This application is the National Stage of PCT/EP2010/002400 filed on Apr. 20, 2010, which claims priority under 35 U.S.C. §119 of Italian Application No. VI2009A000114 filed on May 13, 2009, the disclosure of which is incorporated by reference. The international application under PCT article 21(2) was published in English.
The present finding concerns a multi-gas burner head with sucked or blown air, according to the general part of claim 1.
It is known that many types of burners with sucked or blown air have a head made from a thin metallic sheet, in which there are one or more rows of slits and/or slits, at which the mixture of fuel gas and comburent air come out and the combustion occurs. These burners take up many various conformations and configurations depending on the particular types of use they have.
It is usually desired for such a burner to simultaneously have the following characteristics:
Vice versa, in the case in which a burner with sucked air is used, it will be the burner itself that, also in this case automatically, will provide for varying the quantity of air sucked by the Venturi tube positioned upstream of the burner, so as to be adapted to the type of fuel gas.
In principle, there are not great operation difficulties for the burner if the flame is not adjusted; in other words, it is not problematic to design a burner correctly, operating either at full power or idle (on-off).
The problems begin when the burner is made to operate with very low power, since, in such a case, the temperature of the outer surface of the burner can reach temperatures greater than 1000° C., thus compromising the correct operation of the burner itself.
The fact that there is this high temperature leads to, as the most dangerous drawback, the possibility of so-called backfiring, or more precisely the ignition of the mixture inside the mixing chamber, occurring. Indeed, when the head heats at such temperatures, the mixture of comburent air and fuel gas inside the mixing chamber comes into contact with the head and tends to ignite and to continue burning inside said chamber. This can lead to the destruction of the burner, as well as the formation of a substantial amount of CO in the combustion fumes.
In order to prevent this type of disadvantageous disaster, numerous provisions have been conceived able to reduce the temperature of the surface of the head of the burner which comes into contact with the air/gas mixture. As an example the following provisions have been foreseen:
In reality, many other provisions have been conceived able to avoid the high temperatures of the burner head, but all have proven to be very complicated and expensive to make.
It is clear that, from the principle point of view, the simplest provision to carry out would be that of making a head having a substantial outlet surface, as well as a great thickness and having a small amount of material in contact with the flame, all in order for the heat to develop on the outer surface and to be dispersed so that the temperature of its inner surface is as low as possible.
Unfortunately, these types of heads are particularly onerous and difficult to make.
In order to avoid these drawbacks a multi-gas burner head with sucked or blown air has been conceived, which was the object of the patent application for the industrial invention number V12007A000063, of the same applicant of the present application, in which it is foreseen for its head to be made from a metallic sheet folded in a corrugated manner and with slits present on the crests of said corrugations.
The purpose of the present finding is that of making a multi-gas burner head which is able to obtain even better results in all possible calorific operating conditions, with respect to such a burner head, as well as to all other heads present in the state of the art.
This is achieved, according to the finding, by foreseeing that the burner head be made from a metallic sheet in which there is at least one row of substantially rectangular-shaped aligned slits; such a sheet is folded so as to have a series of flat flaps which follow after one another and each of the slits is arranged so as to be closed like a “sandwich”, between two flat portions of the sheet. Once the flaps of the structure are pressed together, the gas mixture is intended to pass from the bottom of the flaps, then, through said slits and finally to come out at the crests of the structure in which the combustion occurs.
These and other characteristics of the finding shall be described in detail hereafter, with reference to some of its particular embodiments given as an example and not for limiting purposes, with the help of the attached drawing tables, in which:
In
The structure of this burner head is clearly illustrated in
The gas mixture of comburent air and fuel gas is intended to pass from the bottom 5 of the flaps (see
In the simplest configuration of the head according to the finding, illustrated in
It is also possible to foresee, as illustrated in figures from 6 to 10, that the folding lines of the various folds, as well as at the edges 7, are also present at the transversal mid-line of said slits, again considering them parallel with respect to the longitudinal extension of the row of slits themselves. In this way “two empty spaces” are defined compressed between “two full spaces”, as can be clearly seen in particular in
Similarly, it is possible to make sure, as illustrated in
In practice, the difference between these embodiments, from the practical point of view, consists of the thickness of the slits positioned on top of the folded sheet, at which the combustion occurs.
In
Of course, even in this type of structure, in which there is a single row of slits 2, it is possible to foresee the arrangements of slits illustrated in alternative embodiments of the device according to the finding (“double”, “triple” or more empty spaces between “two full spaces”).
Advantageously, the burner head according to the finding, once the sheet has been folded and is thus ready to be used, shall have a thickness which can vary between 2 and 20 mm. Typically it has been found that, whereas the temperature of the surface of the head on which the combustion occurs will reach values near to 1000° C., at depths of about 5 mm the temperature will be of about 900° C. and at depths of about 10 mm said temperature will be of about 700° C.-800° C.
Therefore, with the provisions previously described, a burner head can be obtained in which the inner surface has a temperature which is substantially lower than that of the outer surface, in particular, not leading to the danger of back-firing.
It has also been possible to verify that burners using the head according to the finding are able to operate in any operation conditions, in particular with particularly low power, since it is not, indeed, intrinsically subject to back-firing.
Number | Date | Country | Kind |
---|---|---|---|
VI2009A0114 | May 2009 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/002400 | 4/20/2010 | WO | 00 | 11/22/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/130325 | 11/18/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030148241 | Shimazu et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
0524387 | Jan 1993 | EP |
502980 | May 1920 | FR |
2300965 | Oct 1976 | FR |
2300965 | Sep 1978 | FR |
1059431 | Feb 1967 | GB |
1220596 | Jan 1971 | GB |
VI2007A000063 | Mar 2007 | IT |
Entry |
---|
International Search Report in PCT/EP2010/002400 dated Jun. 23, 2010. |
Written Opinion of the International Search Authority in PCT/EP2010/002400 dated Jun. 23, 2010. |
Number | Date | Country | |
---|---|---|---|
20120115097 A1 | May 2012 | US |