The present invention belongs to the technical field of petroleum drilling, and it relates to a multi-function drilling tool.
With the gradual exhaustion of shallow land oil and gas resources, the development of the deeper wells, the ultra-deep wells and new oil and gas resources has gradually become a trend. In deeper well and ultra-deep well drilling operations, the ROP is low during the drilling process due to the difference of factors such as stratum drill ability, strong rock wear resistance, rock compressive strength and shear strength, etc. In addition, the elongated drill string system is prone to stick-slip phenomenon, which reduces the efficiency of drilling operations. The existing downhole striking tools are basically a single axial hammer or a single torsional hammer, and their use is effects are general.
Therefore, how to simultaneously generate axial and torsional striking forces to increase the ROP and reduce the stick-slip phenomenon of the drill string system is a key technical problem that this field is eager to solve.
The purpose of this invention is to provide a drilling tool that can simultaneously generate the axial and torsional striking forces to increase the rate of penetration (ROP) and reduce the stick-slip phenomenon.
In order to achieve the above-mentioned purpose of the invention, a drilling tool, comprising: an axial striking part, a torsional striking part and an auxiliary part; the two ends of the drilling tool are detachably threads connected with the upper drilling tool and the drill bit, respectively.
The axial striking part comprises a hammer that is located inside the upper housing and generates a striking force, a center tube and an intermediate tube that control the movement and reverse the direction of the hammer, a fixing block inserted into the upper end of the intermediate tube, an adjustment screw assembled on the upper housing and a spring between the fixing block and the hammer; the hammer of the axial striking part reciprocally strikes the upper housing to generate an axial striking force up and down.
The torsional striking part comprises a pendulum that is mounted inside the lower housing and generates a torsional striking force to strike the lower housing, a reversing switch for turning direction of the pendulum, an upper end cover and a lower end cover assembled respectively on the upper and lower ends of the pendulum.
The auxiliary part comprises an upper connector coupled to the upper drilling tool, an upper connector connected with the drill bit, and a nozzle is that generates a variable pressure cavity.
Preferably, the inside and outside of the hammer are in clearance fit with the intermediate tube and the upper housing, respectively; the hammer is coaxial with both the intermediate tube and the upper housing.
Preferably, the center tube is configured with the holes a, the holes b, and the holes c; the center tube is coaxial with the intermediate tube designed with the holes d and the holes e.
Preferably, the couple holes a, the couple holes b, the couple holes d and the couple holes e are symmetrically configured, respectively. The axis of the holes a are parallel to the holes b. The four holes c are evenly distributed; and a certain phase difference is between the axis of the holes d and the axis of the holes e.
Preferably, the inside of the fixing block is inserted into the intermediate tube, the outside of the fixing block is a gear structure. The adjustment screw assembled on the upper housing limits the circumferential direction of the fixing block, and the upper connector limits the axial direction of the fixing block. The two ends of the spring implemented pre-pressure by the upper connector are against the fixing block and the hammer, respectively.
Preferably, the reversing switch is connected with the connection point of the center tube; and the center tube rotates to change direction with the reversing switch together when the reversing switch works. Both the center tube and the inside of the lower end cover are configured with nozzles, and the shoulders of the center tube and the shoulders of the lower end cover and the retainer ring limit the nozzles axially. The lower end cover is fixed in the inside of the lower housing by the end cover screws.
Preferably, the reversing switch is designed with a couple of symmetrical flow channels a. the reversing switch above the upper end cover is configured with two-layer holes f, and each layer has four holes f evenly distributed. The pendulum is configured with a couple of symmetrical fluid channels e, a couple of symmetrical fluid channels f, a couple of symmetrical fluid channels g and a couple of symmetrical fluid channels h; the inside of the lower housing has a fluid channels b and a fluid channels c. The lower end cover has a couple symmetric fluid channels j and a couple symmetric fluid channels k.
Preferably, the front end and the rear end of the reversing switch are configured with the grooves suitable for balls c, respectively. The upper end and the lower end of the pendulum are configured with the arc grooves equipped with the balls b at a lower end of the upper end cover and the balls c at an upper end of the lower end cover, respectively.
Preferably, the pendulum comprises the inside and the outside coupled to the reversing switch and the lower housing, respectively, which is coaxial with the reversing switch and the lower housing both. the upper end cover blocks the upper end of the flow channel c, and the lower end of the flow channel c is in communication with the flow channel j; the lower end cover blocks both the lower end of the flow channel b and the flow channel d.
Preferably, the outer walls of the upper connector, the upper housing, the lower housing and lower connector are configured with the spiral grooves, respectively. The upper connector is connected with the upper housing mounted with the lower housing coupled with the lower connector used threads together by threads.
The invention may have the following beneficial effects: it is a purely mechanical structure and not liable to fail in a complex and changeable downhole environment. It uses drilling fluid to generate axial and torsional is striking forces at the same time, effectively increasing the ROP and reducing the stick-slip phenomenon of the drill string system.
Some embodiments of the invention will be explained in greater detail in the attached drawings.
Some embodiments of the invention are shown simplified for the sake of clarity in the drawings. Same reference numerals refer to same parts in the is figures. The drawings are not drawn to the actual scale.
The meanings of the reference signs in the attached drawings are as follows: 1—upper connector, 2—sealing ring a, 3—fixing block, 31—gear structure, 4—spring, 5—center tube, 51—holes a, 52—holes b, 53—holes c, 6—hammer, 7—intermediate tube, 71—holes d, 72—holes e, 8—sealing ring b, 9—upper housing, 10—balls a, 11—reversing switch, 111—hole f, 112—flow channels A, 1115a—cavity a, 1115b—cavity b, 1115c—cavity c, 12—upper end cover, 13—balls B, 14—lower housing, 141—flow channels b, 142—flow channels c, 143—flow channels d, 1415a—cavity d, 1415b—cavity b, 15—pendulum, 151—flow channels e, 152—flow channels f, 153—flow channels g, 154—flow channels h, 16—balls c, 17—spring retainer, 18—nozzles, 19—lower end cover, 191—flow channels j, 192—flow channels k, 20—upper connector, 21—adjustment screw, 22—end cover screw.
The invention will be further explained below in conjunction with the drawings.
In a preferred embodiment shown in
As shown in
One embodiment shown in
With reference to
Preferably,
In a preferred embodiment as shown in
In a preferred embodiment illustrated in
The following takes
The torsional striking process of the drilling tool is as following: the upper connector 1 is connected to the drill string. The high-pressure drilling fluid is injected through the drill string. The high-pressure drilling fluid sequentially flows through the hole f 111 of the reversing switch 11, the flow channel b 141 of the lower housing 14, and the flow channel h 154 of the pendulum 15, which enters the cavity a 1115a and pushes the reversing switch 11 to rotate clockwise. At the same time, the low-pressure drilling fluid in the cavity b 1115b flows back to the upper connector 20 through the flow channel g 153 of the pendulum 15, the flow channel c 142 of the lower housing 14, and the flow channel j 191 of the lower end cover 19 in turn. As shown in
The axial impact process of the drilling tool is as following: the upper connector 1 is connected to the drill string. The high-pressure drilling fluid is injected through the drill string. The holes a 51 and d 71 are being low-pressure during the pendulum 15 drives the reversing switch 11 to rotate counterclockwise together resulting in the center tube 5 to rotate counterclockwise. The low-pressure drilling fluid at the upper end of the hammer 6 is enters the annulus low-pressure zone between the center tube 5 and the intermediate tube 7 through hole d 71. The high-pressure drilling fluid enters the lower end of the hammer 6 through holes b 52 and hole e 72 to push hammer 6 compressing spring 4 upward in the axial direction when hole b 52 is in communication with holes e 72. On the other hand, the hole a 51 is connected to the hole d 71 as the pendulum 15 drives the reversing is switch 11 to rotate clockwise together so that the center tube 5 rotates clockwise, and the high-pressure drilling fluid enters the upper end of the hammer 6 through the holes a 51 and d 71, and together with the spring 4, push the hammer 6 down in the axial direction and impact the upper housing 9. The low-pressure drilling fluid at the lower end of the hammer 6 communicates with the annulus low pressure zone between the center tube 5 and the intermediate tube 7 through the hole e 72 when the holes b 52 and the holes e 72 are closed. The hammer 6 reciprocates in line to produce the axial striking force in this way.
Although the subject matter has been described in language specific to structural features and/or operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features and operations described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. Numerous modifications and alternative arrangements may be devised without departing from the spirit and scope of the described technology. The present invention is not limited to the specific embodiments disclosed in the text, but includes all technical solutions falling within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202011454304.7 | Dec 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2911192 | Boucher | Nov 1959 | A |
3145787 | Brown | Aug 1964 | A |
3811515 | Bazhal | May 1974 | A |
20030062176 | Beccu | Apr 2003 | A1 |
20050241842 | Marsh | Nov 2005 | A1 |
20100288521 | In | Nov 2010 | A1 |
20110120725 | Downton | May 2011 | A1 |
20180171717 | Chen | Jun 2018 | A1 |
20210140239 | Miess | May 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20220186560 A1 | Jun 2022 | US |