The embodiments herein relate generally to windows and more particularly, to a multifunction dynamic window for commercial or residential window and door applications.
Current glass used for windows and doors are static and do not provide dynamic functionality and related advanced features. Double-pane windows may sometimes include a gas in between the panes as insulation to control heat transmission. Typical control of light transmission through glass is provided by layers of film tint applied to outer surfaces of glass. Tinting film is generally static in the amount of light that is allowed to pass through the glass.
In one aspect of the subject technology, a dynamic window is provided. The window includes a frame. A first pane is housed in the frame. A second pane is housed in the frame. The first pane and the second pane are arranged to define a cavity. A treated surface is present on one of the first pane or the second pane. A fluid tank is coupled to the frame, for holding a fluid. A port is positioned between the fluid tank and the cavity. A controller is coupled to the fluid tank. The controller is configured to controllably dispense the fluid into the cavity through the port to control a state of transmissivity of light through the first pane and through the second pane.
In one aspect of the subject technology, a dynamic window system is provided. The system includes a double-paned window, including an air-gap between panes. An abraded surface is on the double-paned window. The abraded surface is configured to scatter light passing through the air-gap and generate a default opaque state of the window. A fluid chamber is coupled to the double-paned window and has access to the air-gap. A controller is coupled to the fluid chamber. The controller is configured to dispense one or more fluids into the air-gap to change the double-paned window from the opaque state to a transparent or translucent state.
The detailed description of some embodiments of the invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.
By way of example, and referring to
In an illustrative embodiment, the dynamic window system 10 may be a double-pane window that includes panes 24 and 26. The panes 24 and 26 may be glass, plastic, polyethylene terephthalate (PET), Polyethylene naphthalate (PEN), or other clear, light transmissive material. The panes 24 and 26 may be separated by a pre-set distance, defining an empty cavity or air-gap 22 there between. The panes 24 and 26 may be transparent. At least one surface of either or both panes 24 and 26 is treated to scatter light. For example, the inner surfaces 30; 32 of one or both pane substrates may be processed to produce a treated surface. One illustrative form of treatment may include for example, roughening or abrasion of a surface. Illustrative embodiments may roughen for example, one or both of inner surfaces 30 and 32. Surfaces 30 and 32 may be the surfaces of respective panes 24;26 that face inward toward the cavity 22. In one embodiment, the treated surface(s) create a default opaque state in the system in the absence of fluid within the cavity 22.
The system may include a fluid chamber coupled to the panes 24 and 26, with access to the cavity 22 through one or more ports. The panes 24 and 26 and the fluid chamber may be housed within a frame 10. The fluid chamber may hold one or more fluid types that are controllably released into the cavity 22 to change the state of transmissivity through the panes 24 and 26.
In an illustrative embodiment, the fluid chamber comprises a first fluid tank 14 and a second fluid tank 18. The fluid tank 14 may store a clear liquid 15. The fluid tank 18 may store a colored fluid 19 (for example, a dye). Introduction of either liquid 15 or 19 changes the state of transmissivity through the panes 24 and 26.
Supplying the dye 19 may also change the state of transmissivity through the panes 24 and 26. In one illustrative embodiment, the dye 19 may be supplied into the cavity 22 after the clear liquid 15 has been introduced to control the light intensity passing through the system. The dye 19 may change the state of transmission from transparent to translucent allowing some light to pass through while keeping the background visible but at a less intense level.
Some embodiments include an operating system to controllably dispense the fluids into the cavity 22 to provide different heights of coverage within the cavity 22 at different levels of transparency or privacy. The user may for example, select from a fill selection panel which controls the different levels of fill and transparency. In one illustrative example, the system includes a control panel 12 controlling the amount of clear liquid 15 that is dispensed into the cavity 22. A control panel 13 may control how high up the cavity 22 the dye 19 is dispensed. Also, the amount of dye 19 that is dispensed may control the level of translucence/light blocking desired by a user. Hardware 16, for example a pump or other dispensing device, may be operated according to the settings entered into control panels 12 and 13.
The window in its natural or default state provides privacy because the treated surface(s) scatters light on impact. Because of proper wetting characteristics (microscopic-touch) between the treated surfaces and the choice of liquid 15 or 19, the window looks transparent.
As will be appreciated, several features of the illustrative embodiments provide user control over how much light passes through the window as well as control over the area of window letting light pass through. The fluid introduction elements control when a user wants to switch from an opaque setting (that provide privacy as a default state) to a transparent state so that the other side of the window becomes visible. The height control allows the user to determine how much of the viewable area can be seen, replicating the function of blinds. The second fluid provides the user with fine tune control over how much light passes through so that for example, if the day is very bright, the outside can be seen at whatever comfortable level of light passing through is desired by the user.
Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. For example, while the operating system is shown on the bottom extremity of the window system frame and the dispensing ports are shown dispensing fluid from the bottom, it should be understood that the fluids may be dispensed from different locations around the cavity 22. In some embodiments, the surface treatment may be modified, and yet other elements of the system may also be modified to provide the same effects. for example, in some embodiments, the panes 24 and 26 may be selected as transparent by nature (which unlike the above embodiment provides no privacy in a default state). The selection of the fluid types may then be opaque instead of clear. In which case, the window needs to be filled with the opaque fluid to provide a privacy setting to the user. The principle is reversed in this example but there are several advantages in the current embodiment, too. In another embodiment, the selection of fluid may provide an open a broad range of applications to the entire window and door industry. With a highly efficient fluid management system, the system could use various fluids based on day, night, season, weather, and the interests of the consumer.
Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.
This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application having Ser. No. 63/134,134 filed on Jan. 5, 2021, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63134134 | Jan 2021 | US |