Aug 2012 | A1 |
20120209260 | Lambert et al. | Aug 2012 | A1 |
20120323235 | Danek et al. | Dec 2012 | A1 |
20130085360 | Grunewald | Apr 2013 | A1 |
20130090649 | Smith et al. | Apr 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130109982 | Sato et al. | May 2013 | A1 |
20130150693 | D'Angelo et al. | Jun 2013 | A1 |
20130165916 | Mathur et al. | Jun 2013 | A1 |
20130165941 | Murphy | Jun 2013 | A1 |
20130165990 | Mathur et al. | Jun 2013 | A1 |
20130169624 | Bourier et al. | Jul 2013 | A1 |
20130172872 | Subramaniam et al. | Jul 2013 | A1 |
20130172883 | Lopes et al. | Jul 2013 | A1 |
20130178850 | Lopes et al. | Jul 2013 | A1 |
20130190587 | Lopes et al. | Jul 2013 | A1 |
20130261692 | Cardinal et al. | Oct 2013 | A1 |
20130274562 | Ghaffari et al. | Oct 2013 | A1 |
20130274658 | Steinke et al. | Oct 2013 | A1 |
20130281813 | Markowitz et al. | Oct 2013 | A1 |
20130281997 | Davie | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130296679 | Condie et al. | Nov 2013 | A1 |
20130296852 | Madjarov et al. | Nov 2013 | A1 |
20130318439 | Landis et al. | Nov 2013 | A1 |
20140012242 | Lee et al. | Jan 2014 | A1 |
20140018788 | Engelman et al. | Jan 2014 | A1 |
20140025069 | Willard et al. | Jan 2014 | A1 |
20140031813 | Tellio et al. | Jan 2014 | A1 |
20140051968 | Isham et al. | Feb 2014 | A1 |
20140052118 | Laske et al. | Feb 2014 | A1 |
20140058197 | Salahieh et al. | Feb 2014 | A1 |
20140058371 | Krishnan | Feb 2014 | A1 |
20140107453 | Maskara et al. | Apr 2014 | A1 |
20140121470 | Scharf et al. | May 2014 | A1 |
20140148805 | Stewart et al. | May 2014 | A1 |
20140180147 | Thakur et al. | Jun 2014 | A1 |
20140180151 | Maskara et al. | Jun 2014 | A1 |
20140180152 | Maskara et al. | Jun 2014 | A1 |
20140227437 | DeBoer et al. | Aug 2014 | A1 |
20140228838 | Kirschenman | Aug 2014 | A1 |
20140243821 | Salahieh et al. | Aug 2014 | A1 |
20140257069 | Eliason et al. | Sep 2014 | A1 |
20140275993 | Ballakur | Sep 2014 | A1 |
20140276712 | Mallin et al. | Sep 2014 | A1 |
20140276756 | Hill | Sep 2014 | A1 |
20140276811 | Koblish et al. | Sep 2014 | A1 |
20140288546 | Sherman et al. | Sep 2014 | A1 |
20140309512 | Govari et al. | Oct 2014 | A1 |
20140330266 | Thompson et al. | Nov 2014 | A1 |
20140357956 | Salahieh et al. | Dec 2014 | A1 |
20150005799 | Lindquist et al. | Jan 2015 | A1 |
20150011991 | Buysman et al. | Jan 2015 | A1 |
20150025532 | Hanson et al. | Jan 2015 | A1 |
20150025533 | Groff et al. | Jan 2015 | A1 |
20150045863 | Litscher et al. | Feb 2015 | A1 |
20150057519 | Ben-David et al. | Feb 2015 | A1 |
20150057655 | Osypka | Feb 2015 | A1 |
20150067512 | Roswell | Mar 2015 | A1 |
20150080693 | Solis | Mar 2015 | A1 |
20150080883 | Haverkost et al. | Mar 2015 | A1 |
20150105770 | Amit | Apr 2015 | A1 |
20150105774 | Lindquist et al. | Apr 2015 | A1 |
20150112256 | Byrne et al. | Apr 2015 | A1 |
20150112321 | Cadouri | Apr 2015 | A1 |
20150119670 | Madjarov et al. | Apr 2015 | A1 |
20150119875 | Fischell et al. | Apr 2015 | A1 |
20150119878 | Heisel et al. | Apr 2015 | A1 |
20150133919 | McDaniel et al. | May 2015 | A1 |
20150141982 | Lee | May 2015 | A1 |
20150157382 | Avitall et al. | Jun 2015 | A1 |
20150157391 | Ben-Ezra et al. | Jun 2015 | A1 |
20150208942 | Bar-Tal et al. | Jul 2015 | A1 |
20150216591 | Cao et al. | Aug 2015 | A1 |
20150216650 | Shaltis | Aug 2015 | A1 |
20150238275 | Kung et al. | Aug 2015 | A1 |
20150250424 | Govari et al. | Sep 2015 | A1 |
20150265329 | Lalonde et al. | Sep 2015 | A1 |
20150265339 | Lindquist et al. | Sep 2015 | A1 |
20150265812 | Lalonde | Sep 2015 | A1 |
20150270634 | Buesseler et al. | Sep 2015 | A1 |
20150272667 | Govari et al. | Oct 2015 | A1 |
20150327805 | Ben-Haim | Nov 2015 | A1 |
20150327921 | Govari et al. | Nov 2015 | A1 |
20150341752 | Flynn | Nov 2015 | A1 |
20150342532 | Basu et al. | Dec 2015 | A1 |
20150366608 | Weber et al. | Dec 2015 | A1 |
20160000499 | Lennox et al. | Jan 2016 | A1 |
20160038053 | Bohorquez et al. | Feb 2016 | A1 |
20160051321 | Salahieh et al. | Feb 2016 | A1 |
20160081746 | Solis | Mar 2016 | A1 |
20160085431 | Kim et al. | Mar 2016 | A1 |
20160106499 | Ogata et al. | Apr 2016 | A1 |
20160113582 | Altmann et al. | Apr 2016 | A1 |
20160113709 | Maor | Apr 2016 | A1 |
20160166306 | Pageard | Jun 2016 | A1 |
20160175041 | Govari et al. | Jun 2016 | A1 |
20160183877 | Williams et al. | Jun 2016 | A1 |
20160196635 | Cho et al. | Jul 2016 | A1 |
20160228023 | Govari | Aug 2016 | A1 |
20160228062 | Altmann et al. | Aug 2016 | A1 |
20160256305 | Longo et al. | Sep 2016 | A1 |
20160278853 | Ogle et al. | Sep 2016 | A1 |
20160302858 | Bencini | Oct 2016 | A1 |
20160338770 | Bar-Tal et al. | Nov 2016 | A1 |
20160374748 | Salahieh et al. | Dec 2016 | A9 |
20170027638 | Solis | Feb 2017 | A1 |
20170042614 | Salahieh et al. | Feb 2017 | A1 |
20170042615 | Salahieh et al. | Feb 2017 | A1 |
20170065227 | Marrs et al. | Mar 2017 | A1 |
20170071543 | Basu et al. | Mar 2017 | A1 |
20170071544 | Basu et al. | Mar 2017 | A1 |
20170071665 | Solis | Mar 2017 | A1 |
20170080192 | Giasolli et al. | Mar 2017 | A1 |
20170095173 | Bar-Tal et al. | Apr 2017 | A1 |
20170100187 | Basu et al. | Apr 2017 | A1 |
20170143227 | Marecki et al. | May 2017 | A1 |
20170143359 | Nguyen et al. | May 2017 | A1 |
20170156790 | Aujla | Jun 2017 | A1 |
20170164464 | Weinkam et al. | Jun 2017 | A1 |
20170172442 | Govari | Jun 2017 | A1 |
20170185702 | Auerbach et al. | Jun 2017 | A1 |
20170202515 | Zrihem et al. | Jul 2017 | A1 |
20170221262 | Laughner et al. | Aug 2017 | A1 |
20170224958 | Cummings et al. | Aug 2017 | A1 |
20170265812 | Williams et al. | Sep 2017 | A1 |
20170281031 | Houben et al. | Oct 2017 | A1 |
20170281268 | Tran et al. | Oct 2017 | A1 |
20170296125 | Altmann et al. | Oct 2017 | A1 |
20170296251 | Wu et al. | Oct 2017 | A1 |
20170311829 | Beeckler et al. | Nov 2017 | A1 |
20170311893 | Beeckler et al. | Nov 2017 | A1 |
20170312022 | Beeckler et al. | Nov 2017 | A1 |
20170347896 | Keyes et al. | Dec 2017 | A1 |
20170347959 | Guta et al. | Dec 2017 | A1 |
20170354338 | Levin et al. | Dec 2017 | A1 |
20170354339 | Zeidan et al. | Dec 2017 | A1 |
20170354364 | Bar-Tal et al. | Dec 2017 | A1 |
20180000420 | Romanowski et al. | Jan 2018 | A1 |
20180008203 | Iyun et al. | Jan 2018 | A1 |
20180028084 | Williams et al. | Feb 2018 | A1 |
20180049803 | Solis | Feb 2018 | A1 |
20180074693 | Jones et al. | Mar 2018 | A1 |
20180085064 | Auerbach et al. | Mar 2018 | A1 |
20180110562 | Govari et al. | Apr 2018 | A1 |
20180125575 | Schwartz et al. | May 2018 | A1 |
20180132749 | Govari et al. | May 2018 | A1 |
20180137687 | Katz et al. | May 2018 | A1 |
20180160936 | Govari et al. | Jun 2018 | A1 |
20180160978 | Cohen et al. | Jun 2018 | A1 |
20180168511 | Hall et al. | Jun 2018 | A1 |
20180184982 | Basu et al. | Jul 2018 | A1 |
20180192958 | Wu | Jul 2018 | A1 |
20180206792 | Auerbach et al. | Jul 2018 | A1 |
20180235692 | Efimov et al. | Aug 2018 | A1 |
20180249959 | Osypka | Sep 2018 | A1 |
20180256109 | Wu et al. | Sep 2018 | A1 |
20180256247 | Govari et al. | Sep 2018 | A1 |
20180279954 | Hayam et al. | Oct 2018 | A1 |
20180280080 | Govari et al. | Oct 2018 | A1 |
20180296114 | Welsh et al. | Oct 2018 | A1 |
20180303414 | Toth et al. | Oct 2018 | A1 |
20180310987 | Altmann et al. | Nov 2018 | A1 |
20180311497 | Viswanathan et al. | Nov 2018 | A1 |
20180333162 | Saab | Nov 2018 | A1 |
20180338722 | Altmann et al. | Nov 2018 | A1 |
20180344188 | Govari | Dec 2018 | A1 |
20180344202 | Bar-Tal et al. | Dec 2018 | A1 |
20180344251 | Harlev et al. | Dec 2018 | A1 |
20180344393 | Gruba et al. | Dec 2018 | A1 |
20180360534 | Teplitsky et al. | Dec 2018 | A1 |
20180365355 | Auerbach et al. | Dec 2018 | A1 |
20180368927 | Lyons et al. | Dec 2018 | A1 |
20190000540 | Cohen et al. | Jan 2019 | A1 |
20190008582 | Govari et al. | Jan 2019 | A1 |
20190015007 | Rottmann et al. | Jan 2019 | A1 |
20190030328 | Stewart et al. | Jan 2019 | A1 |
20190053708 | Gliner | Feb 2019 | A1 |
20190059766 | Houben et al. | Feb 2019 | A1 |
20190059818 | Herrera et al. | Feb 2019 | A1 |
20190060622 | Beeckler | Feb 2019 | A1 |
20190069950 | Viswanathan et al. | Mar 2019 | A1 |
20190069954 | Cohen et al. | Mar 2019 | A1 |
20190117111 | Osadchy et al. | Apr 2019 | A1 |
20190117303 | Claude et al. | Apr 2019 | A1 |
20190117315 | Keyes et al. | Apr 2019 | A1 |
20190125439 | Rohl et al. | May 2019 | A1 |
20190133552 | Shemesh et al. | May 2019 | A1 |
20190142293 | Solis | May 2019 | A1 |
20190143079 | Beeckler et al. | May 2019 | A1 |
20190164633 | Ingel et al. | May 2019 | A1 |
20190167137 | Bar-Tal et al. | Jun 2019 | A1 |
20190167140 | Williams et al. | Jun 2019 | A1 |
20190175262 | Govari et al. | Jun 2019 | A1 |
20190175263 | Altmann et al. | Jun 2019 | A1 |
20190183567 | Govari et al. | Jun 2019 | A1 |
20190188909 | Yellin et al. | Jun 2019 | A1 |
20190201664 | Govari | Jul 2019 | A1 |
20190201669 | Govari et al. | Jul 2019 | A1 |
20190209089 | Baram et al. | Jul 2019 | A1 |
20190216346 | Ghodrati et al. | Jul 2019 | A1 |
20190216347 | Ghodrati et al. | Jul 2019 | A1 |
20190217065 | Govari et al. | Jul 2019 | A1 |
20190231421 | Viswanathan et al. | Aug 2019 | A1 |
20190231423 | Weinkam et al. | Aug 2019 | A1 |
20190239811 | Just et al. | Aug 2019 | A1 |
20190246935 | Govari et al. | Aug 2019 | A1 |
20190297441 | Dehe et al. | Sep 2019 | A1 |
20190298441 | Clark et al. | Oct 2019 | A1 |
20190298442 | Ogata et al. | Oct 2019 | A1 |
20190314083 | Herrera et al. | Oct 2019 | A1 |
20190328260 | Zeidan et al. | Oct 2019 | A1 |
20190343580 | Nguyen et al. | Nov 2019 | A1 |
20190365451 | Jung, Jr. | Dec 2019 | A1 |
20200000518 | Kiernan et al. | Jan 2020 | A1 |
20200001054 | Jimenez et al. | Jan 2020 | A1 |
20200008705 | Ziv-Ari et al. | Jan 2020 | A1 |
20200008869 | Byrd | Jan 2020 | A1 |
20200009378 | Stewart et al. | Jan 2020 | A1 |
20200015693 | Beeckler et al. | Jan 2020 | A1 |
20200015890 | To et al. | Jan 2020 | A1 |
20200022653 | Moisa | Jan 2020 | A1 |
20200029845 | Baram et al. | Jan 2020 | A1 |
20200046421 | Govari | Feb 2020 | A1 |
20200046423 | Viswanathan et al. | Feb 2020 | A1 |
20200060569 | Tegg | Feb 2020 | A1 |
20200077959 | Altmann et al. | Mar 2020 | A1 |
20200085497 | Zhang et al. | Mar 2020 | A1 |
20200093539 | Long et al. | Mar 2020 | A1 |
20200129089 | Gliner et al. | Apr 2020 | A1 |
20200129125 | Govari et al. | Apr 2020 | A1 |
20200129128 | Gliner et al. | Apr 2020 | A1 |
20200155226 | Valls et al. | May 2020 | A1 |
20200163707 | Sliwa et al. | May 2020 | A1 |
20200179650 | Beeckler et al. | Jun 2020 | A1 |
20200196896 | Solis | Jun 2020 | A1 |
20200205689 | Squires et al. | Jul 2020 | A1 |
20200205690 | Williams et al. | Jul 2020 | A1 |
20200205737 | Beeckler | Jul 2020 | A1 |
20200205876 | Govari | Jul 2020 | A1 |
20200205892 | Viswanathan et al. | Jul 2020 | A1 |
20200206461 | Govari et al. | Jul 2020 | A1 |
20200206498 | Arora et al. | Jul 2020 | A1 |
20200289197 | Viswanathan et al. | Sep 2020 | A1 |
20200297234 | Houben et al. | Sep 2020 | A1 |
20200297281 | Basu et al. | Sep 2020 | A1 |
20200305726 | Salvestro et al. | Oct 2020 | A1 |
20200305946 | DeSimone et al. | Oct 2020 | A1 |
20200397328 | Altmann et al. | Dec 2020 | A1 |
20200398048 | Krimsky et al. | Dec 2020 | A1 |
20210015549 | Haghighi-Mood et al. | Jan 2021 | A1 |
20210022684 | Govari et al. | Jan 2021 | A1 |
20210045805 | Govari et al. | Feb 2021 | A1 |
20210059549 | Urman et al. | Mar 2021 | A1 |
20210059550 | Urman et al. | Mar 2021 | A1 |
20210059608 | Beeckler et al. | Mar 2021 | A1 |
20210059743 | Govari | Mar 2021 | A1 |
20210059747 | Krans et al. | Mar 2021 | A1 |
20210077184 | Basu et al. | Mar 2021 | A1 |
20210082157 | Rosenberg et al. | Mar 2021 | A1 |
20210085200 | Auerbach et al. | Mar 2021 | A1 |
20210085204 | Auerbach et al. | Mar 2021 | A1 |
20210085215 | Auerbach et al. | Mar 2021 | A1 |
20210085387 | Amit et al. | Mar 2021 | A1 |
20210093292 | Baram et al. | Apr 2021 | A1 |
20210093294 | Shemesh et al. | Apr 2021 | A1 |
20210093374 | Govari et al. | Apr 2021 | A1 |
20210093377 | Herrera et al. | Apr 2021 | A1 |
20210100612 | Baron et al. | Apr 2021 | A1 |
20210113822 | Beeckler et al. | Apr 2021 | A1 |
20210127999 | Govari et al. | May 2021 | A1 |
20210128010 | Govari et al. | May 2021 | A1 |
20210133516 | Govari et al. | May 2021 | A1 |
20210169421 | Govari | Jun 2021 | A1 |
20210169567 | Govari et al. | Jun 2021 | A1 |
20210169568 | Govari et al. | Jun 2021 | A1 |
20210177294 | Gliner et al. | Jun 2021 | A1 |
20210177356 | Gliner et al. | Jun 2021 | A1 |
20210178166 | Govari et al. | Jun 2021 | A1 |
20210186363 | Gliner et al. | Jun 2021 | A1 |
20210187241 | Govari et al. | Jun 2021 | A1 |
20210196372 | Altmann et al. | Jul 2021 | A1 |
20210196394 | Govari et al. | Jul 2021 | A1 |
20210212591 | Govari et al. | Jul 2021 | A1 |
20210219904 | Yarnitsky et al. | Jul 2021 | A1 |
20210278936 | Katz et al. | Sep 2021 | A1 |
20210282659 | Govari et al. | Sep 2021 | A1 |
20210307815 | Govari et al. | Oct 2021 | A1 |
20210308424 | Beeckler et al. | Oct 2021 | A1 |
20210338319 | Govari et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
101088459 | Dec 2007 | CN |
101384214 | Mar 2009 | CN |
101422637 | May 2009 | CN |
101766502 | Jul 2010 | CN |
102271607 | Dec 2011 | CN |
102458566 | May 2012 | CN |
103732132 | Apr 2014 | CN |
203539434 | Apr 2014 | CN |
103860264 | Jun 2014 | CN |
104244856 | Dec 2014 | CN |
10456117 | Apr 2015 | CN |
104783892 | Jul 2015 | CN |
104812297 | Jul 2015 | CN |
104887294 | Sep 2015 | CN |
104936509 | Sep 2015 | CN |
105105844 | Dec 2015 | CN |
204814163 | Dec 2015 | CN |
105473091 | Apr 2016 | CN |
105473093 | Apr 2016 | CN |
111248993 | Jun 2020 | CN |
111248996 | Jun 2020 | CN |
0668740 | Aug 1995 | EP |
0779059 | Jun 1997 | EP |
0644738 | Mar 2000 | EP |
0727183 | Nov 2002 | EP |
0727184 | Dec 2002 | EP |
1790304 | May 2007 | EP |
2682157 | Jan 2014 | EP |
2749214 | Jul 2014 | EP |
2783651 | Oct 2014 | EP |
28665350 | Apr 2015 | EP |
2875790 | May 2015 | EP |
2699151 | Nov 2015 | EP |
2699152 | Nov 2015 | EP |
2699153 | Dec 2015 | EP |
2498706 | Apr 2016 | EP |
2578173 | Jun 2017 | EP |
3238645 | Nov 2017 | EP |
3238646 | Nov 2017 | EP |
3238648 | Nov 2017 | EP |
3251622 | Dec 2017 | EP |
2884931 | Jan 2018 | EP |
3300680 | Apr 2018 | EP |
3315087 | May 2018 | EP |
3332727 | Jun 2018 | EP |
2349440 | Aug 2019 | EP |
3571983 | Nov 2019 | EP |
3318211 | Dec 2019 | EP |
3581135 | Dec 2019 | EP |
3586778 | Jan 2020 | EP |
2736434 | Feb 2020 | EP |
3451962 | Mar 2020 | EP |
3653153 | May 2020 | EP |
3972510 | Mar 2022 | EP |
H06205837 | Jul 1994 | JP |
H1176183 | Mar 1999 | JP |
H1176233 | Mar 1999 | JP |
H06261951 | Mar 1999 | JP |
2000504242 | Apr 2000 | JP |
2002345765 | Dec 2002 | JP |
2005052424 | Mar 2005 | JP |
2005525162 | Aug 2005 | JP |
2006511296 | Apr 2006 | JP |
2008508064 | Mar 2008 | JP |
2010507404 | Mar 2010 | JP |
2010522623 | Jul 2010 | JP |
2011500172 | Jan 2011 | JP |
2011152430 | Aug 2011 | JP |
2012024156 | Feb 2012 | JP |
2013013726 | Jan 2013 | JP |
2013078587 | May 2013 | JP |
2013529109 | Jul 2013 | JP |
2013531525 | Aug 2013 | JP |
2014506171 | Mar 2014 | JP |
2014507197 | Mar 2014 | JP |
2014529419 | Nov 2014 | JP |
2014530039 | Nov 2014 | JP |
2015503365 | Feb 2015 | JP |
2015100706 | Jun 2015 | JP |
2015112113 | Jun 2015 | JP |
2015112114 | Jun 2015 | JP |
2015134166 | Jul 2015 | JP |
2015518776 | Jul 2015 | JP |
2015139707 | Aug 2015 | JP |
2015167864 | Sep 2015 | JP |
2016515442 | May 2016 | JP |
2016116863 | Jun 2016 | JP |
9421167 | Sep 1994 | WO |
9421169 | Sep 1994 | WO |
9625095 | Aug 1996 | WO |
9634560 | Nov 1996 | WO |
0053237 | Sep 2000 | WO |
0182814 | Nov 2001 | WO |
02102231 | Dec 2002 | WO |
2004087249 | Oct 2004 | WO |
22005041748 | May 2005 | WO |
2008049087 | Apr 2008 | WO |
2011143468 | Nov 2011 | WO |
2012092016 | Jul 2012 | WO |
2012100185 | Jul 2012 | WO |
2013049601 | Apr 2013 | WO |
2013052852 | Apr 2013 | WO |
2013052919 | Apr 2013 | WO |
2013154776 | Oct 2013 | WO |
2013162884 | Oct 2013 | WO |
2013173917 | Nov 2013 | WO |
2013176881 | Nov 2013 | WO |
2014168987 | Oct 2014 | WO |
2014176205 | Oct 2014 | WO |
2015049784 | Apr 2015 | WO |
2016019760 | Feb 2016 | WO |
2016044687 | Mar 2016 | WO |
2016183337 | Nov 2016 | WO |
2016210437 | Dec 2016 | WO |
2017024306 | Feb 2017 | WO |
2017087549 | May 2017 | WO |
2018106569 | Jun 2018 | WO |
2018111600 | Jun 2018 | WO |
2018129133 | Jul 2018 | WO |
2018191149 | Oct 2018 | WO |
2019084442 | May 2019 | WO |
2019095020 | May 2019 | WO |
2019143960 | Jul 2019 | WO |
2020026217 | Feb 2020 | WO |
2020206328 | Oct 2020 | WO |
Entry |
---|
Extended European Search Reporte dated Nov. 12, 2020, from corresponding EP Appl. No. 20190495.0. |
First Office Action dated Apr. 6, 2021, from corresponding CN Application No. 201710433124.2. |
First Office Action dated Nov. 10, 2021, from corresponding CN Application No. 201710433124.2. |
First Office Action dated Nov. 10, 2021, from corresponding CN Application No. 201710433114.9. |
Extended European Search Report dated Jun. 26, 2020, from corresponding EP Appl. No. 20150359.6. |
Notification of Reasons for Refusal dated Jun. 1, 2021, from corresponding JP2017-113536. |
Notification of Reasons for Refusal dated Jul. 6, 2021, from corresponding JP2017-113535. |
Notification of Reasons for Refusal dated Feb. 22, 2022, from corresponding JP2017-113535. |
Notification of Reasons for Refusal dated Mar. 15, 2022, from corresponding JP2017-113536. |
Notification of Reasons for Refusal dated Aug. 30, 2022, from corresponding JP2017-113535. |
Extended European Search Reporte dated Feb. 6, 2018, from corresponding EP Appl. No. 17174936.9. |
Partial European Search Reporte dated Oct. 24, 2017, from corresponding EP Appl. No. 17174936.9. |
European Search Reporte dated Aug. 9, 2019, from corresponding EP Appl. No. 17175072.2. |
European Search Reporte dated Dec. 11, 2018, from corresponding EP Appl. No. 17175072.2. |
Extended European Search Report dated Oct. 20, 2017, from corresponding EP Appl. No. 17175072.2. |
Extended European Search Report dated Dec. 12, 2018, from corresponding EP Appl. No. 18192797.1. |
Search Report dated Dec. 8, 2020, from corresponding CN Application No. 201710433114. |
Supplementary Search Report dated Jun. 27, 2021, from corresponding CN Application No. 201710433114. |
Second Office Action dated Jul. 2, 2021, from corresponding CN Application No. 201710433114. |
Supplementary Search Report dated Nov. 2, 2021, from corresponding CN Application No. 201710433124. |
Maury P., et al., “Three-dimensional Mapping in the Electrophysiological Laboratory,” Archives of Cardiovascular Disease, Published Jun. 7, 2018, vol. 111, pp. 456-464, https://doi.org/10.1016/j.acvd,2018,03.013, Retrieved from URL: https://www.sciencedirect.com/science/article/pii/S1875213618300901. |
Article 94(3) Communication dated Aug. 9, 2019, from corresponding EP Appl. No. 17175072.2. |
First Office Action dated Dec. 15, 2020, from corresponding Chinese Application No. 2017104331149. |
Search Report dated May 19, 2021, from corresponding Japanese Application. No. JP2017-113536. |
Search Report dated May 31, 2021, from corresponding Japanese Application. No. JP2017-113535. |
Notice of Reasons for Refusal dated Jul. 6, 2021, from corresponding Japanese Application. No. JP2017-113535. |
Supplemental Search from corresponding Chinese Application No. 2017104331149 dated Nov. 3, 2021. |
Second Office Action dated Nov. 10, 2021, from corresponding CN Application No. 201710433124.2. |
Third Office Action from corresponding Chinese Application No. 2017104331149 dated Dec. 2, 2021. |
Supplementary Search from corresponding Chinese Application No. 2017104331242 dated Apr. 13, 2022. |
Third Office Action dated Apr. 20, 2022, from corresponding Chinese Application No. 2017104331242. |
Supplementary Search from corresponding Chinese Application No. 2017104331242 dated Jul. 5, 2022. |
Fourth Office Action from corresponding Chinese Application No. 2017104331149 dated Aug. 8, 2022. |
Article 94(3) communication dated Jul. 11, 2023, from corresponding European Application No. 20190495.0. |
First Search from corresponding Chinese Application No. 2017104331242 dated Mar. 26, 2021. |
Angela O., “AF Symposium 2017: First-in-Man Study Shows Promising Results with a Multi-Electrode Radiofrequency Balloon for Paroxysmal AF Treatment,” Cardiac Rhythm News, Jan. 20, 2017, 2 Pages, [Retrieved on Dec. 16, 2020] Retrieved from URL: https://cardiacrhythmnews.com/fist-in-man-study-shows-promising-results-with-a-multi-electrode-radiofrequency-balloon-for-paroxysmal-af-treatment/. |
Casella M., et al., “Ablation Index as a Predictor of Long-Term Efficacy in Premature Ventricular Complex Ablation: A Regional Target Value Analysis,” Heart Rhythm Society, Jun. 2019, vol. 16, No. 6, pp. 888-895. |
Co-Pending U.S. Appl. No. 14/578,807, filed Dec. 22, 2014, 21 pages. |
Das M., et al., “Ablation Index, a Novel Marker of Ablation Lesion Quality: Prediction of Pulmonary Vein Reconnection at Repeat Electrophysiology Study and Regional Differences in Target Values,” Europace, 2017, Published Online May 31, 2016, vol. 19, pp. 775-783. |
Dorobantu M., et al., “Oral Anticoagulation During Atrial Fibrillation Ablation: Facts and Controversies,” Cor et Vasa, 2013, Accepted on Dec. 3, 2012, vol. 55, No.2, pp. e101-e106, Retrieved from URL: https://www.sciencedirect.com/science/article/pii/s0010865012001415. |
Extended European Search Report for Application No. EP17168513.4 mailed Sep. 18, 2017, 11 pages. |
Extended European Search Report for European Application No. 15201723.2, mailed May 11, 2016, 7 pages. |
Extended European Search Report for European Application No. 17168393.1 mailed Dec. 15, 2017, 12 Pages. |
Extended European Search Report for European Application No. 17168518.3, mailed Sep. 20, 2017, 9 Pages. |
Extended European Search Report for European Application No. 17173893.3, mailed Nov. 6, 2017, 8 Pages. |
Extended European Search Report for European Application No. 17201434.2, mailed Feb. 1, 2018, 10 Pages. |
Extended European Search Report for European Application No. 17205876.0, mailed Jun. 1, 2018, 13 Pages. |
Extended European Search Report for European Application No. 19177365.4, mailed Nov. 8, 2019, 07 Pages. |
Extended European Search Report for European Application No. 19183327.6, mailed Nov. 21, 2019, 8 Pages. |
Extended European Search Report for European Application No. 20153872.5, mailed May 7, 2020, 9 Pages. |
Extended European Search Report for European Application No. 20195648.9, mailed Feb. 12, 2021, 9 Pages. |
Fornell D., “Multi-Electrode RF Balloon Efficient for Acute Pulmonary Vein Isolation,” Diagnostic and Interventional Cardiology, May 17, 2017, 3 Pages, [Retrieved on Dec. 16, 2020] Retrieved from URL: www.dicardiology.com/article/multi-electrode-rf-balloon-efficient-acute-pulmonary-vein-isolation. |
Haines D.E., et al., “The Promise of Pulsed Field Ablation,” Dec. 2019, vol. 19, No. 12, 10 Pages. |
Honarbakhsh S., et al., “Radiofrequency Balloon Catheter Ablation for Paroxysmal Atrial Fibrillation, Radiance Study—a UK experience,” EP Europace, Oct. 2017, vol. 19, No. 1, p. i21, 3 Pages. |
International Search Report and Written Opinion for International Application No. PCT/IB2019/052313, mailed Jul. 22, 2019, 8 Pages. |
International Search Report and Written Opinion for International Application No. PCT/IB2019/056381, mailed Dec. 17, 2019, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/IB2019/057743, mailed Dec. 6, 2019, 16 Pages. |
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2019/057742, dated Nov. 28, 2019, 18 Pages. |
Nagashima K., et al., “Hot Balloon Versus Cryoballoon Ablation for Atrial Fibrillation,” Circulation: Arrhythmia and Electrophysiology, May 2018, Vol. 11, No. 5, e005861, 9 Pages. |
Napoli N., et al., “For Atrial Fibrillation Abalation, Newer Anticoagulant Reduces Major Bleeds,” American Collage of Cardiology, Mar. 19, 2017, 4 Pages, [Retrieved on Jan 1, 2022] Retrieved from URL: http://www.acc.org/about-acc/press-releases/2017/03/18/08/47/sun-1045am-for-atrial-fibrillation-ablation-newer-anticoagulant-reduces-major-bleeds. |
Okano T., et al., “Wire Perforation Causing Cardiopulmonary Arrest During Radiofrequency Hot Balloon Ablation for Pulmonary Vein Isolation,”Journal of Cardiology Cases, Feb. 15, 2019, vol. 19, No. 5, pp. 169-172. |
Partial European Search Report for European Application No. 17168393.1 mailed Sep. 13, 2017, 13 Pages. |
Partial European Search Report for European Application No. 17205876.0, mailed Feb. 22, 2018, 10 Pages. |
Reddy V.Y., et al., “Ballon Catherer Ablation to Treat Proxysmal Atrial Fibrillation: What is the Level of Pulmonary Venous Isolation?,” Heart Rhythm, Mar. 2008, vol. 5, No. 3, pp. 353-360, 3 Pages. |
Winkle R.A., et al., “Atrial Fibrillation Ablation Using Open-Irrigated Tip Radiofrequency: Experience with Intraprocedural Activated Clotting Times ≤ 210 Seconds,” Heart Rhythm, Jun. 2014, Epub Mar. 27, 2014, vol. 11. No. 6, pp. 963-968. |
Youtube:, “Intensity™ CX4 Professional E-Stim/ Ultrasound Combo,” Dec. 22, 2015, 1 Page, [Retrieved on Nov. 19, 2020], Retrieved from URL: http://www.youtube.com/watch?v=76s1QkMWJME]. |
Youtube: “New Interface TactiCath Contact Force Ablation Catheter,”Nov. 26, 2013, 1 Pages, [Retrieved on Nov. 19, 2020], Retrieved from URL: https: /Avww.youtube.com/watch?v=aTvYO8Hpylg]. |
Number | Date | Country | |
---|---|---|---|
20210145282 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15359838 | Nov 2016 | US |
Child | 17163096 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15177775 | Jun 2016 | US |
Child | 15359838 | US |