The present invention relates generally to multi-function and/or mechanically similar trailing edge devices and associated methods of manufacture and use.
Modern high speed, subsonic commercial aircraft typically have wings with a variety of leading edge and trailing edge devices to change the shape of the wings as the flight conditions change. For example, as shown in
One potential drawback with the foregoing arrangement is that each different type of trailing edge device is generally configured in a different, function-specific manner. Accordingly, each wing generally includes a multitude of trailing edge devices having different mechanical arrangements, different actuator arrangements, different functions and different flight capabilities. These differences can lead to increased costs for manufacturing and maintaining the wing 10, and can increase the overall weight of the aircraft.
The present invention is generally directed toward multi-function and/or mechanically similar trailing edge devices. A system in accordance with one aspect of the invention includes a first portion of an external fluid flow body having a first flow surface and a second flow surface facing opposite from the first flow surface. A second portion of the body can be movable relative to the first portion and can have at least one part positioned aft of the first portion. The second portion can be movable between a neutral position with the second portion generally aligned with the first portion, a plurality of first positions with the second portion deflected in a first direction relative to the neutral position, and a plurality of second positions, with the second portion deflected in a second direction opposite the first direction relative to the neutral position. A flexible surface can be positioned proximate to the first and second portions, and can have a first shape when the second portion is in the neutral position, a second shape when the second portion is in at least one of the first positions, and a third shape when the second portion is in at least one of the second positions. An actuator can be coupled between the first and second portions to move the second portion relative to the first portion, and a guide structure can guide the motion of the second portion. In a particular aspect of the invention, a controller can be coupled to the actuator and can be configured to direct the actuator to move the second portion to a high lift setting, a high drag setting, a roll setting, and a trim setting.
In another aspect of the invention, an aircraft system can include first and second trailing edge portions positioned aft of a leading edge portion. A first guide structure having a first mechanical arrangement can be coupled between the leading edge portion and the first trailing edge portion, and a second guide structure having a second mechanical arrangement can be coupled between the leading edge portion and the second trailing edge portion. The second mechanical arrangement can be generally similar to and scaled relative to the first mechanical arrangement.
A method for controlling an aircraft in accordance with another aspect of the invention includes increasing a lift of the aircraft by directing a trailing edge portion of an airfoil to move relative to a leading edge portion of the airfoil from a neutral position to a high lift position. The method can further include increasing a drag of the aircraft by directing the trailing edge portion to move relative to the leading edge portion from the neutral position to a high drag position, rolling the aircraft by directing the trailing edge portion to move relative to the leading edge portion from the neutral position to a roll position, and distributing the lift of the aircraft by directing the trailing edge portion to move relative to the leading edge portion from the neutral position to a trim position.
The present disclosure describes airfoils having multi-function and/or mechanically similar trailing edge devices, and methods for operating and manufacturing such airfoils. Many specific details of certain embodiments of the invention are set forth in the following description and in
The motion of the second portion 130 relative to the first portion 120 can be controlled by a guide structure 140. The guide structure 140 can be coupled to an upper cove panel 160 and a lower cove panel 170. When the second portion 130 is in the neutral position, the upper cove panel 160 can provide for a generally smooth, continuous upper flow surface 121 from the first portion 120 to the second portion 130, and the lower cove panel 170 can provide for a generally smooth, continuous lower flow surface 122.
In one aspect of this embodiment, the second portion 130 pivots about a hinge line 141 relative to the first portion 120. In a further aspect of this embodiment, the hinge line 141 can be positioned at or close to the lower flow surface 122 of the airfoil 110. In another embodiment, the hinge line 141 can be positioned between the lower flow surface 122 and the upper flow surface 121. In either embodiment, the second portion 130 can pivot upwardly and downwardly relative to the first portion 120 about the hinge line 141, as described in greater detail below with reference to
Referring now to
When the second portion 130 is deployed downwardly by a relatively small amount (e.g., about 10 degrees or less, or in a particular embodiment, about 5 degrees or less), it can provide several functions for the aircraft system 100. For example, the second portion 130 can provide aileron functionality to control the lift of the airfoil 110. When combined with an opposite deflection of a second portion 130 on an opposite side of the aircraft system 100, the second portions 130 can roll the aircraft system 100. Accordingly, the second portion 130 can move relatively quickly to the position shown in
Referring now to
The second portion 130 can also be deployed upwardly relative to the neutral position shown in
As shown in
One aspect of an embodiment of the aircraft system 100 described above with reference to
Another feature of an embodiment of the aircraft system 100 described above with reference to
Still another feature of an embodiment of the aircraft system 100 described above with reference to
Yet another feature of an embodiment of the aircraft system 100 described above with reference to
As the second portion 330 moves downwardly to relatively small deflection angles (as shown in
As the second portion 330 moves to more substantial downward deflections (shown in
The second portion 330 can also be deflected upwardly to relatively small angles (as shown in
One feature of an embodiment of the airfoil 310 described above with reference to
Another feature of an embodiment of the airfoil 310 shown in
In one embodiment, the second portion 330 includes an aft torque tube 133a or other spar arrangement to provide for stiffness in the plane perpendicular to the plane of
Referring now to
Referring now to
In one embodiment, the foregoing structures described above with reference to
As the pilot inputs a command via the pilot controls 502, the controller 503 can automatically direct the appropriate actuator 550 to move its corresponding trailing edge portion 530 in the appropriate manner. For example, during landing approach, some of the trailing edge devices 530 (e.g., devices 530d, 530e) can be deployed to high lift or flap settings to increase the lift of the aircraft system 500. In other embodiments, all of the trailing edge devices 530a, 530e can be deployed to a flap setting. Upon landing, some or all of the trailing edge devices 530a, 530e can be deployed upwardly to high drag or spoiler settings. During low speed flight, one or more of the outboard trailing edge devices (e.g., devices 530a-530c) can be deployed upwardly or downwardly to provide roll control functionality, and during high speed flight, one or more of the more inwardly positioned trailing edge devices (e.g., devices 530b-530e) can be deployed in a similar manner. During call control, trailing edge devices 530 on the left and right wings of the aircraft system 500 can be deployed asymmetrically to produce rolling movements. During any flight regime, one or more of the trailing edge devices 530 can be deployed upwardly or downwardly to trim the wing 510 (e.g., to provide an overall lift characteristic) or, the trailing edge devices 530 can be selectively deployed to different settings to control the manner in which lift is distributed over the span of the wing 510. Further details of these arrangements are described below with reference to
During cruise (as shown in
Referring now to
In an embodiment described above with reference to
In a particular aspect of the embodiments described above with reference to
One feature of an embodiment of the aircraft systems described above with reference to
An advantage of the foregoing arrangement is that the guide structures for different trailing edge portions can have some or all components in common. A further advantage is that even when at least portions of the guide structures are scaled relative to each other, the manner in which the guide structure is assembled and maintained can be common among these guide structures. As a result, the trailing edge devices can be simpler to install and maintain, as compared to existing trailing edge devices which typically have a wide variety of coupling arrangements.
Referring now to
One feature of an embodiment of the arrangement shown in
Still another feature of an embodiment of the arrangement shown in
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, several embodiments of the invention have been described in the context of wings. In other embodiments, trailing edge devices having generally similar characteristics can be applied to other airfoils, including canards, tails, blended wing/bodies, flying wings and rotary wings. In still further embodiments, the trailing edge devices can be applied to systems other than aircraft systems, for example, submarines or other mobile systems having hydrodynamic surfaces, or to stationary systems having aerodynamic or hydrodynamic surfaces. In further embodiments, the maximum upward and/or downward deflections of the trailing edge devices can have values other than those described above. Accordingly, the invention is not limited except as by the appended claims.
The present application claims priority to pending U.S. Provisional Application No. 60/475,828, filed Jun. 3, 2003 and incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1724456 | Crook | Aug 1929 | A |
1770575 | Ksoll | Jul 1930 | A |
2086085 | Lachmann et al. | Jul 1937 | A |
2169416 | Griswold | Aug 1939 | A |
2282516 | Gropler et al. | May 1942 | A |
2289704 | Grant | Jul 1942 | A |
2319383 | Zap | May 1943 | A |
2347230 | Zuck | Apr 1944 | A |
2358985 | McAndrew | Sep 1944 | A |
2378528 | Arsandaux | Jun 1945 | A |
2383102 | Zap | Aug 1945 | A |
2385351 | Davidsen | Sep 1945 | A |
2387492 | Blaylock et al. | Oct 1945 | A |
2389274 | Pearsall et al. | Nov 1945 | A |
2406475 | Rogers | Aug 1946 | A |
2422296 | Flader et al. | Jun 1947 | A |
2444293 | Holt | Jun 1948 | A |
2458900 | Erny | Jan 1949 | A |
2504684 | Harper | Apr 1950 | A |
2518854 | Badenoch | Aug 1950 | A |
2563453 | Briend | Aug 1951 | A |
2652812 | Fenzl | Sep 1953 | A |
2665084 | Feeney et al. | Jan 1954 | A |
2851229 | Clark | Sep 1958 | A |
2864239 | Taylor | Dec 1958 | A |
2877968 | Granan et al. | Mar 1959 | A |
2886008 | Geyer et al. | May 1959 | A |
2891740 | Campbell | Jun 1959 | A |
2892312 | James et al. | Jun 1959 | A |
2899152 | Weiland | Aug 1959 | A |
2912190 | MacDonough | Nov 1959 | A |
2920844 | Marshall et al. | Jan 1960 | A |
2938680 | Lawrence et al. | May 1960 | A |
2990144 | Hougland | Jun 1961 | A |
2990145 | Hougland | Jun 1961 | A |
3013748 | Westburg | Dec 1961 | A |
3089666 | Quenzler | May 1963 | A |
3102607 | Roberts | Sep 1963 | A |
3112089 | Dornier | Nov 1963 | A |
3136504 | Carr | Jun 1964 | A |
3166271 | Zuck | Jan 1965 | A |
3203275 | Hoover | Aug 1965 | A |
3203647 | Alvarez-Calderon | Aug 1965 | A |
3282535 | Steiner | Nov 1966 | A |
3375998 | Alvarez-Calderon | Apr 1968 | A |
3447763 | Allcock | Jun 1969 | A |
3463418 | Miksch | Aug 1969 | A |
3504870 | Cole et al. | Apr 1970 | A |
3528632 | Miles et al. | Sep 1970 | A |
3539133 | Robertson | Nov 1970 | A |
3556439 | Autry et al. | Jan 1971 | A |
3587311 | Hays, Jr. | Jun 1971 | A |
3589648 | Gorham et al. | Jun 1971 | A |
3642234 | Kamber et al. | Feb 1972 | A |
3653611 | Trupp et al. | Apr 1972 | A |
3659810 | Robertson | May 1972 | A |
3677504 | Schwarzler | Jul 1972 | A |
3704828 | Studer et al. | Dec 1972 | A |
3704843 | Jenny | Dec 1972 | A |
3711039 | James | Jan 1973 | A |
3730459 | Zuck | May 1973 | A |
3743219 | Gorges | Jul 1973 | A |
3767140 | Johnson | Oct 1973 | A |
3794276 | Maltby et al. | Feb 1974 | A |
3813062 | Prather | May 1974 | A |
3827658 | Hallworth | Aug 1974 | A |
3831886 | Burdges et al. | Aug 1974 | A |
3836099 | O'Neill et al. | Sep 1974 | A |
3837601 | Cole | Sep 1974 | A |
3862730 | Heiney | Jan 1975 | A |
3874617 | Johnson | Apr 1975 | A |
3897029 | Calderon | Jul 1975 | A |
3904152 | Hill | Sep 1975 | A |
3910530 | James et al. | Oct 1975 | A |
3917192 | Alvarez-Calderon | Nov 1975 | A |
3931374 | Moutet nee Layrisse et al. | Jan 1976 | A |
3941334 | Cole | Mar 1976 | A |
3941341 | Brogdon, Jr. | Mar 1976 | A |
3949957 | Portier | Apr 1976 | A |
3968946 | Cole | Jul 1976 | A |
3985319 | Dean et al. | Oct 1976 | A |
3987983 | Cole | Oct 1976 | A |
3992979 | Smith | Nov 1976 | A |
3993584 | Owen et al. | Nov 1976 | A |
3994451 | Cole | Nov 1976 | A |
4015787 | Maieli et al. | Apr 1977 | A |
4106730 | Spitzer et al. | Aug 1978 | A |
4117996 | Sherman | Oct 1978 | A |
4120470 | Whitener | Oct 1978 | A |
4131253 | Zapel | Dec 1978 | A |
4146200 | Borzachillo | Mar 1979 | A |
4171787 | Zapel | Oct 1979 | A |
4180222 | Thornburg | Dec 1979 | A |
4181275 | Moelter et al. | Jan 1980 | A |
4189120 | Wang | Feb 1980 | A |
4189121 | Harper et al. | Feb 1980 | A |
4189122 | Miller | Feb 1980 | A |
4200253 | Rowarth | Apr 1980 | A |
4202519 | Fletcher | May 1980 | A |
4240255 | Benilan | Dec 1980 | A |
4262868 | Dean | Apr 1981 | A |
4267990 | Staudacher | May 1981 | A |
4275942 | Steidl | Jun 1981 | A |
4283029 | Rudolph | Aug 1981 | A |
4285482 | Lewis | Aug 1981 | A |
4293110 | Middleton | Oct 1981 | A |
4312486 | McKinney | Jan 1982 | A |
4351502 | Statkus | Sep 1982 | A |
4353517 | Rudolph | Oct 1982 | A |
4358077 | Coronel | Nov 1982 | A |
4360176 | Brown | Nov 1982 | A |
4363098 | Buus et al. | Dec 1982 | A |
4365774 | Coronel | Dec 1982 | A |
4368937 | Palombo et al. | Jan 1983 | A |
4384693 | Pauly | May 1983 | A |
4427168 | Mc Kinney | Jan 1984 | A |
4441675 | Boehringer | Apr 1984 | A |
4444368 | Andrews | Apr 1984 | A |
4461449 | Turner | Jul 1984 | A |
4471925 | Kunz | Sep 1984 | A |
4471927 | Rudolph et al. | Sep 1984 | A |
4472780 | Chenoweth et al. | Sep 1984 | A |
4475702 | Cole | Oct 1984 | A |
4479620 | Rogers et al. | Oct 1984 | A |
4485992 | Rao | Dec 1984 | A |
4496121 | Berlin | Jan 1985 | A |
4498646 | Proksch | Feb 1985 | A |
4528775 | Einarsson | Jul 1985 | A |
4533096 | Baker | Aug 1985 | A |
4542869 | Brine | Sep 1985 | A |
4544117 | Schuster | Oct 1985 | A |
4553722 | Cole | Nov 1985 | A |
4575030 | Gratzer | Mar 1986 | A |
4575099 | Nash | Mar 1986 | A |
4576347 | Opsahl | Mar 1986 | A |
4637573 | Perin | Jan 1987 | A |
4650140 | Cole | Mar 1987 | A |
4691879 | Greene | Sep 1987 | A |
4700911 | Zimmer | Oct 1987 | A |
4702441 | Wang | Oct 1987 | A |
4706913 | Cole | Nov 1987 | A |
4712752 | Victor | Dec 1987 | A |
4717097 | Sepstrup | Jan 1988 | A |
4720066 | Renken et al. | Jan 1988 | A |
4729528 | Borzachillo | Mar 1988 | A |
4747375 | Williams | May 1988 | A |
4784355 | Brine | Nov 1988 | A |
4786013 | Pohl | Nov 1988 | A |
4789119 | Bellego et al. | Dec 1988 | A |
4796192 | Lewis | Jan 1989 | A |
4823836 | Bachmann et al. | Apr 1989 | A |
4838503 | Williams et al. | Jun 1989 | A |
4854528 | Hofrichter et al. | Aug 1989 | A |
4856735 | Lotz | Aug 1989 | A |
4867394 | Patterson, Jr. | Sep 1989 | A |
4892274 | Pohl et al. | Jan 1990 | A |
4899284 | Lewis et al. | Feb 1990 | A |
4962902 | Fortes | Oct 1990 | A |
5039032 | Rudolph | Aug 1991 | A |
5046688 | Woods | Sep 1991 | A |
5050081 | Abbott et al. | Sep 1991 | A |
5056741 | Bliesner et al. | Oct 1991 | A |
5074495 | Raymond | Dec 1991 | A |
5082207 | Tulinius | Jan 1992 | A |
5082208 | Matich | Jan 1992 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5094411 | Rao | Mar 1992 | A |
5094412 | Narramore | Mar 1992 | A |
5100082 | Archung | Mar 1992 | A |
5114100 | Rudolph et al. | May 1992 | A |
5129597 | Manthey et al. | Jul 1992 | A |
5158252 | Sakurai | Oct 1992 | A |
5167383 | Nozaki | Dec 1992 | A |
5203619 | Welsch et al. | Apr 1993 | A |
5207400 | Jennings | May 1993 | A |
5244269 | Harriehausen et al. | Sep 1993 | A |
5259293 | Brunner | Nov 1993 | A |
5280863 | Schmittle | Jan 1994 | A |
5282591 | Walters et al. | Feb 1994 | A |
5351914 | Nagao et al. | Oct 1994 | A |
5388788 | Rudolph | Feb 1995 | A |
5420582 | Kubbat et al. | May 1995 | A |
5441218 | Mueller et al. | Aug 1995 | A |
5474265 | Capbern | Dec 1995 | A |
5493497 | Buus | Feb 1996 | A |
5535852 | Bishop et al. | Jul 1996 | A |
5542684 | Squirrell | Aug 1996 | A |
5544847 | Bliesner | Aug 1996 | A |
5600220 | Thoraval et al. | Feb 1997 | A |
5609020 | Jackson et al. | Mar 1997 | A |
5680124 | Bedell et al. | Oct 1997 | A |
5681014 | Davies et al. | Oct 1997 | A |
5686907 | Bedell et al. | Nov 1997 | A |
5735485 | Ciprian et al. | Apr 1998 | A |
5740991 | Gleine et al. | Apr 1998 | A |
5743490 | Gillingham et al. | Apr 1998 | A |
5788190 | Siers | Aug 1998 | A |
5839698 | Moppert | Nov 1998 | A |
5875998 | Gleine et al. | Mar 1999 | A |
5915653 | Koppelman | Jun 1999 | A |
5921506 | Appa | Jul 1999 | A |
5927656 | Hinkleman | Jul 1999 | A |
5934615 | Treichler | Aug 1999 | A |
5978715 | Briffe et al. | Nov 1999 | A |
5984230 | Drazi | Nov 1999 | A |
6015117 | Broadbent | Jan 2000 | A |
6033180 | Machida | Mar 2000 | A |
6045204 | Frazier et al. | Apr 2000 | A |
6073624 | Laurent | Jun 2000 | A |
6076767 | Farley et al. | Jun 2000 | A |
6076776 | Breitbach et al. | Jun 2000 | A |
6079672 | Lam et al. | Jun 2000 | A |
6082679 | Crouch et al. | Jul 2000 | A |
6109567 | Munoz | Aug 2000 | A |
6145791 | Diller et al. | Nov 2000 | A |
6152405 | Muller | Nov 2000 | A |
6161801 | Kelm | Dec 2000 | A |
6164598 | Young et al. | Dec 2000 | A |
6173924 | Young et al. | Jan 2001 | B1 |
6189837 | Matthews | Feb 2001 | B1 |
6213433 | Gruensfelder | Apr 2001 | B1 |
6227498 | Arata | May 2001 | B1 |
6244542 | Young et al. | Jun 2001 | B1 |
6293497 | Kelley-Wickemeyer | Sep 2001 | B1 |
6328265 | Dizdarevic | Dec 2001 | B1 |
6349798 | McKay | Feb 2002 | B1 |
6364254 | May | Apr 2002 | B1 |
6375126 | Sakurai | Apr 2002 | B1 |
6382566 | Ferrel et al. | May 2002 | B1 |
6431498 | Watts et al. | Aug 2002 | B1 |
6439512 | Hart | Aug 2002 | B1 |
6443394 | Weisend | Sep 2002 | B1 |
6450457 | Sharp | Sep 2002 | B1 |
6464175 | Yada et al. | Oct 2002 | B2 |
6466141 | McKay et al. | Oct 2002 | B1 |
6478541 | Charles et al. | Nov 2002 | B1 |
6481667 | Ho | Nov 2002 | B1 |
6484969 | Sprenger | Nov 2002 | B2 |
6499577 | Kitamoto et al. | Dec 2002 | B2 |
6536714 | Gleine | Mar 2003 | B2 |
6547183 | Farnsworth | Apr 2003 | B2 |
6554229 | Lam | Apr 2003 | B1 |
6561463 | Todd et al. | May 2003 | B1 |
6591169 | Jones | Jul 2003 | B2 |
6598829 | Kamstra | Jul 2003 | B2 |
6598834 | Nettle et al. | Jul 2003 | B2 |
6601801 | Prow et al. | Aug 2003 | B1 |
6622972 | Urnes | Sep 2003 | B2 |
6622974 | Dockter et al. | Sep 2003 | B1 |
6625982 | Van Den Bossche | Sep 2003 | B2 |
6644599 | Perez | Nov 2003 | B2 |
6651930 | Gautier et al. | Nov 2003 | B1 |
6729583 | Milliere | May 2004 | B2 |
6745113 | Griffin, III et al. | Jun 2004 | B2 |
6755375 | Trikha | Jun 2004 | B2 |
6796526 | Boehringer | Sep 2004 | B2 |
6796534 | Beyer et al. | Sep 2004 | B2 |
6799739 | Jones | Oct 2004 | B1 |
6802475 | Davies et al. | Oct 2004 | B2 |
6824099 | Jones | Nov 2004 | B1 |
6843452 | Vassberg et al. | Jan 2005 | B1 |
6860452 | Bacon et al. | Mar 2005 | B2 |
6870490 | Sherry et al. | Mar 2005 | B2 |
6978971 | Dun | Dec 2005 | B1 |
6981676 | Milliere | Jan 2006 | B2 |
7048234 | Reeksiek et al. | May 2006 | B2 |
7051982 | Johnson | May 2006 | B1 |
7059563 | Huynh | Jun 2006 | B2 |
20010006207 | Caton et al. | Jul 2001 | A1 |
20030058134 | Sherry et al. | Mar 2003 | A1 |
20030127569 | Bacon et al. | Jul 2003 | A1 |
20030132860 | Feyereisen et al. | Jul 2003 | A1 |
20030197097 | Wakayama | Oct 2003 | A1 |
20030230677 | Milliere | Dec 2003 | A1 |
20040004162 | Beyer | Jan 2004 | A1 |
20040059474 | Boorman et al. | Mar 2004 | A1 |
20040195464 | Vassberg et al. | Oct 2004 | A1 |
20040245386 | Huynh | Dec 2004 | A1 |
20050011994 | Sakurai et al. | Jan 2005 | A1 |
20050017126 | McLean et al. | Jan 2005 | A1 |
20050045765 | Pitt | Mar 2005 | A1 |
20050061922 | Milliere | Mar 2005 | A1 |
20050109876 | Speer | May 2005 | A1 |
20050171652 | Speer | Aug 2005 | A1 |
20050203676 | Sandell et al. | Sep 2005 | A1 |
20050222721 | Chen et al. | Oct 2005 | A1 |
20050224662 | Lacy | Oct 2005 | A1 |
20050228674 | Gunn et al. | Oct 2005 | A1 |
20050231390 | Crane et al. | Oct 2005 | A1 |
20050242234 | Mahmulyin | Nov 2005 | A1 |
20050274847 | Charron | Dec 2005 | A1 |
20060000952 | Speer | Jan 2006 | A1 |
20060038086 | Reckzeh | Feb 2006 | A1 |
20060049308 | Speer | Mar 2006 | A1 |
20060102803 | Speer | May 2006 | A1 |
20060169874 | Speer | Aug 2006 | A1 |
20060175468 | Speer | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
387833 | Jan 1924 | DE |
11 29 379 | May 1962 | DE |
0100775 | Feb 1984 | EP |
0 103 038 | Mar 1984 | EP |
0 483 504 | May 1992 | EP |
0 781 704 | Jul 1997 | EP |
0 947 421 | Oct 1999 | EP |
1010616 | Jun 2000 | EP |
1338506 | Aug 2003 | EP |
1 547 917 | Jun 2005 | EP |
705155 | Jun 1931 | FR |
984 443 | Jul 1951 | FR |
56 121 | Sep 1952 | FR |
57 988 | Sep 1953 | FR |
58273 | Nov 1953 | FR |
1 181 991 | Feb 1970 | GB |
2 144 688 | Mar 1985 | GB |
Number | Date | Country | |
---|---|---|---|
20050011994 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60475828 | Jun 2003 | US |