The present invention generally relates to field effect transistors and more particularly to a multiple, independent top gated field effect transistor having an improved electron injection and a method that allows for the destruction of metallic carbon nanotubes positioned between the source and drain of a top multi-gate transistor.
One-dimensional nanostructures, such as belts, rods, tubes and wires, have become the focus of intensive research with their own unique applications. One-dimensional nanostructures are model systems to investigate the dependence of electrical and thermal transport or mechanical properties as a function of size reduction. In contrast with zero-dimensional, e.g., quantum dots, and two-dimensional nanostructures, e.g., GaAs/AlGaAs superlattice, direct synthesis and growth of one-dimensional nanostructures has been relatively slow due to difficulties associated with controlling the chemical composition, dimensions, and morphology. Alternatively, various one-dimensional nanostructures have been fabricated using a number of advanced nanolithographic techniques, such as electron-beam (e-beam), focused-ion-beam (FIB) writing, and scanning probe.
Carbon nanotubes are one of the most important species of one-dimensional nanostructures. Carbon nanotubes are one of four unique crystalline structures for carbon, the other three being diamond, graphite, and fullerene. In particular, carbon nanotubes refer to a helical tubular structure grown with a single wall (single-walled nanotubes) or multiple walls (multi-walled nanotubes). These types of structures are obtained by rolling a sheet formed of a plurality of hexagons. The sheet is formed by combining each carbon atom thereof with three neighboring carbon atoms to form a helical tube. Carbon nanotubes typically have a diameter on the order of a fraction of a nanometer to a few hundred nanometers. As used herein, a “carbon nanotube” in any elongated carbon structure.
Both carbon nanotubes and inorganic nanowires have been demonstrated as field effect transistors (FETs) and other basic components in nanoscale electronics such as p-n junctions, bipolar junction transistors, inverters, etc. The motivation behind the development of such nanoscale components is that “bottom-up” approach to nanoelectronics has the potential to go beyond the limits of the traditional “top-down” manufacturing techniques.
Unlike other inorganic one-dimensional nanostructures, carbon nanotubes can function as either a conductor, or a semiconductor, according to the chirality and the diameter of the helical tubes. With metallic-like nanotubes, a one-dimensional carbon-based structure can conduct a current at room temperature with essentially no resistance. Further, electrons can be considered as moving freely through the structure, so that metallic-like nanotubes can be used as ideal interconnects. When semiconductor nanotubes are connected to two metal electrodes, the structure can function as a field effect transistor wherein the nanotubes can be switched from a conducting to an insulating state by applying a voltage to a gate electrode. Therefore, carbon nanotubes are potential building blocks for nanoelectronic and sensor devices because of their unique structural, physical, and chemical properties.
As carbon nanotube field effect transistors are reduced in size, and the gate oxide thickness is reduced, a lower on/off ratio is experienced at typical drain voltages. This limits the range of usuable drain voltages and the achievable on currents. It has been shown that an asymmetric design can suppress an ambipolar transport characteristic of a Schottky barrier carbon nanotube field effect transistor depending on the drain voltage. Therefore, the turn-on performance may be dictated by the geometry of the contact and gate at the source electrode. This leads to larger on currents by preventing an increase in current with a larger drain voltage. The advantage of an asymmetric geometry also applies to ohmic contact carbon nanotube field effect transistors.
Single carbon nanotube FETs are typically either back gated or top gated. For any digital or analog application, the availability of a top gated nanotube FETs is critical. Top gated carbon nanotube FETs have been fabricated in geometries where the gate electrode either underlaps or overlaps source drain regions. Fabrication typically comprises patterning a gate on top of the nanotube channel where the gate dielectric underneath the gate metal coats either only under the gate or along the entire length of the nanotube.
It has been shown that improving electron injection efficiency into the channel region requires strong gate to source fields (where the source is typically grounded). This can be achieved by using a high-K dielectric for the gate dielectric and/or using a gate geometry that is in close proximity to the source. Typically, this is achieved by forming a slight overlap between gate and source/drain. However, stronger capacitive coupling between the gate and drain will reduce the barrier for minority carrier injection on the drain side (referred to as gate-induced-barrier-lowering (GIBL)) and result in inferior performance such as reduced ON/OFF current ratio and ambipolar transport. For good device performance it is critical to provide both improved electron injection efficiency and immunity against GIBL effects.
While normalized transconductance of a single nanotube FET can be quite large, the overall transconductance is small due to the intrinsic small size of the nanotube. Unlike conventional technologies, transconductance cannot be increased by increasing the width of the transistor. As a result, it is necessary to fabricate multiple nanotube FETS. This should result in an increase in transconductance, signal to noise ratio, and power handling capability.
Therefore, since it is desirable to fabricate carbon nanotube field effect transistors with multiple nanotubes forming the channel of the transistor, for nano RF applications for example, the presence of metallic nanotubes in the channel significantly reduces the ON/OFF ratio imposing a severe limitation on potential applications. Although it is easy to eliminate (burn off) metallic tubes in the channel of a backgated device by passing a large current through the channel while semiconducting nanotubes are turned off. However, this has proven difficult for top gated devices, especially if fabricated on a low-loss substrate such as quartz. An added difficulty in the case of structures with a dielectric along the entire length of the nanotube is that a top gate cannot be used for the electrical burn due to lack of oxygen needed in the burnout process. Therefore, an improved structure and method of fabricating a gated field effect transistor is needed for single semiconducting nanotube devices, multiple semiconducting nanotube devices, and multiple nanotube devices having both metallic and semiconducting nanotubes.
Accordingly, it is desirable to provide a multiple, independent top gated field effect transistor having an improved electron injection that suppresses the ambipolar transport characteristic of a Schottky barrier carbon nanotube field effect transistor and allows for the destruction of metallic carbon nanotubes positioned between the source and drain of a top multi-gate transistor. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
A multiple, independent top gated field effect transistor and a method that allows for the destruction of metallic carbon nanotubes positioned between the source and drain of a top multi-gate transistor are provided. The field effect transistor comprises at least one carbon nanotubes coupled between the first and second electrodes and a first gate material formed over a portion of the at least one carbon nanotubes and spaced apart from the first and second electrodes. A dielectric material is conformally coated on the first and second electrodes, the at least one carbon nanotubes, and the first gate material. A second gate material is conformally coated on the dielectric material. Other exemplary embodiments include one gate, three gates, and three gates having the dielectric layer portioned with different material characteristics.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
One-dimensional nanostructures such as nanotubes and nanowires show promise for the development of molecular-scale sensors, resonators, field emission displays, and logic/memory elements. One-dimensional nanostructures are herein defined as a material having a high aspect ratio of greater than 10 to 1 (length to diameter).
In accordance with an exemplary embodiment, an under lapped top-gated field effect transistor is formed with one-dimensional nanostructures as the channel between the source and drain. Optionally, an electrical burn-out of any metallic one-dimensional nanostructures is performed by applying a current between the source and drain while applying a voltage to a first gate, wherein the first gate is formed over a first dielectric layer spaced between the source and drain. A second dielectric layer is conformally coated over the source, drain, one-dimensional nanostructures, first dielectric layer, and the first gate. A second gate is conformally coated over the second dielectric layer, providing a two gate structure comprising a first exemplary embodiment. An opening in the second dielectric layer may be etched to allow the second gate to contact the first gate, providing a single gate structure comprising a second exemplary embodiment. The second gate may define a gap over the first gate, providing a three gate structure (a third embodiment). Furthermore, the second dielectric layer may comprise different thicknesses or material characteristics between the source and the first gate, and between the drain and the first gate (a fourth embodiment).
This approach to fabricating a field effect transistor allows for electrical burning of metallic nanotubes, which is critical for many nanoRF applications, during the fabrication process. Additionally, this approach is easily integrated without damaging the nanotubes, and allows for flexibility of varying the gate dielectric material, thickness and/or metal gate work function for each of the three gate segments. This source-drain asymmetry improves performance by improving electron injection efficiency and reducing current when the transistor is off. A carbon nanotube field effect transistor having a geometry providing a large electric field at the source, but a small electric field at the drain, suppresses unwanted minority carrier injection.
Referring to
The electrodes 16 and 18 comprise Cr/Au, but may comprise any conducting material including Ti/Au, Ti/Pd, and Pd. The electrodes 16 and 18 are preferably spaced between 10 nanometers and 1 millimeters apart. The thickness of the electrodes 14, 16 is generally between 0.01 and 100 micrometers, and would preferably be 1.0 micrometer.
A dielectric material 22 is formed by standard lithographic techniques, e.g., deposition, on the one-dimensional nanostructures 14 and a gate electrode 24 is formed thereover.
One-dimensional nanostructures 14 can function as either a conductor, or a semiconductor, according to the chirality and the diameter of the helical tubes. With metallic-like nanotubes, a one-dimensional carbon-based structure can conduct a current at room temperature with essentially no resistance. This is undesired when formed for the channel region of a field effect transistor. The exemplary embodiments of a top gated field effect transistor described below allows for removal, or burn-off, of metallic one-dimensional nanostructures formed along with the semiconductor one-dimensional nanostructures. Once the structure of
At a current density greater than carbon nanotubes 14 can withstand, generally greater than 109 A/cm2 in an oxidizing environment, the carbon nanotubes will fail, or partially disintegrate, disrupting current flow. Applying a voltage to the gate 24, will selectively deplete carriers from the semiconducting nanotubes. When depleted, the semiconducting nanotubes will not fail; however, the current flowing through metallic nanotubes will cause them to fail, i.e., oxidize, since their carriers are not depleted. As current flows through the metallic nanotubes causing them to fail, the total current will drop. The current between the electrodes 16, 18 may be monitored and removed when a drop in current is noticed.
Referring to
A second exemplary embodiment is shown in
A variation of the fourth embodiment is shown in the fifth embodiment of
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.