The present invention relates to a multi-input multi-output communication system for performing multi-input multi-output (MIMO) wireless communications based on the wireless technology, a transmitter, and a method of assigning resources in such a multi-input multi-output communication system and a transmitter.
With respect to the W-CDMA (Wideband Code Division Multiple Access) process according to the third generation partnership project (3GPP) which has been finding widespread usage in recent years, there has been proposed a HSDPA (High Speed Downlink Packet Access) process for realizing transmitting packets at high speeds in downlink, and research and development efforts have been made for the HSDPA process.
Research and development efforts have also been made for a multi-input multi-output (MIMO) communication process for transmitting data from a plurality of antennas of a transmitter and receiving the data with a receiver having a plurality of antennas. According to the multi-input multi-output communication process, each of the transmitter and the receiver has a plurality of antennas, and transmits or receives divided pieces of data simultaneously or parallel through the antennas for the purpose of increasing the transmission capacity, i.e., the throughput. The multi-input multi-output communication process is also applicable to a plurality of receivers each having a plurality of antennas. The multi-input multi-output communication process is considered to be a means for realizing services using the HSDPA process.
In order for a receiver having a plurality of antennas to properly receive transmitted data, there has been devised a method of measuring the reception quality of data transmitted from the transmitter and received by the receiver and performing transmission scheduling with the transmitter based on the measured reception quality (see, for example, PC (WO) No. 2004-535106).
According to the method disclosed in PC (WO) No. 2004-535106, however, transmission scheduling is performed based on only one of a plurality of reception qualities. The characteristics of the data received by the receiver tend to vary depending on which one of the plural reception qualities is used to perform transmission scheduling.
When resources to be assigned to antennas are established based on the reception quality representative of the propagation environment between a preset transmitter antenna and a preset receiver antenna, the data that are received by the receiver antenna based on which the reception quality has been measured are properly decoded. However, the data that are received by the other receiver antennas based on which the reception quality has not been measured are no properly decoded, and resources such as the number of codes and electric power are wasted for those other receiver antennas. As a result, radio wave interferences may be increased and the number of multiplex data may be reduced, the resources may not effectively be utilized, and an increased throughput, which is a feature of the multi-input multi-output communication process, may not be achieved.
It is an object of the present invention to provide a multi-input multi-output communication system which is capable of realizing an increased throughput, a transmitter, and a method of assigning resources in such a multi-input multi-output communication system and a transmitter.
To achieve the above object, there is provided in accordance with the present invention a multi-input multi-output communication system comprising a transmitter and a plurality of receivers each having a plurality of antennas for communicating with the transmitter, wherein the transmitter extracts CQI values representative of reception qualities, which are measured at the receivers and transmitted from the receivers, from data transmitted from the receivers and received by the transmitter, combines the extracted CQI values depending on preset weighting coefficients, calculates resource coefficients for assigning resources for transmitting data to the receivers from the combined CQI values, and assigns resources for transmitting data to the receivers based on the resource coefficients.
The transmitter comprises:
The transmitter comprises storage means for storing the resource coefficients and contents of resources to be assigned for transmitting data to the receivers, in association with each other.
There is also provided a transmitter for transmitting data to a plurality of receivers each having a plurality of antennas, wherein
The transmitter comprises:
The transmitter comprises storage means for storing the resource coefficients and contents of resources to be assigned for transmitting data to the receivers, in association with each other.
There is further provided a method of assigning resources in a multi-input multi-output communication system comprising a transmitter and a plurality of receivers each having a plurality of antennas for communicating with the transmitter, wherein the transmitter performs:
According to the present invention thus arranged, the transmitter extracts CQI values representative of reception qualities measured by and transmitted from the receivers from data transmitted from the receivers and received by the transmitter, combines the extracted CQI values depending on preset weighting coefficients, calculates resource coefficients for assigning resources for transmitting data to the receivers from the combined CQI values, and assigns resources for transmitting data to the receivers based on the resource coefficients.
Consequently, it is possible to assign resources based on the CQI values measured respectively by the receivers each having a plurality of antennas, and the transmitter can appropriately and effectively utilizes the resources which the system has in its entirety depending on states between the transmitter and the receivers.
According to the present invention as described above, since the transmitter extracts CQI values representative of reception qualities measured by and transmitted from the receivers from data transmitted from the receivers and received by the transmitter, combines the extracted CQI values depending on preset weighting coefficients, calculates resource coefficients for assigning resources for transmitting data to the receivers from the combined CQI values, and assigns resources for transmitting data to the receivers based on the resource coefficients, the throughput can be increased.
An exemplary embodiment of the present invention will be described below with reference to the drawings.
As shown in
As shown in
Antennas 111-1 through 111-γ transmit and receive radio waves to and from receivers 102-1 through 102-β shown in
The number of CQI values fed back to transmitter 101 will be described below. Receivers 102-1 through 102-β measure the respective reception qualities of the data transmitted from antennas 111-1 through 111-γ of transmitter 101 and received thereby. Specifically, receiver 102-1, for example, measures as many CQI values as the number “γ×φ” where γ represents the number of antennas 111-1 through 111-γ of transmitter 101 and φ represents the number of antennas 121-1 through 121-φ of receiver 102-1, e.g., the CQI values of the reception qualities of the data transmitted from antenna 111-1 of transmitter 101 and received by antenna 121-1 of receiver 102-1, the data transmitted from antenna 111-2 of transmitter 101 and received by antenna 121-1 of receiver 102-1, the data transmitted from antenna 111-3 of transmitter 101 and received by antenna 121-1 of receiver 102-1, etc. Receivers 102-2 through 102-β similarly measure reception qualities. Since the measured reception qualities are fed back to transmitter 101, the number of CQI values fed back to transmitter 101 is represented by “γ×φ×B”.
A resource assigning process in the multi-input multi-output communication system thus arranged will be described below. Of the resource assigning process, a process of calculating coefficients which is performed by coefficient calculator 205 shown in
First, the inherent receiver numbers that are sequentially allotted to receivers 102-1 through 102-β are initialized in step 1. Specifically, the inherent receiver numbers are initialized to “1”.
Thereafter, coefficients of the respective transmitter antennas are calculated in step 2.
In step 2 shown in
CQI values stored in storage 207 are read in step 12. At this time, the CQI values depending on the transmitter antenna number are read. The number of CQI values that are read is represented by “φ” which indicates the number of antennas 121-1 through 121-q of receiver 102-1, as described above.
The “φ” CQI values that are read are substituted in Equation (1), calculating coefficient “Φ” in step 13.
where “ρ” represents weighting coefficients for antennas 121-1 through 121-φ of receivers 102-1 through 102-β which are present in storage 207, and “i” the antenna numbers of receivers 102. In other words, the CQI values antennas 121-1 through 121-φ of receivers 102-1 through 102-β are combined depending on the weighting coefficients. Coefficient “Φ” calculated according to Equation (1) is held as “α” in matrix M1 according to Equation (2) in step 14.
Equation (2) represents a matrix of γ rows and β columns. For example, if the receiver number is “a” and the antenna number of transmitter 101 is “b”, then its coefficients are held in an a-th row and a b-th column.
Thereafter, the antenna number is incremented by “1” in step 15. It is then determined in step 16 whether the incremented antenna number is greater than the number of all antennas 111-1 through 111-γ of transmitter 101 or not.
If it is judged that the incremented antenna number is greater than or equal to the number of all antennas 111-1 through 111-γ, then the subroutine for the transmitter antennas shown in
If it is judged that the incremented antenna number is smaller than the number of all antennas 111-1 through 111-γ, then control goes back to step 12. In other words, Equation (1) is calculated for the number of antennas 111-1 through 111-γ, and the result is held in matrix M1 according to Equation (2).
After the subroutine for the transmitter antennas shown in
If it is judged that the incremented receiver number is greater than or equal to the number of receivers 102-1 through 102-β, then matrix M1 according to Equation (2) is completed, and the process is ended.
If it is judged that the incremented receiver number is smaller than the number of receivers 102-1 through 102-β, then control goes back to step 2. In other words, Equation (1) is calculated for the number of receivers 102-1 through 102-β, and the result is held in matrix M1 according to Equation (2).
When matrix M1 according to Equation (2) is completed, matrix M1 according to Equation (2) is converted depending on the current communication process.
When the process of calculating coefficients described with reference to
If it is judged that the current communication process is a multiplex process, then matrix M1 obtained according to Equation (2) is determined as matrix M in step 22.
If, on the other hand, it is judged that the current communication process is a diversity process, then matrix M1 obtained according to Equation (2) is converted according to Equation (3) in step 23.
where “k” represents the antenna number of transmitter 101. If it is judged that the current communication process is a diversity process, then since the number of antennas of transmitter 101 is 1, matrix M1 of γ rows and β columns according to Equation (2) is converted into matrix M of γ rows and 1 column according to Equation (3).
When matrix M is determined, resource assignor 206 determines resources to be assigned to receivers 102-1 through 102-β based on the coefficients of determined matrix M.
It is determined in step 31 whether there are data to be transmitted or not. Receiver numbers awaiting data to be transmitted are registered in a list stored in storage 207. If it is judged that there are data to be transmitted, then receivers 102-1 through 102-β are listed as destinations.
If it is judged that there are no data to be transmitted, then the process is ended.
It is determined in step 32 whether transmitter 101 has enough resources (e.g., HS-PDSCH or HS-SCCH code number, device power, etc.) or not. If it is judged that transmitter 101 does not have enough resources, then the process for assigning resources for transmission at the TTI (transmission timing interval) is ended.
If it is judged that transmitter 101 has enough resources, then of receivers 102-1 through 102-β that are listed, receivers 102-1 through 102-β having the highest coefficient calculated according to the flowchart shown in
where “α” represents coefficients which are the elements of matrix M calculated according to Equation (4). For example, if it is assumed that the current communication process is a diversity process, then resource coefficient “σ11” for transmitting data from antenna 111-1 of transmitter 101 to receiver 102-1 is expressed by:
Resource coefficient “σβγ” for transmitting data from antenna 111-γ of transmitter 101 to receiver 102-β is expressed by:
Based on coefficients “σ” thus calculated, resources for transmitting data from antennas 111-1 through 111-γ of transmitter 101 to receivers 102-1 through 102-β are determined.
Resources to be determined have been stored in storage 207 in association with coefficients “σ”.
As shown in
When the assignment of resources is finished, selected receivers 102-1 through 102-β are deleted from the list in step 35. Control then goes back to step 31 for assigning resources with respect to receivers 102-1 through 102-β having the next highest coefficient.
As described above, since resources can be assigned based on coefficients calculated by combining all CQI values and weighting coefficients between antennas 111-1 through 111-γ of transmitter 101 and receivers 102-1 through 102-β, it is possible to assign appropriate resources in the entire system.
Number | Date | Country | Kind |
---|---|---|---|
2006-057618 | Mar 2006 | JP | national |
The present application is a continuation application of U.S. patent application Ser. No. 15/897,305 filed on Feb. 15, 2018, which is a continuation application of U.S. patent application Ser. No. 12/281,501 filed on Sep. 3, 2008, which issued as U.S. Pat. No. 10,020,858, which is a National Stage Entry of International Application PCT/JP2006/322480, filed on Nov. 10, 2006, which claims the benefit of priority from Japanese Patent Application 2006-057618, filed on Mar. 3, 2006, the disclosures of all of which are incorporated herein, in their entirety, by this reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15897305 | Feb 2018 | US |
Child | 18830910 | US | |
Parent | 12281501 | Sep 2008 | US |
Child | 15897305 | US |