The documents identified below provide useful background reading on wireless technology. The below-cited documents are incorporated by reference in their entirety for their useful background information as indicated in the remainder of this description.
The present invention relates to a system and method of providing public access to an IP network, such as the public Internet, a corporate intranet, or a private LAN, using third-party operated access stations, where neither the user, nor this user's ISP, trust the correct operation of the access station, thus rendering the access station an “untrusted” access station. More specifically, the present invention relates to a method of performing authentication, authorization, accounting, and ciphering of data for access to an IP network via access stations that are operated by a potentially malicious and therefore untrusted third-party. The disclosed method and system can be used in conjunction with wireless and wireline access alike, where “wireless” may be short-range technology that operates in unlicensed frequency bands, as well as larger range licensed radio technology.
In the prior art public access to IP networks, such as the Internet, is provided via an Internet Service Provider (ISP), which also owns or leases the transmission facilities like modems. In most cases a user wanting to access the Internet has to have a service agreement with the ISP in a given location area. To extend their reach to traveling subscribers, some ISPs signed roaming agreements that govern the procedures for authentication, authorization and accounting. Similar procedures are in place for cellular operators allowing subscribers of a given operator to move into the coverage area of another operator. However, the established procedures assume that the network access is trusted. This assumption was warranted due to the private access mechanism like dial-up modem banks, the high costs of infrastructure and the exclusive ownership of frequency spectrum in case of cellular operators.
The advent of a second prior art technology, enabling wireless access to IP networks using cheap infrastructure that is operated in unlicensed frequency spectrum, facilitates the creation of small independent access providers. Since the range of those wireless access technologies based on Wireless Local Area Networks (WLANs) and Personal Area Networks (PANs) is small, the operation of infrastructure for public Internet access in a given estate is governed by the owner of the estate. In fact, any apartment or house owner having high speed Internet access via cable or DSL can offer access to surrounding neighbors by operating a WLAN access point. The access to those wireless access points, however, is limited to devices of the same organization or household. Providing access to foreign IP devices (such as visitors who bring their own, WLAN-card equipped, or neighbors who have PCs equipped with a WLAN card) is not secure, usually not allowed or even technically impossible. Moreover, privately held access stations are usually tied to their owner's ISP, i.e. a guest subscribed to a different ISP cannot obtain services that are provided by his own ISP, and can not be billed by his own ISP for the Internet access.
Applying the mechanisms to enable public access as they are described herein as the first prior art to small independent operators that offer Internet access in a small geographical area as described herein as second prior art has various problems and disadvantages. For example, the roaming user does not know the trustworthiness of the operator of the WLAN. Malicious operators may find it easy to eavesdrop on the communication between the user and a content provider. They might also find means to obtain credentials like login names and passwords from the user's traffic. In addition, prior-art authentication and authorization procedures do not facilitate usage based accounting, which may be needed for re-imbursement of the independent operator for access provided to roaming users.
Today, privately owned access stations are ubiquitously available, providing users everywhere with a potential means of accessing the Internet. However, nowadays ISPs have to build their own access infrastructure, which is costly and often inflexible in terms of supporting temporary users.
This invention relates to an access station to IP networks. More particularly, this invention relates to an access station to IP networks that is owned and operated by a party other than the user of its service and this user's ISP. This invention relates, even more particularly, to an apparatus that can provide computers and other IP-based devices with access to IP networks, such as, for example, the Internet or a corporate Intranet, where the access station obtains the user identification as well as the user's ISP identification from the IP devices that desire service, where the access station informs the user's ISP about the user's desire to obtain service, where the user's ISP dynamically obtains control of resources inside the access apparatus in order to provide the user with the services he subscribed for. Finally, the ISP arranges for payment of the access station for usage of its resources, and arranges billing of the user (its subscriber).
The present invention includes an end-user who subscribed to Internet services at an Internet service provider, an access node or infrastructure owner, and a trusted gateway to the Internet and a method for anonymous Internet access provision to a subscriber of an Internet service via a third party owned access node. More specifically, the present invention includes procedures for mutual authentication of subscriber and Internet service provider, and the key distribution needed for the establishment of a secure tunnel between the end-user and a trusted gateway to the Internet, comprising the steps of service request, Internet service provider authentication, subscriber authentication, generation of a unique session key, distribution of the session key to trusted network node and subscriber, and the data transfer using the secure tunnel that is established between subscriber and the trusted network element via the third party access node using the previously distributed session key.
The method further comprises the steps of distributing timeout values from the Internet service provider to the subscriber, the access node and said trusted network element, wherein the timeout values triggers a re-authentication procedure between the said subscriber and Internet service provider.
Additionally, the method comprises the steps of releasing the tunnels in case one of the timers that is associated with the tunnel, located at the subscriber and the trusted network element and another timer being located at the said access node, expires.
Additionally, a method for generates accounting information based on the number of successful authentications is further provided. A method for providing pre-paid service using accounting information and to determine the remaining time before a re-authentication is also required.
The application of this invention includes, but is not limited to the following cases:
An object of the invention is to provide a secure method for provisioning of Internet access by an Internet service provider to its subscribers via third party owned untrusted access nodes.
Yet another object of the invention is to provide accounting information between the Internet service provider and the access node owner, as well as the Internet service provider and the subscriber, wherein the accounting information is derived as integral part of the operation of the system and protected from malicious manipulations.
It is understood that, throughout the entire document, the term “Internet” means “IP-based network” in its broadest sense, including, but not limited to, the Public Internet, Corporate Intranet, private or public LANs, and IP-based ad-hoc networks.
The accompanying drawings, which are included to provide a further understanding of preferred embodiments of the present invention are incorporated in and constitute a part of this specification.
The detailed description is organized as follows: in the section entitled “Component Overview” the system components are introduced and a description of the components relation to one another is provided. In the section entitled “Operation of the Invention,” different embodiments of the present invention and its applications are addressed. Furthermore, in order to facilitate understanding and clarity, the description of the invention is broken down into the following sections including: “Mutual Authentication of U and P”, “Creation of a Secure Tunnel Between U and T via A,” “Data Transfer Between U and the Internet,” Tunnel Release and Timeout,” Accounting Procedures.”
It is important to note that the term “IP network” is used to represent all possible IP-based infrastructure networks, including the public Internet and corporate intranets.
U refers to a user's IP-based terminal device. This may be any mobile or stationary device that uses the Internet Protocol suite (IP) to communicate with other devices, including but not limited to a workstation computer, personal computer (PC), laptop computer, handheld PC, telephone or any other IP-based device or appliance. It is however anticipated, that in most cases this terminal device will be small and mobile, and that it will have either a wire-based or a wireless means to connect to the IP network, or both (see Access Station below). It may further be assumed that at any given moment this device is associated with at most one user, i.e. it can be perceived as “this user's device”.
A refers to an access station. An access station is used to connect a terminal device U to an IP-based infrastructure network, e.g. Intranet or Internet. It receives traffic from the IP network and delivers it to the correct terminal U, and, it receives traffic from terminals U and forwards it to the IP network. The means of communication between A and U may be wire-based or wire-less; our invention applies to both cases. It is further assumed that A has an owner and an operator, as well as an owner of the operating privileges, as it is for instance the case for radio base stations that require permission to use a certain frequency spectrum. For the purpose of this document, we combine all these aspects into the abstraction A.
Typically, an access station A is permanently connected to the IP network, while connections between an access station A and terminals U are temporary in nature. For example, an access station A may be located in a public area (e.g. hotel, air-port, restaurant), or in a non-public area (e.g. in a private household). In the latter case, access can be limited to users who can obtain physical access (e.g. guests visiting the A's owner), or access may be available for all users in A's communication range (e.g. A may be a 802.11/Bluetooth/HiperLan base station in a private home which can be utilized to provide Internet access to A's neighbors and their visitors).
P refers to an Internet Service Provider (ISP). An ISP provides services to terminal device U, based on a subscription arrangement between U and P that defines the service parameters. Hence, it can be assumed that P is responsible for billing U for the end-user service. In can also be assumed, that P has to pay A for using its resources. It is also P's responsibility to ensure that the traffic between U and its communication peers is secured against packet snooping/insertion/alteration or other attacks from A.
Typically, P is a company that provides individuals or other companies with Internet access and other related services, e.g. electronic mail, in order to generate revenue. Another possibility is that P is a company that provides its employees with access to an IP network, e.g. the corporate Intranet, the public Internet, or a private IP network. Here, the primary goal is not the immediate generation of revenue, but the support of the employee's work processes. For instance, a FedEx employee may occasionally access the corporate IP network to update the corporate database that he has delivered a shipment.
T refers to a trusted network element. T is a router inside the Internet that P deems trustworthy to the extent that T does not provide A with means to snoop/insert/alter traffic from or to the terminal device U. The present invention assumes that once the traffic reaches the Internet core, the traffic is reasonably safe against malicious attacks since, at this juncture, the network is only operated by a few, well established and trusted long-distance companies.
Different ISPs may apply different mechanisms and policies, probably depending on requirements of their users and U's current location in order to determine whether T is a trusted element. If P has no knowledge about trustworthy routers inside the Internet, it is assumed that P itself assumes the role of T, i.e. that P selects one of its own routers as T.
R refers to a remote communication peer. A remote communication peer may be any remote host with whom the terminal U requests to communicate. For example, the remote communication peer R may include, but is not limited to, servers and other IP-based devices on the public Internet, servers on the corporate Intranet, or workstations or personal computers in a corporation's intranet or private IP network.
For the purpose of the present invention, it may be assumed that the components U and A, as well as A and P do not have a trusting relationship between one another. More specifically, when the terminal device U wants to communicate with a remote peer R, U will simply locate any access station A within its immediate vicinity in order to obtain service from P. Typically, U will have no long-lasting relationship with A that could result in trust between A and U.
Additionally, it may be assumed that the access station A does not trust U or P. The primary concern of the access station A is focused on obtaining reimbursement for the resources and services rendered to terminal U by the access station A.
Finally, P will not trust access station A. P has to ensure that its subscriber U is really using A's resources as claimed by A. This is to avoid a scenario wherein access station A reports a non existing terminal U to P, possibly even generating false traffic from U, where P would compensate A even though A is not serving any real subscriber of P. It is assumed that the payment procedures between P and A for services rendered by A to U are preferably governed by clearing agreements between the involved parties. As discussed above, the payment procedures between U and P are governed by the service agreement and may be based on a flat rate or a usage rate determined by either a unit of time and/or traffic volume.
In this discussion, it will be appreciated that the system and method for providing public access to an IP network (such as, for instance, the public Internet or a corporate intranet) via a third party owned infrastructure, may be implemented in a number of concrete ways as will be evident to one familiar with this field. In particular, the system and method described herein may be implemented entirely in hardware, software or a combination of both. Specifically, the access point, or any other hardware element utilized by the present invention, may include a processor and a memory under control of the processor. The memory may be provided with instructions (software) that are executed by the processor, and enable the processor to cause the access station, or other hardware, to perform in certain ways. Likewise, an access station could be implemented partly in hardware and software.
The disclosed system and method for providing access to the IP network may also be used in conjunction with wireless and wire-line access alike, where “wireless” may mean a short-range technology that operates in unlicensed frequency bands, as well a as larger range licensed radio technology.
Furthermore, the system for providing public access to the IP network may be implemented using either a wire-based, wireless or combination of means to connect to an IP network. Accordingly, it should be understood that the term “IP network” or “Internet” means “IP-based network” in its broadest sense, including but not limited to the public Internet, corporate intranets, private or public LANs, and IP-based ad-hoc networks.
The advantages of the disclosed system and mechanism for providing access to an IP network (such as the Internet) using a third party infrastructure are available for ISPs and to corporations that use the Internet for their communications needs. One advantage of the present invention is that the ISP/corporation does not need its own access network. Therefore, the ISP/corporation need not cover large areas with access points or obtain costly licenses for licensed frequency spectrum.
Exemplary applications of the system described herein include, but are not limited to the following cases:
To accommodate a public access LAN environment with multiple wireless access technologies, a diverse set of wireless products and different types of wireless operators may coexist, it should thus be noted that embodiments of the invention are air interface independent and interoperable with wireless LAN cards from different vendors.
Referring now to
Referring now to
It is assumed that terminal U (3) arrives in switched-off mode at a location where it can gain access to access station A (7), i.e. terminal U (3) and access station A (7) are able to exchange data over the chosen communication media (wire-based or wireless). It is further assumed that terminal U (3) and ISP P (4) participate in a Public Key Infrastructure [PubKey]. Specifically, a participant in a public key infrastructure has two keys, a “public key” and a “private key”. The private key is only known to the participant and is never revealed to any other party. The public key is published so that everyone knows every participant's public key. For reasons that are explained in the reference “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” which is incorporated herein, such keys have the property that data that is encrypted with one key (i.e. public or private) can be decrypted with the other key (i.e. private or public, respectively), but not with any other key.
Referring now to
In accordance with STEP 51, when terminal U (3) powers up and initializes its network interface, it broadcasts a dynamic host configuration protocol (“DHCP”) request to the network in order to obtain an IP address. If access station A (7) is in the range of this broadcast, it will receive this DHCP request. DHCP is an IP-based protocol that enables computers and workstations to get temporary or permanent IP addresses out of a pool that is administered by a central server. Typically, a host network runs the DHCP server while a workstation or mobile device runs the DHCP client. DHCP makes it possible to dynamically assign an IP address to a node (such as a mobile device) on the fly. For technical information and background concerning DHCP, R Drom's document entitled “Dynamic Host Configuration Protocol” is incorporated herein by reference. It is important to note that depending on the technology that terminal U (3) uses to communicate with access station A (7), it may be necessary for terminal U (3) create a form of association with access station (7) before terminal U (3) may broadcast a DHCP request. The procedures for establishing such an association are defined in the relevant documents relating to the IEEE 802.11 technology.
In accordance with STEP S2, if access station A (7) supports the mechanisms disclosed in this invention, access station A (7) replies to terminal U (3) with a “magic DHCP response”. A description of how terminal U (3) may differentiate between “magic” and “non-magic” (normal) DHCP responses will be described below. The purpose of the “magic DHCP response” is to indicate to terminal U (3) that the access station A (7) is compatible with the mechanisms described in this invention. If terminal U (3) receives a normal, i.e. non-magic DHCP response, terminal U (3) knows that those mechanisms described herein are not available because terminal U (3) will only obtained an IP-address according to the normal mode of operation of DHCP. In any case, the DHCP response contains the IP address of access station A (7) (identified as the gateway), as well as an IP address for terminal U (3) (identified as the client IP address).
A DHCP response may be defined as a “magic DHCP response” in numerous ways, all of which are within the scope of the present invention. For example, a DHCP-response may qualify as a “magic DHCP response” if it contains an “AP” DHCP-option field that is initialized to a value of “1”. The DHCP protocol allows for the dynamic introduction of new option fields. A new option field may be introduced, e.g. “AP”, which is not present in DHCP replies that are generated by nowadays DHCP servers. A value of 1 in the “AP” DHCP option field indicates that access station A (7), to which terminal U (3) is attempting to connect, supports the mechanism of the present invention. On the other hand, absence of an “AP DHCP option field or a value other than 1 indicates that access station A (7) does not support the mechanism of the present invention.
Alternatively, a “magic DHCP response” may be defined as a DHCP response that assigns a reserved IP address to terminal U. For example purposes only, the IP address 138.15.103.220, generally under administration of NEC USA, may be used for this purpose. Since this IP address is assigned to NEC USA, it can not be assigned to a DHCP client by any other network. NEC USA also guaranties that it will not use this address for any other purpose. Therefore, an assignment of IP address 138.15.103.220 to terminal U (3) indicates that access station A (7) supports the mechanisms of the present invention. On the other hand, assignment of an IP address other than 138.15.103.220 to terminal U (3) indicates that access station A (7) does not support the mechanism of the present invention.
If terminal U (3) simply receives a dynamically allocated IP address or “non-magic” DHCP response, terminal U (3) may be assured that the network and access station A (7) do not support the present invention. Therefore, terminal U (3) cannot obtain Internet access utilizing terminal U's (3) ISP P (4) via a third party owned, untrusted access station A (7).
In STEP S3a, as terminal U (3) knows about access station A's (7) existence and about the fact that access station A (7) supports the mechanisms of the present invention, it sends an identification packet to access station A (7), containing:
In STEP S3b, upon receiving the ISP authentication packet from terminal U (3), access station A (7) assigns a local unique identification (LUID) to terminal U (3). The LUID may be utilized by access station A (7) to associate or match messages and data packets with the correct terminal U (3) in situation where access station A (7) may be simultaneously serving multiple terminals U. The LUID may be any distinguishable identification attribute that will assist access station A (7) in transmitting data to the proper terminal U. By way of example and not limitation, the LUID may be terminal U's (3) MAC-address.
Access station A (7) then forwards a modified ISP authentication packet to ISP P (4). Access station A (7) knows the IP address of terminal U's ISP P (4), because it was included by terminal U (3) in the ISP identification packet that was sent from terminal U (3) to access station A (7) in step S3a. The modified ISP authentication packet includes:
It should be clarified that terminal U's (3) identification number and terminal U's (3) LUID are two different and unrelated IDs. The identification number was assigned to terminal U (3) by ISP P (4) ahead of time (for instance, it could be a user name that was determined when terminal U (3) and ISP P (4) entered into the subscription agreement). On the other hand, the LUID is dynamically assigned to terminal U (3) by access station A (7), to be used exclusively by access station A (7) to enumerate the terminal U (3) for which access station A (7) is currently providing service. Neither terminal U (3), nor ISP P (4) have any influence on how access station A (7) chooses and assigns LUIDs.
In accordance with STEP S4a, upon receiving the modified ISP authentication packet from access station A (7), ISP P (4) is made aware of terminal U's (3) request to obtain Internet or other services via access station A (7). ISP P (4), however, cannot be certain that the originator of the ISP authentication packet is a valid terminal U (3) and thus affiliated with ISP P (4). Incidentally, the ISP authentication packet may have been sent from a user who does not have a subscription with ISP P (4). Alternatively, the access station (7) may be behaving maliciously by creating a request while pretending to be a user in order to obtain compensation from the ISP without having to render any service. Thus, ISP P (4) must authenticate the identity of terminal U (3) to ensure that terminal U (3) is a bon-a-fide subscribing customer of ISP P (4).
To authenticate terminal U (3), ISP P (4) generates a challenge CH_P that when properly answered by terminal U (3), will verify terminal U's (3) identity. It should be noted that such challenges are typically large numbers or strings generated by random number generators.
At this juncture ISP P (4) also responds to the challenge CH_U generated by terminal U (3) in step S3a. CH_U is simply encrypted with ISP P's (4) private key and sent to terminal U (3) so terminal U (3) may use ISP P's (4) public key to decrypt the message. It the original CH_U message is revealed then terminal U (3) is assured of ISP P's (4) authenticity (i.e. ISP P (4) is authenticated to terminal U (3)).
Additionally, ISP P (4) selects a trusted network node T (5), depending on terminal U's (3) security requirements and access station A's (7) location. Finally, ISP P (4) sends a packet with the following content to access station A (7):
In STEP S4b, upon receiving the user authentication packet from ISP P (4), access station A (7) forwards a modified user authentication packet to terminal U (3). The modified user authentication packet contains:
In STEP S5a, upon receiving the message from step S4b, terminal U (3) employs ISP P's (4) public key to decrypt and verify ISP P's (4) response to the challenge CH_U which was encrypted with by ISP P (4) with P's public key. If terminal U (3) is successfully able to decrypt ISP P's (4) response to the challenge CH_U using ISP P's (4) public key, then terminal U (3) may be assured that the encrypted response was actually generated by ISP P (4), thereby authenticating ISP P's (4) identity.
At this point, terminal U (3) also creates a response to the challenge CH_P generated by ISP P (4) to verify and authenticate terminal U's (3) identity. In response to ISP P's (4) challenge CH_P, terminal U (3) encrypts ISP P's (4) challenge CH_P with terminal U's (3) private key. Terminal U (3) then sends a message with the following content to access station A (7):
In accordance with STEP S5b: access station A (7) receives the message from terminal U (3) that was generated in step S5a and forwards it to ISP P (4). It is not necessary but may be helpful if access station A (7) includes terminal U's (3) LUID in the message to ISP P (4). This would make it easier in the future for ISP P (4) to indicate the correct terminal U (3) to access station A (7) (for data that has to be sent from ISP P (4) to terminal U (3) via access station A (7)).
In STEP S6a and S6b: ISP P (4) verifies that terminal U's (3) response to the challenge CH_P was generated by a valid terminal U (3). In order to authenticate terminal U (3), ISP P (4) decrypts the response to the challenge CH_P with terminal U's (3) public key. If the decrypted response yields ISP P's (4) original challenge CH_P then ISP P (4) may be assured that terminal U (3) is a valid subscriber and thus affiliated with ISP P (4).
ISP P (4) now generates a session key that terminal U (3) and trusted node T (5) will later use for encrypting traffic between terminal U (3) and trusted node T (5), thus establishing a secure tunnel (1) between terminal U (3) and trusted node T (5). Along with the session key, a timeout value that determines the lifetime of the secure tunnel is conveyed to both, terminal U (3) and trusted node T (5).
The message generated in STEP S6a, which is sent from ISP P (4) to trusted node T (5), contains the following information:
The message generated in STEP S6b is sent from ISP P (4) to terminal U (3) via access station A (7), i.e. it is first sent from ISP P (4)to access station A (7), and then forwarded by access station A (7) to terminal U (3). The message contains the following information:
Once terminal U (3) and ISP P (4) have been authenticated, terminal U (3) can send IP packets to access station A (7), which access station A (7) can forward to trusted node T (5), and vice versa (trusted node T (5) can send IP packets to access station A (7), which access station A (7) can then forward to terminal U (3)). As a result, a secure tunnel (1) between terminal U (3) and trusted node T (5) (via access station A (7)) is established. The purpose of this secure tunnel (1) is to emulate a physical link between terminal U (3) and trusted node T (5). Moreover, since terminal U (3) and trusted node T (5) are both in possession of the same secret session key (which was generated by ISP P (4)), traffic through the secure tunnel (1) may be encrypted with this session key. Encrypting the packets that pass through the secure tunnel makes it impossible for the network elements located between terminal U (3) and trusted node T (5) (such as access station A (7)) to add, modify or remove the IP packets without being detected by terminal U (3) or trusted node T (5).
When access station A (7) sends messages to trusted node T (5), it will always include the LUID of the terminal U (3) which originated the message. The LUID together with access station A's (7) IP-address create a globally unique ID that can be used by trusted node T (5) to identify terminal U (3).
Moreover, trusted node T (5) will include the same LUID into messages that it sends to access station A (7) (for final delivery to terminal U (3)).Access station A (7) can use the LUID to determine the correct terminal U (3) to which the message has to be forwarded. Since the LUID is not of relevance to terminal U (3), access station A (7) may optionally remove it from message that it forwards from trusted node T (5) to terminal U (3).
Referring now to
As seen in
In general, prior to sending IP packets through the secure tunnel (1), terminal U (3) forwards a second DHCP request to trusted node T (5) via the secure tunnel (1) in order to obtain an IP address from trusted node T (5). It is important to note that the secure tunnel (1) emulates a physical link between terminal U (3) and the trusted node T (5). Once the secure tunnel (1) is established, terminal U (3) has two network interfaces (each of which needs an IP address):
By obtaining the second IP address from trusted node T (5), terminal U (3) may now generate IP packets with a source address that is routed by the global Internet (9) to trusted node T (5). Additionally, trusted node T (5) may now forward IP packets with that destination address to terminal U (3) through the tunnel between trusted node T (5) and terminal U (3).
A description of the mechanisms related to the second DHCP request is herein provided. Terminal U (3) generates a second DHCP request in order to make the secure tunnel (1), which it established between itself (terminal U (3)) and trusted node T (5), available as an additional (logical) network interface. As depicted in STEP S7a, terminal U (3) encrypts the DHCP request with the session key that is shared between terminal U (3) and trusted node (5). Terminal U (3) then places the encrypted DHCP request into the payload field of a new IP packet “Y.” (ie: Y[DCHP-request/session_key]). The “Y” IP packet has the IP address of trusted node T (5) as its destination address and the IP address of access station A (7) as its source address. The “Y” IP packet (Y[DHCP-request/session_key]) is forwarded to access station A (7). Access station A (7) forwards the “Y” IP packet to trusted node T (5) but is unable to decipher the contents within the packet since access station A (7) is not in possession of the proper session key. It is important to note that access station A (7) may add terminal U's (3) LUID to the “Y” IP packet when forwarding the packet to trusted node T (5) as was described above.
In accordance with STEP S7b, upon receiving the “Y” IP packet from terminal U (3) via access station A (7) that contains the encrypted DHCP request, trusted node T (5) recovers the DHCP-request, allocates an IP-address to terminal U (3) and generate a DHCP-response for terminal U (3). It should be clear that the IP address that is assigned to terminal U (3) by this DHCP response is the IP address that the global Internet (9) uses to route messages to trusted node T (5). The DHCP-response may then be encrypted with the session key and forwarded to access station A (7) which sends the response to terminal U (3). All the while access station A (7) is unable to decipher the contents of the reply.
Upon receiving the encrypted DHCP response, terminal U (3) is in possession of an IP-address that the global Internet (9) routes to trusted node T (5), and which trusted node T (5) will forward to terminal U (3) (through the secure tunnel (1), via access station A (7)). For clarity it should be noted that the IP address that is contained in the mentioned DHCP response is not the IP address of trusted node T (5) itself, but rather an IP address that the global Internet (9) routes to trusted node T (5). When trusted node T (5) receives a message with this IP address as its destination address, trusted node T (5) can easily determine that trusted node T (5) is not the final receiver of the message, but that it is rather supposed to forward the message towards its final destination which is terminal U (3) (i.e. trusted node T (5) acts as a router). When trusted node T (5) responds to terminal U's (3) DHCP request with a DHCP response that contains said IP address, it will keep a record that associates said IP address with terminal U's (3) identity and with the corresponding access station A (7). This information allows trusted node T (5) to determine the following information for every IP packet that it receives from the global Internet (9):
In accordance with STEP S8a, the transmission of packet traffic between terminal U (3) and trusted node T (5) (via the secure tunnel (1)) is described in detail. This description is supplement by reference to
The entire IP packet (11) (includes data packet X and header) is then encrypted with the session key that is shared between terminal U (3) and trusted node T (5) and stored as payload (14) with the data packet Y (16) (e.g, Y[X/key]). Thus, the header (18) destination address for the encrypted IP packet Y[X/key] (16) is the IP address of trusted node T (5) while the source address of the IP packet is the magic DHCP address assigned to terminal U (3).
As depicted in STEP S8a, access station A (7) receives the encrypted IP-packet Y[X/key] (16). Access station A (7), of course, is not able to recover or manipulate the contents (i.e. X) contained within the encrypted IP packet Y[X/key] (16). Therefore, access station A (7) forwards the encrypted IP packet Y[X/key] (16) to trusted node T (5) by replacing the source-address field in the encrypted IP packet Y[X/key] (16) with access station A's (7) IP address thus creating a modified packet Y′[X/key]. Additionally, access station A (7) may add terminal U's (3) LUID to the modified IP packet Y′[X/key] in order to help trusted node T (5) to determine which terminal U (3) sent the original packet X (11). Trusted node T (5) has to know which terminal U (3) sent the packet (11) in order to choose the correct session key for deciphering the message.
In accordance with STEP S8b, trusted node T (5) recovers the original data packet X (11). The data packet X (11) is forwarded to the Internet (9). Similarly, any data packets destined for terminal U (3) from the Internet (9) are received by trusted node T (5) as depicted in STEP S8b. Trusted node T (5) encrypts the data packet using the session key and then forwards the encrypted packet to access station A (7) as depicted in STEP S8a. Access station A (7) then forwards the message to the correct terminal U (3) based on the LUID.
Alternatively, STEP S7 may be omitted if a Network Address Translation mechanism (NAT) that maps a unique duple IP source address and Port source number to the tunnel is employed. Thus, the first data packet X (11) that is sent by terminal U (3) and received by trusted node T (5) will associate terminal U (3) with trusted node T (5). Therefore, a data structure that maps the connection parameters between the tunnel and external Internet connection is instantiated.
A timeout mechanism triggers the release of resources that are associated with the secure tunnel (1) established between terminal U (3) and trusted node T (5). Said resources are located at terminal U (3), access station A (7) and trusted node T (5). Timing mechanisms that control the timeout and tunnel release may be located at both ends of the tunnel. (i.e. within terminal U (3) and within trusted node T (5)). The timing mechanism is set upon successful delivery of the session key to terminal U (3) and trusted node T (5). The timer values for each respective timing mechanism may be passed along with the session key transferred between ISP P (4) and terminal U (3), and ISP P (4) and trusted node T (5).
A separate timer that controls the service provisioning to terminal U (3) and the associated resources provided is maintained in access station A (7). The timer is started once the tunnel (1)is established, i.e. the session key is transferred. Preferably, the timeout value destined for terminal U (3) can be used as a preset value for the timer. Services provisioning are stopped and resources at access station A (7) are released upon timeout. To ensure proper operation, even in case of data transfer the timeout value of the timer located in access station A (7) should be greater than the timeout value of the tunnel (1) timeout.
To extend the lifetime of the tunnel (1), terminal U (3) may invoke a new service and re-authentication requests with ISP P (4) before the timer expires. The re-authentication request ensures the authenticity of terminal U (3) and the metered duration information for the connection service provided by access station A (7) to terminal U (3). Once the timers at terminal U (3) and trusted node T (5) expire, tunnel resources are freed from the respective network elements.
Each timer, however, is associated with a safety time margin to ensure proper operation and maintenance of a tunnel during slow data transfer. The safety time margin allocates a buffer of additional time to the timers thus allowing slow data transfers to be completed before the resources are released or a re-authentication request is made.
An accounting method based on the amount of time access station A (7) provides services to terminal U (3) is also provided. A metered unit is utilized to account for the time period that access station A (7) provides services to terminal U (3). The metered unit is determined by the timeout value passed to terminal U (3), trusted node T (5) and access station A (7). The metered unit may be a time unit ranging from multiple of tens of seconds to multiple of minutes. Typically, a metered unit is defined by the service agreement between ISP P (4) and access station A (7) as well as the agreement between ISP P (4) and terminal U (3). The timeout value may be affected by time granularity and the signaling and processing overhead caused by the invocation of re-authentication procedures. Since a timing mechanism is required for the proper operation of the system, billing information can be derived from the timeout values conveyed during the periodic re-authentication procedure.
Although timer values may be generated and distributed by ISP P (4) such that ISP P (4) compensates access station A (7) for resources utilized by terminal U (3) and bills terminal U (3) based on timer values, terminal U (3) may also obtain ISP service through prepaid option. For example, terminal U (3) may have a pre-paid subscription with ISP P (4) that allows terminal U (3) to access and utilize resources provided by access station A (7) for a given time period t. Time period t corresponds to the amount of metered units (e.g. minutes) purchased from ISP P (4) by terminal U (3). Typically, each successful authentication and re-authentication results in a decrement of monetary equivalent for the timeout interval (e.g. a minute). Once the pre-paid time units are depleted, ISP P (4) will not re-authenticate or distribute new timeout values to terminal U (3). Subsequently, timers at access station A (7), trusted node T (5) and terminal U (3) will expire and the tunnel (1) with its associated resources will be released.
This application is a continuation of U.S. patent application Ser. No. 10/057,914, filed on Jan. 29, 2002, which further claims priority from U.S. Provisional Patent Application No. 60/278,436, filed Mar. 26, 2001, the entire disclosures of which applications are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60278436 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10057914 | Jan 2002 | US |
Child | 13305395 | US |