The present disclosure relates to internal combustion engines, and more specifically, to multi injector thermal management systems and methods.
The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Opposed piston engines include two pistons housed within a single cylinder that move in an opposed, reciprocal manner within the cylinder. In this regard, during one stage of operation, the two pistons are moving away from one another within the cylinder. During another stage of operation, the two pistons are moving towards one another within the cylinder.
A fuel injector injects fuel into the cylinder through injection ports defined by the cylinder. As the pistons move towards one another within the cylinder, they compress and, thus, cause the ignition of a fuel injected into the cylinder by the fuel injector. In some configurations, each cylinder can include more than one fuel injector. In addition, each opposed piston engine can include more than one cylinder.
An engine controller controls the timing and duration of fuel injections performed by the fuel injectors. For example, the engine controller may control the fuel injectors based on a target start-of-injection (SOI) timing and a target pulse width. The engine controller may specify the same SOI timing and the same pulse width for all of the injectors over several firing cycles of each cylinder and over several cycles through a firing order of the engine. In turn, local hot spots may develop within the cylinder. Thus, cooling devices such as high capacity coolant pumps and a charge air cooler may be required to avoid damaging the engine.
A system according to the present disclosure includes a crankshaft position sensor and an injector control module. The crankshaft position sensor measures an angular position of a crankshaft in an engine. The injector control module controls a first fuel injector and a second fuel injector to inject fuel into a first cylinder of the engine based on the measured crankshaft position.
The injector control module controls the first fuel injector based on a first target injection parameter once every N firing cycles of the first cylinder. The first target injection parameter includes at least one of a first pulse width and a first start-of-injection (SOI) timing. N is equal to the number of fuel injectors that are operable to inject fuel into the first cylinder;
The injector control module controls the first fuel injector based on a second target injection parameter once every N firing cycles of the first cylinder. The second target injection parameter includes at least one of a second pulse width and a second SOI timing that are different than the first pulse width and the first SOI timing, respectively. The injector control module controls the second fuel injector based on the first target injection parameter once every N firing cycles of the first cylinder. The injector control module controls the second fuel injector based on the second target injection parameter once every N firing cycles of the first cylinder
A method according to the present disclosure includes measuring an angular position of a crankshaft in an engine, and controlling a first fuel injector and a second fuel injector to inject fuel into a first cylinder of the engine based on the measured crankshaft position. The method further includes controlling the first fuel injector based on a first target injection parameter once every N firing cycles of the first cylinder. The first target injection parameter includes at least one of a first pulse width and a first start-of-injection (SOI) timing. N is equal to the number of fuel injectors that are operable to inject fuel into the first cylinder.
The method further includes controlling the first fuel injector based on a second target injection parameter once every N firing cycles of the first cylinder. The second target injection parameter includes at least one of a second pulse width and a second SOI timing that are different than the first pulse width and the first SOI timing, respectively. The method further includes controlling the second fuel injector based on the first target injection parameter once every N firing cycles of the first cylinder, and controlling the second fuel injector based on the second target injection parameter once every N firing cycles of the first cylinder.
Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In the drawings, reference numbers may be reused to identify similar and/or identical elements.
An engine according to the present disclosure includes a cylinder, one or more pistons disposed in the cylinder, and at least two fuel injectors operable to inject fuel into a combustion chamber of the cylinder that is at least partially defined by the pistons. An engine control system and method according to the present disclosure determines at least two different injection assignments for the at least two fuel injectors. Each of the injection assignments specifies one or more target injection parameters such as a target start-of-injection (SOI) timing, a target pulse width, and/or a target number of injections per firing cycle of a cylinder.
The engine control system and method then rotates the injection assignments through the at least two fuel injectors over multiple firing cycles of the cylinder. For example, the engine control system and method may control first and second fuel injectors based on first and second injection assignments, respectively, during one firing cycle of the cylinder. The engine control system and method may then control the first and second fuel injectors based on the second and first injection assignments, respectively, during the next firing cycle of the cylinder.
The second injection assignment may include target injection parameters have different values than the values of the target injection parameters included in the first injection assignment. For example, the first injection assignment may include a first target pulse width, and the second injection assignment may include a second target pulse width that is different than the first target pulse width. Similarly, the first injection assignment may include a first target SOI timing, and the second injection assignment may include a second target SOI timing that is different than the first target SOI timing.
By rotating the injection assignments through the fuel injectors, the engine control system and method homogenizes combustion within the cylinder and thereby reduces localized hot spots due to combustion. Thus, engine damage due to overheating may be prevented without using cooling devices to cool the engine. In turn, the mass and cost of the engine may be reduced.
For an engine that includes multiple cylinders, the engine control system and method may further reduce localized hot spots by rotating cylinder torque assignments through the cylinders over multiple firing order cycles of the engine. For example, the engine control system and method may control first and second sets of fuel injectors of first and second cylinders based on first and second cylinder torque assignments, respectively, during one firing order cycle of the engine. The engine control system and method may then control the first and second sets of fuel injectors based on the second and first cylinder torque assignments, respectively, during the next firing order cycle of the engine.
Referring now to
The engine system 10 may include a cylinder or cylinder liner 14, a pair of pistons 16, a plurality of outlet ports 18, a plurality of inlet ports 20, and at least two fuel injectors 22. Although only one cylinder 14 is shown, the engine system 10 may include any number of cylinders 14, each including the pair of pistons 16. The cylinders 14 may be arranged so that their longitudinal axes are disposed within a common plane, or the cylinders 14 may be arranged so that their longitudinal axes are offset from one another as disclosed in U.S. Provisional Application No. 62/121,009, entitled “Opposed Piston Three Nozzle Combustion Chamber Design,” and U.S. Provisional Application No. 62/121,879, entitled Opposed Piston Three Nozzle Piston Bowl Design,” which were both filed on Feb. 27, 2015 and are both incorporated by reference herein.
The cylinder 14 may be formed from a material such as iron, steel, or a suitable metallic alloy, and may extend along a longitudinal axis A1. In this regard, the longitudinal axis A1 may be a central longitudinal axis about which the cylinder 14 is symmetrically disposed. The cylinder 14 may also have a transverse axis A2 extending in a direction substantially perpendicular to the longitudinal axis A1. A bore 26 may extend through, or otherwise be defined by, the cylinder 14 along the longitudinal axis A1. The outlet ports 18 and the inlet ports 20 may be configured to fluidly communicate with the bore 26. In this regard, the inlet ports 20 can be configured to deliver air (e.g., ambient air, air from a turbocharger or other portion of an exhaust gas regeneration system (not shown), etc.) to the bore 26 for combustion, while the outlet ports 18 can be configured to remove exhaust gases from the bore 26 after combustion.
The pistons 16 may be slidably disposed in the bore 26 of the cylinder 14 for opposed, reciprocating motion along the longitudinal axis A1. Each piston 16 may include a skirt 28 and a crown 30. In some configurations, the skirt 28 can be integrally or monolithically formed with the crown 30. The crown 30 may include a recess 32 that is at least partially formed or defined by a bottom surface 34, first side surface 36, a second side surface 38, and a third side surface 40. In some configurations, the bottom surface 34 may be concave and symmetrically disposed about the longitudinal axis A1. The first, second, and third side surfaces 36, 38, 40 may be substantially identical to each another. In this regard, the first, second, and third side surfaces 36, 38, 40 may extend from an end or rim 42 of the piston 16 to the bottom surface 34. Accordingly, the first, second, and third side surfaces 36, 38, 40 may be symmetrically disposed about the longitudinal axis A1. In some configurations, the first, second, and third side surfaces 36, 38, 40 may include a concave shape or profile. It will be appreciated, however, that the first, second, and third side surfaces 36, 38, 40 may include various shapes or profiles within the scope of the present disclosure.
As illustrated in
The outlet ports 18 and the inlet ports 20 may be defined by the cylinder 14 and extend radially through a perimeter surface 52 of the cylinder 14. The cylinder 14 may also define injection ports 54 that extend radially through the perimeter surface 52 of the cylinder 14. The fuel injectors 22 are operable to inject fuel into the bore 26 through the injection ports 54. In the example shown, the injection ports 54 includes first, second, and third injection ports 54a, 54b, and 54c aligned with one another along the longitudinal axis A1 and symmetrically disposed about the longitudinal axis A1. In addition, the fuel injectors 22 include first, second, and third fuel injectors 22a, 22b, 22c operable to inject fuel through the first, second, and third injection ports 54a, 54b, and 54c, respectively. However, the engine system 10 may include additional or fewer fuel injectors 22 and additional or fewer injection ports 54. For example, the cylinder 14 may define only two injection ports 54 that are disposed opposite from one another along the transverse axis A2, and the engine system 10 may include only two fuel injectors 22 that are each operable to inject fuel into one of the injection ports 54. In addition, the injection ports 54 may not be aligned with one another along the longitudinal axis A1 or symmetrically disposed about the longitudinal axis A1.
As illustrated in
It will be appreciated that as the first and second pistons 16a, 16b slide or otherwise move within the bore 26 between a bottom dead center position (not shown) and a top dead center position (
As illustrated in
The fuel injectors 22 may be in fluid communication with the bore 26. In this regard, the fuel injectors 22 can be configured to spray or otherwise deliver a volume of fuel to the chamber 50 for combustion. In this regard, the fuel injectors 22 may be aligned relative to the longitudinal axis A1. In some configurations the fuel injectors 22a, 22b, 22c may deliver the volume of fuel in a direction substantially along or parallel to the axes Xa, Xb, Xc, respectively. In other configurations, the volume of fuel may be delivered in a direction that is offset from the axes Xa, Xb, Xc.
As illustrated in
With continued reference to
The configuration of the cylinders 14, including the distances Da and Db, the configuration of the fuel injectors 22a, 22b, 22c, including the angles β and θ, and the configuration of the pistons 16a, 16b, can allow for the closest possible arrangement of the cylinders 14 within the engine system 10 having three fuel injectors 22. Specifically, arranging the cylinders 14 and the fuel injectors 22a, 22b, 22c in the manner described can help to prevent the fuel injectors 22a, 22b, 22c from contacting or otherwise interfering with an adjacent cylinder 14 and/or the fuel injectors 22a, 22b, 22c of the adjacent cylinder 14, thus allowing for a reduction in the size of the engine system 10. Moreover, the inclusion of three fuel injectors 22 within the engine system 10 can help to ensure improved combustion performance, including efficient utilization and combustion of air within the chamber 50, as well as the efficient mixing of fuel from each of the fuel injectors 22 within the chamber 50.
The engine system 10 further includes a crankshaft position (CKP) sensor 60, a manifold airflow (MAF) sensor 62, a cylinder pressure (CLP) sensor 64, an exhaust temperature (EXT) sensor 66, and an engine control module (ECM) 68. The CKP sensor 60 measures the angular position of the crankshaft 58 and generates a signal indicating the measured crankshaft position. The MAF sensor 62 measures the mass flow rate of intake air entering the cylinder 14 through the inlet ports 20 and generates a signal indicating the mass flow rate of intake air. The CLP sensor 64 measures the pressure within the cylinder 14. The EXT sensor 66 measures the temperature of exhaust gas exiting the cylinder 14 through the outlet ports 18.
The ECM 68 controls the timing and duration of fuel injections performed by the fuel injectors 22. The ECM 68 may also control the number of fuel injections performed by the fuel injectors 22 for each firing cycle of the cylinder 14. The ECM 68 may control the timing, duration, and number of fuel injections based on a target engine torque output and/or engine operating conditions such as engine speed and engine load.
The ECM 68 may control the timing, duration, and number of fuel injections performed by the fuel injectors 22 using a target start-of-injection (SOI) and a target pulse width, and a target number of injections, respectively. The target SOI timing and the target pulse width may be specified in terms of the angular position of the crankshaft 58 (or crank angle). Thus, for example, the ECM 68 may command the fuel injector 22a to start injecting fuel when the crankshaft position from the CKP sensor 60 is equal to the target SOI timing.
Although
As illustrated in
With additional reference to
The engine speed module 70 determines the rotational speed of the crankshaft 58, which may be referred to as engine speed. The engine speed module 70 may determine the engine speed based on the crankshaft position from the CKP sensor 60. For example, the engine speed module 70 may calculate the engine speed based on a period that elapses as the crankshaft 58 completes one or more revolutions. The engine speed module 70 outputs the engine speed.
The engine load module 72 determines the amount of load applied to the crankshaft 58. The engine load module 72 may determine the engine load based on the mass flow rate of intake air from the MAF sensor 62. For example, the engine load module 72 may determine the engine load based on a mapping of intake air flow rate to engine load. Additionally or alternatively, the engine load module 72 may determine the engine load based on other engine operating conditions such as intake manifold pressure, engine coolant temperature, engine speed, and/or accelerator pedal position. Additionally or alternatively, the engine load module 72 may determine the engine load based on the rate at which fuel is injected into the cylinders 14 by the fuel injectors 22. The engine load module 72 may estimate the fuel injection rates based on fuel injection commands sent from the injector control module 74 to the fuel injectors 22.
The injector control module 74 controls the timing and duration of fuel injections performed by the fuel injectors 22. The injector control module 74 may also control the number of injections performed by the fuel injectors 22 for each combustion cycle of the cylinder 14a (or each combustion event in the cylinder 14a). In various implementations, the ECM 68 may include control modules (not shown) that control engine actuators other than the fuel injectors 22. For example, the ECM 68 may include a spark control module and a throttle control module that control spark timing and throttle position, respectively.
The injector control module 74 may control the timing, duration, and number of fuel injections performed by the fuel injectors 22 using target injection parameters. For example, the injector control module 74 may control the injectors to achieve a target start-of-injection (SOI) timing, a target pulse width, and a target number of injections per combustion cycle of the cylinder 14a. One or more target injections parameters for a single combustion cycle of the cylinder 14a may be collectively referred to as an injection assignment.
The target SOI timing and the target pulse width may be specified in terms of the angular position or the crankshaft (e.g., in terms of crank angle degrees). Thus, the injector control module 74 may control the timing and duration of fuel injections performed by the fuel injectors 22 based on the crankshaft position from the CKP sensor 60. For example, the injector control module 74 may command the fuel injector 22a to start injecting fuel into the cylinder 14a when the crankshaft position from the CKP sensor 60 is equal to the target SOI timing value for the fuel injector 22a.
The injector control module 74 determines multiple injection assignments for each combustion cycle of the cylinder 14a. Each injection assignment may include a target SOI timing, a target pulse width, and/or a target number of injections per combustion cycle of the cylinder 14a. The number of injection assignments determined by the injector control module 74 may be equal to the number of the fuel injectors 22 operable to inject fuel into the cylinder 14a.
Thus, for the cylinder 14a, the injector control module 74 may determine a first injection assignment, a second injection assignment, and a third injection assignment. The first injection assignment may include a first target SOI timing, a first target pulse width, and/or a first target number of injections per combustion cycle of the cylinder 14a. The second injection assignment may include a second target SOI timing, a second target pulse width, and/or a second target number of injections per combustion cycle of the cylinder 14a. The second target SOI timing, the second target pulse width, and the second target number of injections may be different than the first target SOI timing, the first target pulse width, and the first target number of injections, respectively.
The third injection assignment may include a third target SOI timing, a third target pulse width, and/or a third target number of injections per combustion cycle of the cylinder 14a. The third target SOI timing, the third target pulse width, and the third target number of injections may be different than the first target SOI timing, the first target pulse width, and the first target number of injections, respectively. In addition, the third target SOI timing, the third target pulse width, and the third target number of injections may be different than the second target SOI timing, the second target pulse width, and the second target number of injections, respectively.
The injector control module 74 rotates the injection assignments through the fuel injectors 22 of the cylinder 14a between each combustion cycle of the cylinder 14a to reduce local hot spots in the cylinder 14a. The injector control module 74 rotates the injection assignments through the fuel injectors 22 such that each of the fuel injectors 22 is controlled based on each of the injection assignments once every P combustion cycles of the cylinder 14a, where P is equal to the number of the fuel injectors 22 operable to inject fuel into the cylinder 14a. Thus, since there are three of the injectors 22 operable to inject fuel into the cylinder 14a in the example shown, the injector control module 74 controls each of the fuel injectors 22 based on each of the injection assignments once every three combustion cycles.
In one example, during a first combustion cycle of the cylinder, the injector control module 74 may control the fuel injector 22a based on the first injection assignment, control the fuel injector 22b based on the second injection assignment, and control the fuel injector 22c based on the third injection assignment. Then, during a second combustion cylinder immediately following the first combustion cycle, the injector control module 74 may control the first fuel injector 22a based on the second injection assignment, control the second fuel injector 22b based on the third injection assignment, and control the third fuel injector 22c based on the first injection assignment. Then, during a third combustion cylinder immediately following the second combustion cycle, the injector control module 74 may control the fuel injector 22a based on the third injection assignment, control the fuel injector 22b based on the first injection assignment, and control the fuel injector 22c based on the second injection assignment.
In the example above, the injector control module 74 rotates the injection assignment through the fuel injectors 22a, 22b, 22c in a counterclockwise manner. However, the injector control module 74 may rotate the injection assignments in any other pattern that controls each of the fuel injectors 22a, 22b, 22c based on each of the injection assignments once every P combustion cycles of the cylinder 14a. For example, the injector control module 74 may rotate the injection assignments in a clockwise or random manner.
In various implementations, one or more of the target injection parameters included in the injection assignments may have the same values. Thus, in the example above, the second and third SOI timing values may be equal to the first SOI timing value. In other words, the first SOI timing may be included in the first, second, and third injection assignments. In turn, the injectors 22a, 22b, 22c may start injecting fuel into the cylinder 14a at the same time. However, providing an offset between the first, second, and third SOI injecting timing values may be more effective in reducing local hot spots in the cylinder 14a. In one example, the difference between any two of the first, second, and third SOI injecting timing values may be between 1 and 9 degrees.
The target engine torque module 76 determines a target engine torque output. The target engine torque module 76 may determine the target engine torque output based on an operator torque demand signal 80 indicating an operator torque demand such as an accelerator pedal position and/or a cruise control setting. For example, the target engine torque module 76 may determine the target engine torque output based on a mapping of accelerator pedal position to target torque output. In addition, when the engine speed is equal to an idling speed, the target engine torque module 76 may set the target engine torque output equal to a minimum amount of torque output required to prevent an engine stall.
The target cylinder torque module 78 determines a target cylinder torque output for each of the cylinders 14. For example, the target cylinder torque module 78 may determine a first target cylinder torque output for the cylinder 14a, a second target cylinder torque output for the cylinder 14b, a third target cylinder torque output for the cylinder 14c, and a fourth target cylinder torque output for the cylinder 14(N). The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 during each firing order cycle of the engine system 10.
The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinder 14 based on the target engine torque output using, for example, a lookup table and/or an equation. The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 such that a sum of the target cylinder torque output values is equal to the target engine torque output. For example, the target cylinder torque module 78 may determine the first, second, third, and fourth target cylinder torque outputs such that a sum of the first, second, third, and fourth target cylinder torque outputs is equal to the target engine torque output.
The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 such that the actual cylinder torque output of each of the cylinders 14 does not exceed the mechanical limits of the engine system 10. The mechanical limits may be specified in terms of one or more engine operating conditions such as cylinder pressure, exhaust temperature, piston temperature, coolant temperature, oil temperature, cylinder liner temperature, or a combination thereof. The cylinder pressure and the exhaust temperature may be received from the CLP sensor 64 and the EXT sensor 66, respectively, or estimated based on other engine operating conditions using, for example, a mathematical model. The other engine operation conditions may also be measured or estimated using a mathematical model. The target cylinder torque module 78 may adjust the target cylinder torque output for each of the cylinders 14 to prevent the engine operating conditions from exceeding predetermined values. For example, the target cylinder torque module 78 may decrease the target cylinder torque output for one or more (e.g., all) of the cylinders 14 when the engine operating condition(s) are approaching predetermined upper limit(s).
The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 such that an average of the actual torque output of the engine system 10 over multiple combustion cycles of the cylinders 14 is equal to the target engine torque output. Additionally or alternatively, the target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 such that an average of the actual torque output of the engine system 10 over multiple firing order cycles of the engine system 10 is equal to the target engine torque output.
The target cylinder torque module 78 may determine the target cylinder torque output for each of the cylinders 14 based on whether one or more of the cylinders 14 are deactivated. For example, if the cylinder 14a is deactivated, the target cylinder torque module 78 may set the target cylinder torque output for the cylinder 14a equal to zero. The target cylinder torque module 78 may determine whether the cylinders 14 are deactivated based on a cylinder deactivation command. The ECM 68 may generate the cylinder deactivation command when the engine system 10 can satisfy the target engine torque output while one or more of the cylinders 14 are deactivated.
The injector control module 74 may determine the target injection parameters for the fuel injectors 22 of the cylinder 14a based on the target cylinder torque output of the cylinder 14a using, for example, a lookup table and/or an equation. The injector control module 74 may advance or retard the target SOI timing of the cylinder 14a as the target cylinder torque output of the cylinder 14a increases or decreases, respectively. The injector control module 74 may increase or decrease the target pulse width as the target cylinder torque output of the cylinder 14a increases or decreases, respectively. The injector control module 74 may increase or decrease the target number of injections per combustion cycle of the cylinder 14a as the target cylinder torque output of the cylinder 14a increases or decreases, respectively. The injector control module 74 may determine the target injection parameters for the fuel injectors 22 of the other cylinders 14b, 14c, 14(N) in a similar manner.
To further reduce local hot spots within the cylinders 14, the target cylinder torque module 78 may rotate target cylinder torque values through the cylinders 14. For example, the target cylinder torque module 78 may assign each of the target cylinder torque values to each of the cylinders 14 once every Q firing order cycles of the engine system 10, where Q is equal to the number of the cylinders 14 in the engine system 10. Thus, the injector control module 74 may control the fuel injectors 22 of the cylinders 14a, 14b, 14c, 14(N) based on first, second, third, and fourth target cylinder torque values, respectively, during one firing order cycle of the engine system 10. Then, during the next firing order cycle of the engine system 10, the injector control module 74 may control the fuel injectors 22 of the cylinders 14a, 14b, 14c, 14(N) based on fourth, first, second, and third target cylinder torque values, respectively,
Referring now to
At 104, the target engine torque module 76 determines the target engine torque output for the engine system 10. At 106, the target cylinder torque module 78 determines multiple target cylinder torque output values, with the number of target cylinder torque output values being equal to the number of the cylinders 14. At 108, the target cylinder torque module 78 controls each of the cylinders 14 based on each of the target cylinder torque output values once every Q firing order cycles of the engine system 10, where Q is equal to the number of the cylinders 14 in the engine system 10.
At 110, the injector control module 74 determines target injection parameters for each of the fuel injections performed by the fuel injectors 22 of the cylinders 14a. As discussed above, the target injection parameters may include a target SOI timing, a target pulse width, and a target number of injections per combustion cycle of the cylinder 14a. In addition, the target injection parameters for a single combustion cycle may be collectively referred to as an injection assignment.
At 112, the injector control module 74 controls each of the fuel injectors 22 of the cylinder 14a based on each of the target injection parameters (or each of the injection assignments) once every P combustion cycles of the cylinder 14a, where P is equal to the number of the fuel injectors 22 that are operable to inject fuel into the cylinder 14a. Although 110 and 112 are described with reference to the cylinder 14a, the injector control module 74 may control the fuel injectors 22 of the cylinders 14b, 14c, 14d, and 14(N) in a similar manner.
Referring now to
The cylinder load signal 150 is a signal representing target cylinder torque output values for the firing events. For example, the target cylinder torque output values include target cylinder torque output values 156, 158, 160, 162, 164 that correspond to firing events 4, 5, 6, 7, 8, respectively. Notably, the target cylinder torque output value 160 is equal to zero, indicating that a cylinder is deactivated. The average load signal 152 is a signal representing the average value of the target cylinder torque values. Thus, the average load signal is equal to the nominal engine load during the firing events 4, 5, 6, 7, 8 since the average value of the target cylinder torque output values 156, 158, 160, 162, 164 is equal to the nominal engine load.
A system and method according to the present disclosure may adjust the target cylinder torque values to minimize the difference between the nominal load and the average value of the target cylinder torque values over any set (e.g., two or more) of consecutive firing events. This is achieve for the firing events 4, 5, 6, 7, 8 since the average value of the target cylinder torque output values 156, 158, 160, 162, 164 is equal to the nominal engine load. However, this is not achieved for firing events 9, 10, as the average value of target cylinder torque output values 166, 168 corresponding to the firing events 8, 9, respectively, is greater than the nominal load.
In the example shown, the logical cylinders A-F are assigned to the physical cylinders 1-6, respectively, for firing order cycle 1. Then, for firing order cycle 2, the logical cylinders A-F are shifted upward through column 174 with the exception of logical cylinder A, which is moved downward to the row corresponding to the physical cylinder 6. The logical cylinders A-F are rotated through the physical cylinder 1-6 in this manner throughout the remainder of the firing cycles 1-6.
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.” It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.
In this application, including the definitions below, the term “module” or the term “controller” may be replaced with the term “circuit.” The term “module” may refer to, be part of, or include: an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor circuit (shared, dedicated, or group) that executes code; a memory circuit (shared, dedicated, or group) that stores code executed by the processor circuit; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.
The module may include one or more interface circuits. In some examples, the interface circuits may include wired or wireless interfaces that are connected to a local area network (LAN), the Internet, a wide area network (WAN), or combinations thereof. The functionality of any given module of the present disclosure may be distributed among multiple modules that are connected via interface circuits. For example, multiple modules may allow load balancing. In a further example, a server (also known as remote, or cloud) module may accomplish some functionality on behalf of a client module.
The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects. The term shared processor circuit encompasses a single processor circuit that executes some or all code from multiple modules. The term group processor circuit encompasses a processor circuit that, in combination with additional processor circuits, executes some or all code from one or more modules. References to multiple processor circuits encompass multiple processor circuits on discrete dies, multiple processor circuits on a single die, multiple cores of a single processor circuit, multiple threads of a single processor circuit, or a combination of the above. The term shared memory circuit encompasses a single memory circuit that stores some or all code from multiple modules. The term group memory circuit encompasses a memory circuit that, in combination with additional memories, stores some or all code from one or more modules.
The term memory circuit is a subset of the term computer-readable medium. The term computer-readable medium, as used herein, does not encompass transitory electrical or electromagnetic signals propagating through a medium (such as on a carrier wave); the term computer-readable medium may therefore be considered tangible and non-transitory. Non-limiting examples of a non-transitory, tangible computer-readable medium are nonvolatile memory circuits (such as a flash memory circuit, an erasable programmable read-only memory circuit, or a mask read-only memory circuit), volatile memory circuits (such as a static random access memory circuit or a dynamic random access memory circuit), magnetic storage media (such as an analog or digital magnetic tape or a hard disk drive), and optical storage media (such as a CD, a DVD, or a Blu-ray Disc).
The apparatuses and methods described in this application may be partially or fully implemented by a special purpose computer created by configuring a general purpose computer to execute one or more particular functions embodied in computer programs. The functional blocks, flowchart components, and other elements described above serve as software specifications, which can be translated into the computer programs by the routine work of a skilled technician or programmer.
The computer programs include processor-executable instructions that are stored on at least one non-transitory, tangible computer-readable medium. The computer programs may also include or rely on stored data. The computer programs may encompass a basic input/output system (BIOS) that interacts with hardware of the special purpose computer, device drivers that interact with particular devices of the special purpose computer, one or more operating systems, user applications, background services, background applications, etc.
The computer programs may include: (i) descriptive text to be parsed, such as HTML (hypertext markup language) or XML (extensible markup language), (ii) assembly code, (iii) object code generated from source code by a compiler, (iv) source code for execution by an interpreter, (v) source code for compilation and execution by a just-in-time compiler, etc. As examples only, source code may be written using syntax from languages including C, C++, C#, Objective C, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml, Javascript®, HTML5, Ada, ASP (active server pages), PHP, Scala, Eiffel, Smalltalk, Erlang, Ruby, Flash®, Visual Basic®, Lua, and Python®.
None of the elements recited in the claims are intended to be a means-plus-function element within the meaning of 35 U.S.C. §112(f) unless an element is expressly recited using the phrase “means for,” or in the case of a method claim using the phrases “operation for” or “step for.”
This application claims the benefit of U.S. Provisional Application No. 62/121,788, filed on Feb. 27, 2015, U.S. Provisional Application No. 62/121,815, filed on Feb. 27, 2015, U.S. Provisional Application No. 62/126,009, filed on Feb. 27, 2015, and U.S. Provisional Application No. 62/121,879, filed on Feb. 27, 2015. Furthermore, this application is related to U.S. patent application Ser. No. [______] (Attorney Docket No. 7971-000083-US, entitled “Fuel Injector With Offset Nozzle Angle”), U.S. patent application Ser. No. [______] (Attorney Docket No. 7971-000084-US, entitled “Opposed Piston Three Nozzle Combustion Chamber Design”), and U.S. patent application Ser. No. [______] (Attorney Docket No. 7971-000088-US, entitled “Opposed Piston Three Nozzle Piston Bowl Design”). The entire disclosures of the applications referenced above are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62121788 | Feb 2015 | US | |
62121815 | Feb 2015 | US | |
62126009 | Feb 2015 | US | |
62121879 | Feb 2015 | US |