Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, apparatuses and methods which are meant to be exemplary and illustrative, not limiting in scope.
The following sections will now describe the claimed embodiments in detail beginning with
A head carriage assembly refers to the combination of the magnetic head 304 and the head carriage 404. Also, some embodiments utilize the phrase “magnetic head assembly” and that refers to the head carriage 404, magnetic head 304, head flex circuits (310, 312) and positional sensors (418, 420).
The actuator assembly 400 further includes a coarse actuator which is not visible in the various views of the figures. The coarse actuator, which includes a stepper motor with a gear train, translates the fine actuator 500 up or down across the full width of a tape. The coarse base 406 is guided via the precision guide-pins 408. There are biasing springs 410 to eliminate the backlash of the gears. The precision guide-pins 408 are secured to the actuator base plate 402 at the bottom and by the top-cap 413 at the top using screws (not shown).
The following sections summarize the basic operation of the positional sensors (418, 420) which are utilized to place the magnetic head 304 at a correct vertical position in relation to a tape track. In combination with servo signals contained on a tape, the fine actuator 500 is moved responsive to signals transduced by servo read elements, located on the magnetic head 304, which read servo bands on a magnetic tape. The movement of the fine actuator 500, based on the transduced servo signals, keeps the magnetic head 304 in substantial alignment with a selected track on the tape.
The trigger point of the reference hall sensor magnet assembly (located on the base plate assembly 402 but not shown) provides a known location for the magnetic head 304 with respect to tape. The linear hall sensor 420 along with a reference hall sensor magnet assembly 411 (located inside a slot of the coarse base 406 /refer to
Regarding the reference hall sensor 418 and the reference hall sensor magnet assembly, during a read-write process of the tape drive 200, the magnetic head 304 traverses across a tape to seek a relevant track. There are a number of incidents when the magnetic head 304 must be parked at a given known/reference location. Such events may include booting up the tape drive 200, tape-loading sequence, etc. In order to send the magnetic head 304 to this reference location, the reference hall-sensor magnet assembly and reference hall sensor 418 are utilized. The reference hall magnet assembly is secured to the actuator base plate 402 and the reference hall sensor 418 is secured to the head flex circuit 310. The actuator base plate 402 is stationary to the drive 200. Thus, when the reference hall sensor 418 arrives in the vicinity of the reference hall magnet assembly, the reference hall sensor 418 is triggered. This information is utilized to locate the magnetic head 304 with respect to the tape.
In reference to the linear hall sensor 420 and the reference hall sensor magnet assembly 411, the fine actuator 500 is utilized to keep the head on a track under a servo control. Any movements in the tape or head carriage 404 can create a misalignment between the magnetic head 304 and the track on the tape. It should be noted that the linear hall sensor 420 is utilized for motion of the fine actuator 500, only. The linear hall sensor 420 is attached to the head flex circuit 312. The corresponding dual pole magnet is attached to the coarse actuator base 406. The linear hall sensor 420 will move with respect to the dual pole magnet. The dual pole magnet has two poles—north and south. When the linear hall sensor 420 is aligned to a null line of the dual pole magnet, there is no signal. When the magnetic head 304 moves up, the linear hall sensor 420 produces the signal which is proportional to the head-translation. The same is true when the magnetic head 304 moves in the negative direction. As a result, the linear hall sensor 420 provides the signal which is proportional to the head translation. This information can be used in number of ways. Some examples include 1) damping of the servo loop and 2) when tape is at the end and it reverses the direction to move from forward to reverse, there is no servo information from the tape. The linear hall sensor 420 provides the head location information during this phase.
As previously mentioned, accurate placement of the positional sensors (reference hall sensor 418 and linear hall sensor 420) in relation to the magnetic head 304 and associated reference magnets is critical. Due to deficiencies in the prior art, misplacement of the positional sensors typically result in a significant actuator rejection rate during assembly. The claimed embodiments advantageously improve upon this situation. How this is achieved can be seen via
The linear hall sensor 420 is electrically coupled to head flex circuit 312 (not shown) and the reference hall sensor 418 is electrically coupled to head flex circuit 310. Head carriage 404 includes sensor location features 418a and 420a into which the positional sensors (418, 420) can be securely and accurately placed. Placement of the sensor location features (418a, 420a) on the head carriage 404 can be very accurately controlled due to advanced manufacturing processes used to produce the head carriage 404. Some examples of advanced manufacturing processes used to fabricate the head carriage 404 include machining and die casting which is primarily used for aluminum parts. Therefore, the sensor location features (418a, 420a) determine the location of the positional sensors (418, 420) even though those positional sensors (418, 420) are electrically coupled/mounted on the head flex circuits (310, 312). As a result, the tolerances for the mounting locations of the positional sensors (418, 420) relative to the head flex circuits (310, 312) can be relatively large. Any misplacement of the positional sensors (418, 420) on the head flex circuits (310, 312) is corrected when the positional sensors (418, 420) are placed within their corresponding sensor location features (418a, 420a).
In one implementation, the sensor location features (418a, 420a) are cut-through sections on the head carriage 404. In another implementation, the sensor location features (418a, 420a) are indentations in the head carriage 404.
In yet another implementation, only one dimension of the sensor location features (418a, 420a) substantially corresponds to a corresponding dimension of the sensors (418, 420). For example, if a shape of the sensor (418 or 420) is generally rectangular or square, either the length or width could substantially correspond to a corresponding dimension of the sensor location features (418a, 420a). This particular implementation could be employed in a situation where a sensor (418 or 420) is required to be accurately located in a horizontal plane or a vertical plane but not both. For example, a sensor (418 or 420) could perhaps only need to be located anywhere on head carriage 404 at a specific y-axis horizontal point as defined by the axes 450 in
It should also be noted that the sensor location features (418a, 420a) are an integral or integrally formed aspect of the head carriage 404.
Typically, the positional sensors (418, 420) are mated with the sensor location features (418a, 420a) utilizing a light press fit or a light clearance fit to ensure that the positional sensors (418, 420) remain fitted to location sensor features (418a, 420a). In one implementation, an adhesive is utilized to attach one side of the positional sensors (418, 420) to the head flex circuits (310, 312) and the other side of the positional sensors (418, 420) to the head carriage 404. In another implementation, pressure sensitive tape is utilized which has an adhesive on both sides of the tape. Determining an appropriate size for the sensor location features (418a, 420a) is determined in relation to the size of the positional sensors (418, 420). Determining an optimal size for the sensor location features (418a, 420a) in order to ensure a proper fit for the positional sensors (418, 420) is well within the skill set of the average artisan and will therefore not be described so as to not unnecessarily obscure the claimed embodiments.
Head carriage 404 further includes various design-dependent features that are generally independent of the claimed embodiments. Restated, their inclusion and placement may, in some implementations, effect the claimed embodiments while in other implementations have no effect at all. Some of these design-dependent features include weight-reducing cutouts 452 and locating knobs 454 which can mate with a corresponding depression (not depicted in the figures) in the voice coil holder 412. The locating knobs 454 facilitate installation of a new head carriage assembly. For example, if during the final test, it was discovered that the head carriage assembly is defective, it will be necessary to replace it. In this situation, a new head-carriage assembly would be positioned in substantially the same position as the defective head carriage assembly due to the locating knobs 454
Head carriage 404 also includes various compartments 456 which are also repeated on the other side of the head carriage/refer to
The claimed embodiments also provide for a reduced number of separate connections to the tape drive PCB from various drive components. For example, the positional sensors (418, 420) are mounted on the head flex circuits (310, 312). As a result, separate PCB connectors are not required for the positional sensors (418, 420). In a similar manner, head flex circuit 310 can also be utilized to provide a connection between the voice coil motor and the PCB. More specifically, though, the claimed embodiments provide for the connection between the voice coil 414 and the head flex circuit 310 without the use of soldering and is described via
The voice coil 414 includes two wires (not shown) which are soldered to the voice coil flex circuit 422 at their respective ends. The voice coil flex circuit 422 is attached to the voice coil 414 using an adhesive between the voice coil 414 and the voice coil flex circuit 422. The voice coil flex circuit 422 is designed to have two lines that form an electrical continuity between the voice coil wires and the two pads at its other end where the voice coil flex circuit 422 is clamped to the head flex circuit portion 310a. The end of the voice coil flex circuit that is clamped to the head flex circuit portion 310a has two exposed pads—a positive pad and a negative pad. The voice coil flex circuit 422 is routed from the voice coil 414, as shown in
Since the embodiment of
The claimed embodiments also envision an alternate clamping embodiment to connect a voice coil flex circuit to a head flex circuit and this embodiment is depicted via
Similar to the previous embodiment, voice coil flex circuit 432 has positive and negative pads (434a, 436a/see
This embodiment also eliminates the need to solder the voice coil flex circuit 432 to the head flex circuit portion 310b. However, in order to remove the head carriage 404 from the actuator assembly 400, the top flexure clamp 417a will need to be removed as well as the screws holding the voice coil holder 412 to the head carriage 404.
Advantageously, the claimed embodiments provide for numerous advantages over the prior art. These advantages include precise placement of positional sensors, integration of connections without soldering and improved removal processes for detaching a magnetic head assembly from an actuator assembly.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
This application claims the benefit of U.S. Provisional Patent Application No. 60/804,225 filed on Jun. 8, 2006, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60804225 | Jun 2006 | US |