1. Field of the Invention
The present invention relates to joining systems, and more particularly to an improved system and method for laser brazing a plurality of workpieces.
2. Discussion of Prior Art
The process of material joining and treatment is a necessary condition for industrial progress and construction. One such process, commonly known as laser assisted brazing, has been developed to provide precise seam joints, and is commonly used, for example, in the automotive industry to join a plurality of workpieces. This technology utilizes a filler wire to provide the joint material and a conventional laser to melt the filler wire into the seam to be joined. The use of lasers as the source of heat energy enables more accurate application of energy, which thereby results in the advantage of less heat distortion being experienced by the workpieces, than does more traditional forms of brazing such as furnace brazing. Among other advantages, laser assisted brazing provides faster joining speeds, and produces a stronger weld than a traditional seam of resistance spot welds. As a result of lower melting temperatures and heats of fusion, laser brazing also utilizes less heat energy during joining, than does other conventional welding techniques.
Laser assisted brazing, however, also presents various concerns. While rapid cooling temperatures associated with laser brazing provides stronger joints, they also result in a loss of ductility in certain materials. The relatively short thermal cycle increases the likelihood of intergranular cracking and pore formation that degrade the surface appearance and functionality of the joint. These pores typically result when gaseous emissions from vaporized contaminants (e.g., lubricant) fail to escape the narrow braze during the process. The necessary treatment of these cracks and pores further realizes significant increases in costs associated with post-brazing finishing.
For these reasons in part, there results a need in the art for a more efficient brazing process that reduces the likelihood of construction inefficiencies, including porosity.
Responsive to these and other concerns caused by conventional laser brazing systems, the present invention provides an improved brazing system for decreasing the likelihood of construction inefficiencies, such as pore formation, within the braze joint. This invention is useful, among other things, for reducing the costs associated with inspection and treatment of braze joint porosity. For example, as a result of the inventive system and method, post-brazing finishing to remove pores in preparation of painting is minimized.
This invention provides a method of brazing workpieces utilizing multiple quantities of heat energy for in tandem joining. More particularly, a first aspect of the present invention concerns a system for joining a plurality of workpieces to form a braze joint, wherein said workpieces cooperatively present an exposed narrow groove. The system includes a fusible material positionable substantially adjacent the groove, and a plurality of heat energy sources. A portion of said plurality of sources is configured to melt at least a portion of the material into the groove, such that the molten material contacts, interconnects with and is retained by engaging surfaces defined by the workpieces. Finally, the sources are cooperatively configured to produce the joint.
A second aspect of the present invention concerns a method of joining a plurality of workpieces to form a braze joint. The workpieces cooperatively present an exposed narrow groove and adjacent joint engaging surfaces. A first quantity of heat energy is applied to at least a portion of the surfaces, so as to vaporize surface contaminants thereupon. A fusible material is secured in a position relative to the at least portion of the surfaces, such that the material flows into the groove and contacts the at least portion of the surfaces when melted. A second quantity of heat energy is applied to at least a portion of the material sufficient to melt the at least portion of material. A third quantity of heat energy is applied to the at least portion of material, so as to further heat and increase the thermal cycle of the at least portion of material or re-melt at least a portion of the metal.
Other aspects and useful advantages of the present invention will be apparent from the following detailed description of the preferred embodiment(s) and the accompanying drawing figures.
A preferred embodiment of the invention is described in detail below with reference to the attached drawing figures, wherein:
a is a cross-sectional elevation view of a preferred embodiment of the system, particularly illustrating a three laser beam system, wherein the laser beams are split from an initial beam;
b is a cross-sectional elevation view of a preferred embodiment of the system, particularly illustrating a two laser beam and plasma-arc welder system, wherein the laser beams are split from an initial beam;
c is a cross-sectional elevation view of a preferred embodiment of the system, particularly illustrating a two laser beam and electrode system, wherein the laser beams are split from an initial beam;
d is a cross-sectional elevation view of a preferred embodiment of the system, particularly illustrating the first pass of a reciprocating or circulating heat source, and prospective second and third passes shown in hidden line;
a is a pedagogic diagram of a method sequence in accordance with a preferred embodiment of the present invention, particularly illustrating a three heat source system;
b is a pedagogic diagram of a method sequence in accordance with a preferred embodiment of the present invention, particularly illustrating a pre-melting heat source; and
c is a pedagogic diagram of a method sequence in accordance with a preferred embodiment of the present invention, particularly illustrating a post melting heat source.
The present invention concerns an improved brazing system 10 for joining a plurality (i.e.; two or more) of adjacent workpieces, such as automotive sheet metal and engine cradle parts, to produce a braze joint 12. In the illustrated embodiments shown in
Turning to the configuration of the system 10 as shown in
It is appreciated that heating the surfaces 14a, 16a, and further heating the molten material 26 is useful, among other things, for reducing porosity within the joint 12. As previously mentioned, the first heat source 20 removes surface contaminants before the process, thereby resulting in fewer gaseous emissions during brazing. The third heat source 24 retards formation of the joint by increasing the temperature of the molten material. The longer molten period provides additional opportunity for the remaining gaseous emissions, resulting from non-ablated surface contaminants or wire-borne contaminants, to escape.
In the illustrated embodiments, at least a portion of the preferred heat sources 20-24 is produced by at least one laser 30. However, as shown in
Where linear joining is desired, the three beams 30a-c preferably engage the surfaces 14a,16a and material 26 at points on a line oriented along the longitudinal axis of the soon to be formed joint 12. Irrespective of configuration, however, succeeding beams-need not be equally spaced. In
Thus, a preferred method of brazing is presented, wherein a first laser 30 is translated relative to a plurality of workpieces 14,16, so as to engage a beam 30a with surfaces 14a, 16a of the workpieces. Next, fusible material 26, i.e. wire, is positioned relative to a groove formed by the workpieces 14,16, such that the material 26, when molten, flows into contact with the surfaces 14a,16a and is retained intermediate the-workpieces. The molten material 26 contacts and interconnects with the surfaces 14a,16a. After the material 26 is melted into place, the third beam 30c engages the material 26 to further heat the molten pool, thereby extending the thermal cycle thereof. This three-source sequence is diagrammatically represented in
As shown in
Alternatively, the system 10 may be simplified by removing either the first or third heat source. For example,
Obvious modifications to the exemplary embodiments and methods of operation, as set forth herein, could be readily made by those skilled in the art without departing from the spirit of the present invention. The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as pertains to any system not materially departing from but outside the literal scope of the invention as set forth in the following claims.