Multi-jet distributor for an endoscope

Information

  • Patent Grant
  • 10105039
  • Patent Number
    10,105,039
  • Date Filed
    Tuesday, March 21, 2017
    7 years ago
  • Date Issued
    Tuesday, October 23, 2018
    5 years ago
Abstract
The present specification describes a jet distributor provided to supply fluids to each of a plurality of jet openings in a multi-jet endoscope tip. In an embodiment, the jet distributor is supplied with a fluid from a jet pump. The jet distributor includes at least two fluid channels to provide the fluid supplied via the jet pump to the front-jet, right-side-jets and left-side-jets in the endoscope tip. The jet-distributor includes a motor which rotates a rotating plug. The rotating plug includes an internal fluid pathway which becomes intermittently aligned with each of a plurality of fluid output channels in the jet distributor as the plug rotates, thereby providing fluid in a successive manner to the jets in the endoscope tip.
Description
FIELD

The present specification generally relates to an endoscope assembly comprising a front jet and two side jets being supplied with fluid via fluid channels and a multi-jet distributor.


BACKGROUND

Endoscopes have attained great acceptance within the medical community, since they provide a means for performing procedures with minimal patient trauma, while enabling the physician to view the internal anatomy of the patient. Over the years, numerous endoscopes have been developed and categorized according to specific applications, such as cystoscopy, colonoscopy, laparoscopy, upper GI endoscopy and others. Endoscopes may be inserted into the body's natural orifices or through an incision in the skin.


An endoscope is usually an elongated tubular shaft, rigid or flexible, having a video camera or a fiber optic lens assembly at its distal end. The shaft is connected to a handle, which sometimes includes an ocular for direct viewing. Viewing is also usually possible via an external screen. Various surgical tools may be inserted through a working channel in the endoscope for performing different surgical procedures.


Endoscopes, such as colonoscopes, gastroscopes and the like, that are currently being used, typically have a front camera for viewing internal organs, such as the colon, an illuminator, a fluid injector for cleaning the camera lens, and a working channel for inserting surgical tools in order to, for example, remove polyps found in the colon. Often, endoscopes also have fluid (“jet”) injectors for cleaning a body cavity, such as the colon, into which they are inserted.


There is a need in the art for endoscopes which enable the concurrent supply of fluids to multiple fluid injectors or jet openings in the endoscope tip in order to quickly and efficiently clean a body cavity or a portion of the endoscope.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope.


There is provided herein, according to some embodiments of the specification, a tip section of an endoscope, the tip section comprising: at least one front-viewing element and at least one front illuminator associated therewith; at least one side-viewing element and at least one side illuminator associated therewith; a front working channel configured for insertion of a medical tool; and a side service channel configured for insertion of a medical tool.


Optionally, the tip section further comprises at least one front fluid injector configured for cleaning at least one of the front-viewing elements and at least one of the front illuminator.


Optionally, the tip section further comprises at least one side fluid injector configured for cleaning at least one of the side-viewing elements and at least one of the side illuminator.


The tip section may further comprise a pathway fluid injector for inflating and/or cleaning a body cavity into which the endoscope is inserted.


The front and side fluid injectors may be connected to a same fluid supply channel.


The endoscope may be a colonoscope, a flexible endoscope, or a gastroscope.


Optionally, the endoscope assembly comprises two side jet channel openings on each of the opposing sides of the endoscope. The side jet channel openings may be positioned close to at least one side-viewing element.


The plurality of side jet channel openings may have an obtuse angle of exit.


The plurality of side jet channel openings, in combination with a fluid distributor and fluid source, may operate in accordance with at least one predefined fluid delivery sequence, such as a continuous fluid stream, a fluid stream pulsing at different flow rates, a fluid stream being expelled at different timings with respect to the different side jet openings, a fluid stream at different pressures or any other suitable method as would be evident to persons of ordinary skill in the art.


Each of the plurality of side jet channel openings may operate using a different fluid delivery sequence.


The present specification discloses an endoscope assembly comprising a multi-distributor jet for supplying fluid to a plurality of jet openings on a tip of the endoscope. The multi-distributor jet is enclosed in a distributor housing and comprises: a distributor motor; a motor shaft coupled with the distributor motor; and a distributor disc coupled with the motor shaft. The distributor disc comprises an entering fluid pipeline for supplying the multi-distributor jet with the fluid and at least one exiting fluid pipeline for providing the fluid supplied by the entering fluid pipeline to the plurality of jet openings on the endoscope tip.


Optionally, the distributor housing further comprises a locking element for latching the distributor disc within the distributor housing. Optionally, the distributor disc further comprises a distributor plug for connection with the motor shaft. Optionally, the distributor disc further comprises a groove on an outer periphery to connect a locking element for latching the distributor disc within the distributor housing.


A jet pump may supply fluid, from a fluid source, to the entering fluid pipeline. The multi-jet distributor may be connected to the endoscope via a main connector, and can also be coupled with a main control unit or a fuse box of the endoscope assembly.


A distributing rate within the multi-jet distributor may vary between 30 revolutions per minute (rpm) to 100 rpm, and more specifically between 50 to 65 rpm.


The multi-jet distributor may comprise three exit pipelines wherein the pipelines exiting from the multi-jet distributor carrying fluid enter the endoscope via a main connector and exit at the jet openings located at the endoscope tip.


The multi-jet distributor may comprise two exit pipelines wherein the pipelines exiting from the multi-jet distributor carrying fluid enter the endoscope via a main connector and exit at the jet openings located at the endoscope tip.


The present specification also discloses a system for distributing fluid from a source external to an endoscope into a plurality of fluid channels positioned within the endoscope, comprising: a pump; a fluid distributor device having a fluid input channel coupled to said pump, a distributor rotating plug and a plurality of fluid output channels, wherein said distributor rotating plug includes an internal fluid pathway, said internal fluid pathway being in fluid communication with said fluid input channel and capable of being positioned, via rotational movement of said distributor rotating plug, into a plurality of configurations wherein, when in each of said plurality of configurations, said internal fluid pathway is in fluid communication with one of said plurality of said fluid output channels and is not in fluid communication with any one of the remaining said plurality of fluid output channels; a motor shaft coupled to said distributor rotating plug; a motor coupled to said motor shaft, wherein, upon activating the motor, the motor causes the distributor rotating plug to rotate, thereby intermittently aligning said internal fluid pathway with each of said plurality of fluid output channels, allowing fluid to move from said fluid input channel, through the internal fluid pathway and successively into each of said plurality of fluid output channels; and at least one endoscope connector comprising said plurality of endoscope fluid channels, wherein said plurality of endoscope fluid channels are in fluid communication with the plurality of fluid output channels.


Optionally, the system further comprises a distributing element attached to said distributor rotating plug and rotatably movable within said fluid distributor device, wherein said distributing element comprises said internal fluid pathway.


Optionally, the system further comprises a housing, wherein said housing comprises said fluid distributor device, said motor and said motor shaft. The housing may further comprise a locking element for fixedly positioning the fluid distributor device within the housing. The fluid distributor device may further comprise a groove on an outer surface of said fluid distributor device for receiving the locking element.


The fluid distributor device may be substantially cylindrical.


Optionally, the fluid distributor device comprises a housing having an external surface wherein each of the plurality of fluid output channels extends outward from said external surface.


Optionally, the fluid distributor device comprises at least three fluid output channels wherein each of said at least three fluid output channels is separately and individually connected to at least three endoscope fluid channels.


The at least one endoscope connector may be positioned within said endoscope. Alternatively, the at least one endoscope connector may be positioned within a main control unit external to said endoscope. The system at least one endoscope connector may comprise a plurality of connectors for connecting said plurality of endoscope fluid channels with said plurality of fluid output channels. Alternatively, the at least one endoscope connector comprises a single connector for connecting said plurality of endoscope fluid channels with said plurality of fluid output channels.


The distributor rotating plug may have a distributor rate ranging between 30 revolutions per minute (rpm) and 100 rpm.


The present specification also discloses a fluid distributor system, comprising: a housing; a fluid distributor device positioned within said housing, wherein said fluid distributor device has a fluid input channel, a distributor rotating plug and a plurality of fluid output channels, wherein said distributor rotating plug includes an internal fluid pathway, said internal fluid pathway being in fluid communication with said fluid input channel and capable of being positioned, via rotational movement of said distributor rotating plug, into a plurality of configurations wherein, when in each of said plurality of configurations, said internal fluid pathway is in fluid communication with one of said plurality of said fluid output channels and is not in fluid communication with any one of the remaining said plurality of fluid output channels; a motor shaft coupled to said distributor rotating plug; and a motor coupled to said motor shaft, wherein, upon activating the motor, the motor causes the distributor rotating plug to rotate, thereby intermittently aligning said internal fluid pathway with each of said plurality of fluid output channels, allowing fluid to move from said fluid input channel, through the internal fluid pathway and successively into each of said plurality of fluid output channels.


Optionally, the fluid distributor system further comprises a distributing element attached to said distributor rotating plug and rotatably movable within said fluid distributor device, wherein said distributing element comprises said internal fluid pathway.


The housing further may comprise a locking element for fixedly positioning the fluid distributor device within the housing. The fluid distributor device may further comprise a groove on an outer surface of said fluid distributor device for receiving the locking element. The housing may comprise an external surface wherein each of the plurality of fluid output channels extends outward from said external surface.


Optionally, the fluid distributor device comprises at least three fluid output channels.


The distributor rotating plug may have a distributor rate ranging between 30 revolutions per minute (rpm) and 100 rpm.


The aforementioned and other embodiments of the present invention shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:



FIG. 1 illustrates an exploded view of a tip section of an endoscope assembly according to one embodiment of the present specification;



FIG. 2A illustrates a perspective view of a tip section of an endoscope assembly according to one embodiment of the present specification;



FIG. 2B illustrates another perspective view of a tip section of an endoscope assembly according to one embodiment of the present specification;



FIG. 3A illustrates a perspective view of a tip section of a multi-jet endoscope assembly according to one embodiment of the present specification;



FIG. 3B illustrates a perspective first side view of the tip section of the multi-jet endoscope assembly of FIG. 3A;



FIG. 3C illustrates a perspective second side view of the tip section of the multi-jet endoscope assembly of FIG. 3A;



FIG. 3D illustrates a perspective view of a fluid channeling component of the multi-jet endoscope assembly of FIG. 3A;



FIG. 4A illustrates a multi-jet distributor pump, in accordance with an embodiment of the present specification;



FIG. 4B illustrates another view of the multi-jet distributor pump of FIG. 4A, in accordance with an embodiment of the present specification;



FIG. 4C illustrates yet another view of the multi-jet distributor pump of FIG. 4A, in accordance with an embodiment of the present specification;



FIG. 5A illustrates a distributor disc of a multi-jet distributor, in accordance with an embodiment of the present specification;



FIG. 5B illustrates another view of a distributor disc of a multi-jet distributor, in accordance with an embodiment of the present specification;



FIG. 6A is a block diagram illustrating the connection between a multi-jet distributor and an endoscope, in accordance with an embodiment of the present specification;



FIG. 6B is a block diagram illustrating another connection between a multi-jet distributor and an endoscope, in accordance with an embodiment of the present specification;



FIG. 7A illustrates a sectional view of a distributor disc of a multi-jet distributor, in accordance with an embodiment of the present specification; and



FIG. 7B illustrates another sectional view of a distributor disc of a multi-jet distributor, in accordance with an embodiment of the present specification.





DETAILED DESCRIPTION

In an embodiment, a jet distributor is provided to supply fluids to each of a plurality of jet openings in a multi-jet endoscope tip as illustrated in FIGS. 3A through 3D. In an embodiment, the jet distributor is supplied with a fluid from a jet pump. The jet-distributor comprises at least two fluid channels to provide the fluid supplied via the jet pump to the front-jet, right-side-jets and left-side-jets in the endoscope tip. In various embodiments, the jet distributors of the present specification are intended for operation with a multiple viewing elements endoscope similar to those described in U.S. patent application Ser. No. 14/278,293 and related applications, entitled “Multiple Viewing Elements Endoscope Having Two Front Service Channels” and filed on May 15, 2014, which is herein incorporated by reference in its entirety.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention. In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated.


Reference is now made to FIG. 1, which shows an exploded view of a tip section 200 of a multi-viewing element endoscope assembly 100 comprising at least one front working/service channel, according to various embodiments. An aspect of some embodiments also relates to endoscope assembly 100 having the tip section 200 equipped with one or more side working/service channels.


It is noted that the term “endoscope” as mentioned to herein may refer particularly to a colonoscope or gastroscope, according to some embodiments, but is not limited only to colonoscopes and gastroscopes. The term “endoscope” may refer to any instrument used to examine the interior of a hollow organ or cavity of the body.


According to an embodiment, tip section 200 of endoscope 100 includes a tip cover 300, an electronic circuit board assembly 400 and a fluid channeling component 600.


According to some embodiments, fluid channeling component 600 may be configured as a separate component from electronic circuit board assembly 400. This configuration may be adapted to separate the fluid channels, at least one side service channel, such as side service channel 650, and at least one front working/service channel, such as working/service channel 640, which are located in fluid channeling component 600, from the sensitive electronic and optical parts which may be located in the area of electronic circuit board assembly 400. Thus, the component structure of the tip section 200 enables effective insulation of the plurality of electronic elements from the plurality of fluid channels.


Tip section 200 may be turnable by way of flexible shaft which is also referred to as a bending section, for example a vertebra mechanism.


In some embodiments, electronic circuit board assembly 400 is configured to carry a front viewing element 116 and at least one side viewing element 116b which may be similar to front viewing element 116 and may include a sensor such as but not limited to a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS) image sensor. In addition, electronic circuit board assembly 400 may be configured to carry a second side viewing element on the opposite side of side viewing element 116b, which may be similar to front viewing element 116 and may include a sensor such as but not limited to a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS) image sensor.


Electronic circuit board assembly 400 may further be configured to carry front illuminators 240a, 240b, 240c, which are, in one embodiment, associated with front viewing element 116 and are positioned to essentially illuminate the fields of view of front viewing element 116.


In addition, electronic circuit board assembly 400 may further be configured to carry side illuminators 250a and 250b, which are, in one embodiment, associated with side viewing element 116b and are positioned to essentially illuminate the fields of view of side viewing element 116b. Electronic circuit board assembly 400 may also be configured to carry side illuminators, which are associated with a second side viewing element that is positioned on the opposite side of side viewing element 116b, which may be similar to side illuminators 250a and 250b.


Front illuminators 240a, 240b, 240c and side illuminators 250a and 250b may optionally be discrete illuminators and may include a light-emitting diode (LED), which may be a white light LED, an infrared light LED, a near infrared light LED, an ultraviolet light LED or any other LED.


The term “discrete”, concerning discrete illuminator, may refer to an illumination source, which generates light internally-in contrast to a non-discrete illuminator, which may be, for example, a fiber optic merely transmitting light generated remotely.


Reference is now made to FIG. 1 along with FIG. 2A and FIG. 2B, which show a perspective view of a tip section 200 of an endoscope assembly 100 according to an embodiment.


Tip cover 300 may be configured to fit over the inner parts of the tip section 200 including electronic circuit board assembly 400 and fluid channeling component 600 and to provide protection to the internal components in the inner parts.


Tip cover 300 may include a front panel 320 having a transparent surface, window, or opening for front optical lens assembly 256, of front looking camera or viewing element 116. Front optical lens assembly 256 may include a plurality of lenses, static or movable, which may provide a field of view of 90 degrees or more, 120 degrees or more or up to essentially 180 degrees. Front optical lens assembly 256 may provide a focal length in the range of about 3 to 100 millimeters.


An optical axis of front looking camera or viewing element 116 may be essentially directed along the long dimension of the endoscope. However, since front viewing element 116 is typically a wide angle viewing element, its field of view may include viewing directions at large angles to its optical axis. Additionally, front panel 320 may include optical windows 242a, 242b and 242c of illuminators 240a, 240b and 240c, respectively. It should be noted that number of illumination sources used for illumination of the field of view may vary.


In addition, front panel 320 may include a working channel opening 340 of a working channel 640. In alternate embodiments, the front panel may include more than one working channel opening.


Jet channel opening 344 of jet channel 644 may also be located on front panel 320 of tip cover 300. Jet channel 644 may be configured for providing high-pressure jet of fluid such as water or saline for cleaning the walls of the body cavity.


Also located on front panel 320 of tip cover 300 is injector opening 346 of injector channel 646 having a nozzle 348 aimed at front optical lens assembly 256. Injector channel 646 may be configured for injecting fluid (liquid and/or gas) to wash contaminants such as blood, feces and other debris from a surface of front optical lens assembly 256 of front viewing element 116. Optionally, injector channel 646 may be configured for cleaning front optical lens assembly 256 and one, two, or all of optical windows 242a, 242b and 242c. Injector channel 646 may be fed by fluid such as water and/or gas which may be used for cleaning and/or inflating a body cavity.


Visible on the sidewall 362 of tip cover 300 is side optical lens assembly 256b for side viewing element 116b, which may be similar to front optical lens assembly 256 and optical windows 252a and 252b of illuminators 250a and 250b for side viewing element 116b. Also on the sidewall 362 of tip cover 300, on the opposing side of first side optical lens assembly 256b, is a second optical lens assembly for a second side viewing element, which may be similar to side optical lens assembly 256b and optical windows 252a and 252b of illuminators 250a and 250b for side viewing element 116b. The first side optical lens assembly 256b may provide a focal length in the range of about 3 to 100 millimeters.


An optical axis of the first side viewing element 116b may be essentially directed perpendicular to the long dimension of the endoscope. An optical axis of the second side viewing element may be essentially directed perpendicular to the long dimension of the endoscope. However, since each side viewing element typically comprises a wide angle camera, its field of view may include viewing directions at large angles to its optical axis. In accordance with some embodiments, each side viewing element has a field of view of 90 degrees or more, 120 degrees or more or up to essentially 180 degrees.


In addition, side injector opening 266 of side injector channel 666 may be located at distal end of sidewall 362. A nozzle cover 267 may be configured to fit side injector opening 266.


Additionally, nozzle cover 267 may include a nozzle 268 which may be aimed at side optical lens assembly 256b and configured for injecting fluid to wash contaminants such as blood, feces and other debris from a surface of side optical assembly 256b of side viewing element 116b. The fluid may include gas which may be used for inflating a body cavity. Optionally, nozzle 268 may be configured for cleaning both side optical lens assembly 256b and optical windows 252a and/or 252b.


According to some embodiments, side injector channel 666 may be configured to supply fluids for cleaning any of the tip elements (such as any optical assembly, optical lens assembly, windows, illuminators, and other elements).


Optionally, injector channel 646 and side injector channel 666 may be fed from same channel.


It is noted that according to some embodiments, although tip section 200 is presented herein showing one side thereof, the opposing side may include elements similar to the side elements described herein (for example, side viewing element, side optical lens assembly, injector(s), nozzle(s), illuminator(s), window(s), opening(s) and other elements).


Sidewall 362 may have a form of an essentially flat surface which assists in directing the cleaning fluid injected from injector channel 666 towards side optical lens assembly 256b and optical windows 252a and/or 252b. Lack of such flat surface may result in dripping of the cleaning fluid along the curved surface of tip section 200 of the endoscope without performing the desired cleaning action.


In accordance with an embodiment, the sidewall 362 is located in a notch/depression in the tip cover 300. This way, side injector opening 266 and corresponding side nozzle 268 may be elevated from the depressed sidewall 362 but still not significantly protrude from the level of cylindrical surface of the tip cover 300. According to an aspect of one embodiment, as shown in FIG. 59C, the sidewall 362 is located in a sufficiently well-defined or deep notch/depression 5963 in the tip cover 300 such that the lens assembly of side optical lens assembly 256b stays sufficiently embedded in the notch/depression 363 and well below the level 5900 of the cylindrical surface of the tip cover 300. The notch/depression 5963 protects the sidewall 362 and components thereof (side optical lens assembly 256b, side illuminators 250a, 250b and side nozzle 268) from both longitudinal and latitudinal mechanical shocks.


It is noted that according to some embodiments, tip section 200 may include more than one side looking camera. In this case, the side looking cameras may be installed such that their fields of view are substantially opposing. However, different configurations and number of side looking cameras are possible within the general scope of the current specification.


Fluid channeling component 600 includes a side service channel 650 having a side service channel opening 350.


Reference is now made to FIG. 1, along with FIGS. 3A, 3B, 3C, and 3D which show a perspective view of a tip section 200 of a multi-jet endoscope assembly 6501 comprising a plurality of side jets, in addition to a front jet, to enable improved flushing according to an embodiment of the present specification.


Tip cover 300 fits over the inner parts of the tip section 200 including electronic circuit board assembly 400 (shown in FIG. 1) and fluid channeling component 600 (shown in FIG. 3D) and to provide protection to the internal components in the inner parts. Holes 670 for pins for tip cover 300 are provided on fluid channeling component 600, as shown in FIG. 3D. Further, FIG. 3D shows a groove 6572 for an electrical cable. Tip cover 300 includes a front panel 320 having a transparent surface, window, or opening for front optical lens assembly 256, of front looking camera or viewing element 116, along with optical windows 242a, 242b and 242c of illuminators 240a, 240b and 240c, respectively.


The front panel 320 includes a working channel opening 340 of a working channel 640 and jet channel opening 344 of jet channel 644. Jet channel 644 is configured for providing a high-pressure jet of fluid, such as water or saline, for cleaning the walls of the body cavity. Also located on front panel 320 of tip cover 300 is injector opening 346 of injector channel 646 having a nozzle 348 aimed at front optical lens assembly 256. Injector channel 646 is configured for injecting fluid (liquid and/or gas) to wash contaminants such as blood, feces and other debris from a surface of front optical lens assembly 256 of front looking camera or viewing element 116. Optionally, injector channel 646 may be configured for cleaning at least a surface of front optical lens assembly 256 and one, two, or all of optical windows 242a, 242b and 242c. Injector channel 646 is fed by fluid such as water and/or gas which may be used for cleaning and/or inflating a body cavity. In one embodiment, the optical axis of the front looking camera or viewing element 116 is essentially directed along the central longitudinal axis 6503 that runs through the long dimension of the tip of the endoscope 6501.



FIG. 3B shows sidewall 362 of tip cover 300 comprising a transparent surface, window, or opening to side optical lens assembly 256a for a side looking viewing element, which may be similar to front optical lens assembly 256, and optical windows 252a and 252b of illuminators for the side looking viewing element. Also, as shown in FIG. 3C, the sidewall 362 of tip cover 300 on the opposing side to side optical lens assembly 256a is an optical lens assembly 256b for side looking viewing element 116b, and optical windows 252a and 252b of corresponding illuminators for side looking viewing element 116b. In one embodiment, the optical axis of one or both of the side looking viewing elements or cameras are essentially perpendicular to the optical axis (which is along the central longitudinal axis 6503 of the endoscope) of the front looking viewing element 116. In one embodiment, the optical axis of one or both of the side looking viewing elements forms an obtuse angle with the optical axis of the front viewing element 116 while in an alternate embodiment, the optical axis of one or both of the side viewing elements forms an acute angle with the optical axis of the front viewing element 116.


In addition, side injector openings 266 of corresponding side injector channels 666 are located at respective distal ends of the opposing sidewalls 362 as shown in FIGS. 3B and 3C. Nozzle covers 267 may be configured to fit the corresponding side injector openings 266. The nozzle covers include nozzles 268 that are aimed at side optical lens assemblies 256a, 256b and configured for injecting fluid to wash contaminants such as blood, feces and other debris from at least a surface of side optical lens assemblies 256a, 256b of the side looking viewing elements. The fluid may include gas which may be used for inflating a body cavity. Optionally, nozzles 268 may be configured for cleaning the side optical lens assembly and both optical windows on the opposing sides of the tip 200.


According to some embodiments, side injector channels 666 may be configured to supply fluids for cleaning any of the tip elements (such as any optical assembly, optical lens assembly, windows, illuminators, and other elements). Optionally, injector channel 646 and side injector channels 666 may be fed from the same channel.


As shown in FIGS. 3A through 3D, in accordance with an embodiment, two side jet openings 605a, 610a, fed by a common side jet channel 6506, are provided around the side periphery at the proximal end of the tip 200. Thus, the two side jet openings 605a, 610a which are fed by common side jet channel 6506 form a Y-shaped fluid conduit, described in greater detail below. The manifold shown in FIG. 3D includes a housing having a partially cylindrical shape with a curved top surface, a partially curved first side and a partially curved second side, wherein manifold housing is formed from a base portion with a first width, a first length, and a proximal surface and an elongated portion, which is attached to the base portion, with a second width, a second length, and a distal surface, wherein the first width is greater than the second width and the first length is less than the second length. A first channel 640 extends from the base portion through the elongated portion, wherein the first channel 640 has an entrance port positioned on said proximal surface of the base portion and an exit port positioned on a distal surface of the elongated portion. A second channel 644 extends from the base portion through the elongated portion, wherein the second channel 644 has an entrance port positioned on said proximal surface of the base portion and an exit port positioned on a distal surface of the elongated portion.


The Y-shaped fluid conduit comprises a central stem portion or common side jet channel 6506, a first prong portion 6525, and a second prong portion 6526, wherein the central stem portion 6506 extends from an entrance port 607 on the proximal surface of the base portion through the base portion, wherein the first prong portion 6525 extends from an end of the central portion through the base portion to an exit port on the partially curved first side; and wherein the second prong portion 6526 extends from an end of the central portion through the base portion to an exit port on the partially curved second side. In one embodiment, the exit port extending from the first prong portion 6525 forms side jet opening 605a while the exit port extending from the second prong portion 6526 forms side jet opening 610a.


A third channel 646 extends from an entrance port on the proximal surface of the base portion through to an exit port on the partially curved first side. A fourth channel 6516 extends from an entrance port on the proximal surface of the base portion through to an exit port on the partially curved second side. Each of the first, second, third, and fourth channels are fluidically isolated and separated from each other.


The common side jet channel 6506 has an entry port 607 at a proximal end of the fluid channeling component 600. Similarly, two side jet openings 605b, 610b, fed by another common side jet channel, are provided on the opposite side of side jet openings 605a and 610a. In one embodiment the two side jet openings 605a, 605b, 610a, 610b on either side of the tip are positioned in such a way that the side injector openings 266 (one on both sides of the tip) are situated between them. Additionally, in one embodiment, the two side jet openings 605a, 605b, 610a, 610b on either side of the tip are positioned close to the side optical lens assemblies 256a, 256b of the side looking cameras (on both sides of the tip) such that when fluid is ejected from the side jet openings it is propelled at an approximately 45 degree angle and past the cameras, so that a physician can see the fluid being expelled. The fluid can be water or saline.


It should be noted that, in alternate embodiments, side jet openings can be configured around the side periphery in any suitable number, including 2, 4, 6, or 8. Also, the side jet openings can have a plurality of angular configurations causing fluid to exit at different angles relative to a lateral plane that includes the side optical lens assemblies of side viewing elements and the optical windows of the corresponding illuminators but not the front optical lens assembly of the front viewing element. In one embodiment, the optical axis of the side viewing elements is perpendicular to the lateral plane as well as the optical axis of the front viewing element which is along the central longitudinal axis 6503 of the endoscope. These angles of fluid exit can range from 45 to 60 degrees or 120 to 135 degrees relative to the lateral plane. Acute angles of exit of 45 to 60 degrees enable fluid to be expelled in the direction of movement of the endoscope while obtuse angles of exit of 120 to 135 degrees enable fluid to be expelled in the direction opposite to the direction of movement of the endoscope, thereby aiding the endoscope movement within a body cavity. This is because, if the jet is directed in an opposite direction of movement of the endoscope, the resistance of the colon walls may push the scope forward like a jet engine.


In accordance with one embodiment, the side jet openings are positioned 8.5 to 9.5 millimeters from the side optical lens assemblies on the circumference of the endoscope such that the fluid exiting the openings form angles ranging from 50 degrees to 60 degrees relative to a lateral plane containing the side optical lens assemblies and corresponding side optical windows (but not containing front optical lens assembly of the front viewing element). Also, the side jet openings have a diameter of about 1.4 to 1.7 millimeters, in one embodiment.


Referring now to FIG. 1 and FIGS. 3A through 3D, in an embodiment, a jet distributor is provided to supply fluids to each of the side jet openings, such as 605a, 605b, 610a, 610b in the multi-jet endoscope tip 6501 of FIGS. 3A through 3D, and the front jet 344. The jet distributor typically comprises three fluid channels to provide fluid to the front jet 344, right-side-jets 605a, 610a and left-side-jets 605b, 610b in the endoscope tip 6501. FIG. 4A illustrates a multi-jet distributor 4000, in accordance with an embodiment of the present specification. As illustrated, the multi-jet distributor 4000 comprises a distributor motor housing 4002 and a distributor motor 4004 coupled with a motor shaft 4006 which in turn is coupled with a distributor rotating plug 5002 placed inside a distributor disc or cap 4008 adapted to channel fluid out into three exiting fluid pipelines 4010, 4012, and 4014, thereby supplying fluid to three jet openings (front-jet 344, right-side-jets 605a, 610a and left-side-jets 605b, 610b) in the endoscope tip. The multi-jet distributor 4000 further comprises an entering fluid pipeline 4016 that transports fluid from a fluid source, via a conventional jet pump, into the multi-jet distributor 4000. Locking element 4018 enables the distributor disc 4008 to be latched on to the motor shaft 4006. In various embodiments, different fluid distribution rates can be selected by varying the electric current applied to the distributor motor.


In one embodiment, jet distributor 4000 comprises two fluid channels to provide fluid to the front jet 344 and sides-jets 605a, 605b, 610a, 610b in the endoscope tip. The multi-jet distributor 4000 comprises a distributor motor housing 4002 and a distributor motor 4004 coupled with a motor shaft 4006 which, in turn, is coupled with a distributor disc 4008 adapted to channel fluid out into two exiting fluid pipelines, thereby supplying fluid to three jet openings in the endoscope tip. In this embodiment, the two sides-jets are fed by a common jet channel split into two pipelines upon entering the endoscope tip; one provides fluids to the right-side-jets and the other to the left-side-jets.



FIGS. 4B and 4C illustrate additional views of the multi-jet distributor pump 4000, in accordance with embodiments of the present specification. As illustrated in FIG. 4C, the distributor disc 4008 is physically detachable from the distributor motor housing 4002 and can be latched in, and out, of the distributor motor housing 4002 by using the locking element 4018 which is fitted in a groove 4020 of the distributor disc 4008.


In one embodiment, the distributor disc 4008 is a substantially cylindrical structure comprising a plurality of circular slots for attaching with fluid pipelines. In an embodiment, the distributor disc 4008 comprises a slot for attaching with an entering fluid pipeline 4016 which has a diameter ranging from approximately 1 to 20 millimeters, and more specifically between 1 to 10 millimeters. In an embodiment, the distributor disc 4008 further comprises at least two slots for attaching with exiting fluid pipelines, each having a diameter ranging from approximately 1 to 20 millimeters, and more specifically between 1 to 10 millimeters. The circular slots on the face of the distributor disc 4008 attaching with the fluid pipelines are separated by a minimum distance. In an embodiment, the length of the entering and exiting pipelines is selected to minimize the overall space requirements of the distributor pump, yet achieve the fluid rate objectives of the present invention as described below. Also, in an embodiment, the fluid pipelines are connected to the distributor disc 4008 by using sealing members such as an O-ring or a gasket. During use, fluid pipelines are threaded and secured via threading onto the distributor disc 4008 and sealed thereto, using the sealing members. In an embodiment, the three exit pipelines connect to, or mate with, complementary fluid channels, which direct fluid through to the jet openings in the endoscope tip, via a main connector. In an embodiment, a universal luer connector is used to connect the fluid pipelines to the main connector. In other embodiments, any suitable connecting element may be used to connect the fluid pipelines to the main connector.


Three of the pipes which are positioned normal to the face of the distributor disc are exiting fluid pipelines 4010, 4012, and 4014 and operate to supply fluid to three jet openings in an endoscope tip. The fourth pipe which is positioned normal to the face of the distributor disc is an entering fluid pipeline 4016.


In various embodiments, a distributor rate within the multi-jet distributor 4000 can vary from 30 revolutions per minute (rpm) to 100 rpm, and more specifically between 50-65 rpm. The distributor rate may also depend upon a fluid flow rate received into the multi-jet distributor. The distributor rate is defined as the revolutions per minute (rpm) of a distributor rotating plug contained within the distributor disc or cap and attached to the motor shaft, as described with reference to FIGS. 7A and 7B below.


In an embodiment, a first pipeline supplies fluid to a front panel of the endoscope, a second pipeline supplies fluid to one side of the tip, and a third pipeline supplies fluid to the other side of the tip. In another embodiment, only two pipelines enter the main connector, wherein a first pipeline supplies fluid to the front jet and a second supplies fluid to the side jets of the endoscope.



FIG. 5A illustrates a distributor disc 4008 of a multi-jet distributor, in accordance with an embodiment of the present specification. The disc 4008 comprises a distributor rotating plug 5002 for connecting the disc 4008 to the motor shaft 4006 (shown in FIG. 4A). A locking element 4018 (shown in FIGS. 4A-4C) may be fitted in a groove 5004 on the disc 4008 to connect the disc to the motor shaft 4006. FIG. 5B illustrates another view of the distributor disc 4008 of a multi-jet distributor, in accordance with an embodiment of the present specification, showing the groove 5004, three exiting fluid pipelines 4010, 4012 and 4014 and one entering fluid pipeline 4016.



FIG. 6A is a block diagram illustrating the connection between a multi-jet distributor and an endoscope, in accordance with an embodiment of the present specification. A pump, such as jet pump 6002, pumps fluid from a fluid source, via an entering fluid pipeline 6004, into a multi-jet distributor 6006. The fluid is supplied by the multi-jet distributor 6006 to three jet openings in a tip of an endoscope 6008 via three exiting fluid pipelines 6010, 6012 and 6014 and a main connector 6016. In an embodiment, each of the three exiting fluid pipelines supplies fluid to a fluid channel of the endoscope 6008. In one embodiment, each exiting fluid pipeline is connected to main connector by a luer connector, or by any connecting system of small-scale fluid fittings used for making leak-free connections between a male-taper fitting and its mating female part on medical instruments. The main connector is also coupled with a controller unit 6018 that acts as a main control unit for the endoscope 6008.


In various embodiments, in order to activate the jet and wash a lumen in a patient's body, a doctor/physician operating the endoscope is required to push a button located either on a handle of the endoscope, on the main control unit, or on a control panel of the endoscope. Once the button is pressed, the multi-jet distributor starts providing fluid at a pre-determined rate to each of the three fluid channels of the endoscope. In another embodiment, the doctor/physician may be required to push/step on a foot pedal to activate the jet-pump, which is in data communication with the foot pedal or other activation means. The jet-pump provides fluid to the multi-jet distributor and at the same time activates the multi-jet distributor motor. In various embodiments, the operating doctor/physician may change a rate of flow of fluid being supplied by the multi-jet distributor dynamically during the operation.


In an embodiment, the multi-jet distributor is located outside the endoscope system but is connected to a main control unit of the endoscope as illustrated in FIG. 6A. The multi-jet distributor may connect to the main control unit by using a coupling system. In accordance with an embodiment of the present specification, the coupling system comprises a hanger plug and socket pair such that the hanger plug is integrally formed on a distributor disc or cap portion of the multi-jet distributor while the hanger socket, to removably yet fixedly receive the hanger plug, is affixed to a side of the main control unit 6018.


In various embodiments, alternate connection systems that are easily connected/disconnected but securely fixed may be used. For example, the connection system may include a magnetic coupling pair where a first magnet is fixed to the multi-distributor jet and a second magnet, having polarity opposite to the first, is affixed to a side of the main control unit. Bringing the first magnet close to the second would result into a strong magnetic coupling to enable the multi-jet distributor to be removably, yet securely, attached to the main control unit.


Additional examples may include clips, snaps, clasps, hooks, a female/male attachment pair, and other connection systems that enable removable, yet firm, coupling as would be advantageously evident to persons of ordinary skill in the art


In another embodiment, the multi-jet distributor is integrated into the control unit, such that the housing of the multi-jet distributor is located inside the control unit.



FIG. 6B is a block diagram illustrating another connection between a multi-jet distributor and an endoscope, in accordance with an embodiment of the present specification. As illustrated, the multi-jet distributor 6006 supplies fluid to three jet openings in a tip of an endoscope 6008 via a single exiting connector housing within the three pipelines exiting pipeline 6020. Hence, in the embodiment illustrated in FIG. 6B, a single fluid pipeline supplies fluid to the three fluid channels of the endoscope 6008.



FIG. 7A illustrates a sectional view of a distributor disc or cap of a multi-jet distributor, in accordance with an embodiment of the present specification. A jet pump 7002 pumps a fluid via an entering (input) fluid pipeline or channel 7004 into a distributor disc or cap 7006, which in turn distributes the fluid into three streams being pumped out via three exiting (output) fluid pipelines or channels 7008, 7010 and 7012 (not shown in FIG. 7A) into a main connector 7014 by rotating a distributor rotating plug 5002, wherein the distributor rotating plug 5002 has a first end 5002a and a second end 5002b. The rotating plug 5002 is attached at a first end 5002a to the motor shaft (shown as 4006 in FIG. 4A). In one embodiment, as seen in FIG. 7A, a distributor element 7021 is attached to a second end 5002b of the rotating plug 5002 opposite said first end 5002a. The distributor element 7021, being physically attached to the rotating plug 5002, rotates within the distributor disc or cap 7006 as the motor is operated. The distributor element 7021 comprises a cylindrical body having a first end 7021a attached to said second end 5002b of said rotating plug 5002, and a second end 7021b opposite said first end. An L-shaped fluid pathway 7020 is positioned within the distributor element 7021 and includes an entrance opening 7022 at the second end 7021b of the distributor element 7021 and an exit opening 7023 in a side wall 7021c of the distributor element 7021.


Fluid is pumped from the jet pump 7002 into the entering fluid pipeline 7004. The entering fluid pipeline 7004 passes through the distributor disc or cap 7006 and is in fluid communication with the L-shaped fluid pathway 7020 of the distributor element 7021 via the entrance opening 7022. As the rotating plug 5002 and distributor element are rotated within the distributor disc or cap 7006 by the motor, the L-shaped fluid pathway 7020 of the distributor element 7021 is intermittently aligned with each of the exiting fluid pipelines 7008, 7010, and 7012 (seen in FIG. 7B). During rotation of the distributor element 7021, while one exiting fluid pathway is open, the remaining two are occluded. For example, as seen in FIG. 7A, the distributor element 7021 is positioned such that its L-shaped fluid pathway 7020 is aligned to, and in fluid communication with, exiting fluid pipeline 7008. Since the L-shaped fluid pathway 7020 is the only path for fluid to exit the distributor element 7021, exiting fluid pipelines 7010 and 7012 (seen in FIG. 7B) are effectively closed while exiting fluid pipeline 7008 is open. In another embodiment, the rotating plug is one solid piece without a distributor element, extending into the distributor disc or cap and containing an L-shaped fluid pathway.



FIG. 7B illustrates another sectional view of a distributor disc or cap of a multi-jet distributor, in accordance with an embodiment of the present specification. The distributor disc or cap 7006 comprises an inlet for an entering fluid pipeline 7004 and three outlets for exiting fluid pipelines 7008, 7010 and 7012. It should be appreciated that the exiting fluid pipelines can number one, two, three, four or more.


The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A method for distributing fluid from a source external to an endoscope into a plurality of fluid channels positioned within the endoscope, comprising: operating a pump coupled to a fluid input channel of a fluid distributor device; flowing fluid through an internal fluid pathway that is in fluid communication with the fluid input channel, wherein the fluid flows towards a plurality of output channels that are in fluid communication with the plurality of fluid channels positioned within an endoscope connector of the endoscope; activating a motor connected to a distributor rotating plug via a motor shaft, wherein the activating rotates the rotating plug connected to the fluid distributor device; intermittently aligning the internal fluid pathway with each of the plurality of output channels, allowing fluid to move from the fluid input channel, through the internal fluid pathway, successively into each of the plurality of fluid output channels, and successively into each of the plurality of fluid channels.
  • 2. The method of claim 1, further comprising rotatably moving, within the fluid distributor device, a distributing element attached to the distributor rotating plug, wherein the distributing element comprises the internal fluid pathway.
  • 3. The method of claim 1, further comprising positioning the fluid distributor device, the motor, and the motor shaft within the housing.
  • 4. The method of claim 3, comprising using a locking element to fixedly position the fluid distributor device within the housing.
  • 5. The method of claim 1, wherein the flowing of the fluid comprises flowing the fluid through at least three fluid output channels, and wherein each of the at least three fluid output channels is separately and individually connected to at least three fluid channels positioned within the endoscope connector.
  • 6. The method of claim 1, wherein the activating further comprises rotating the distributor rotating plug at a rate ranging between 30 revolutions per minute (rpm) and 100 rpm.
  • 7. The method of claim 1, wherein, when in each intermittent alignment, said internal fluid pathway is in fluid communication with one of said plurality of fluid output channels and is not in fluid communication with any remaining ones of said plurality of fluid output channels.
  • 8. The method of claim 1, wherein said endoscope connector is positioned within a main control unit, and wherein the main control unit is external to said endoscope.
  • 9. The method of claim 1, wherein said endoscope connector comprises a plurality of connectors for connecting said plurality of fluid channels with said plurality of fluid output channels.
  • 10. The method of claim 1, wherein said endoscope connector comprises a single connector for connecting said plurality of fluid channels with said plurality of fluid output channels.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 14/317,863, entitled “Multi-Jet Distributor For An Endoscope” and filed on Jun. 27, 2014, which relies on U.S. Provisional Patent Application No. 61/840,706, of the same title and filed on Jun. 28, 2013, for priority. The present application is related to U.S. patent application Ser. No. 14/278,293, entitled “Multiple Viewing Elements Endoscope Having Two Front Service Channels” and filed on May 15, 2014. All of the above-mentioned applications are herein incorporated by reference in their entirety.

US Referenced Citations (399)
Number Name Date Kind
3639714 Fujimoto Feb 1972 A
3955064 Demetrio May 1976 A
4027697 Bonney Jun 1977 A
4037588 Heckele Jul 1977 A
4084401 Belardi Apr 1978 A
4402313 Yabe Sep 1983 A
4461282 Ouchi Jul 1984 A
4494549 Mamba Jan 1985 A
4532918 Wheeler Aug 1985 A
4588294 Siegmund May 1986 A
4641635 Yabe Feb 1987 A
4727859 Lia Mar 1988 A
4764001 Yokota Aug 1988 A
4801792 Yamasita Jan 1989 A
4825850 Opie May 1989 A
4877314 Kanamori Oct 1989 A
4902115 Takahashi Feb 1990 A
4976522 Igarashi Dec 1990 A
4984878 Miyano Jan 1991 A
5007406 Takahashi Apr 1991 A
5014685 Takahashi May 1991 A
5193525 Silverstein Mar 1993 A
5224929 Remiszewski Jul 1993 A
5296971 Mori Mar 1994 A
5359456 Kikuchi Oct 1994 A
5395329 Fleischhacker Mar 1995 A
5447148 Oneda Sep 1995 A
5460167 Yabe Oct 1995 A
5464007 Krauter Nov 1995 A
5475420 Buchin Dec 1995 A
5489256 Adair Feb 1996 A
5518501 Oneda May 1996 A
5518502 Kaplan May 1996 A
5547455 McKenna Aug 1996 A
5547457 Tsuyuki Aug 1996 A
5575755 Krauter Nov 1996 A
5587839 Miyano Dec 1996 A
5630782 Adair May 1997 A
5630798 Beiser May 1997 A
5662588 Iida Sep 1997 A
5674182 Suzuki Oct 1997 A
5685821 Pike Nov 1997 A
5685823 Ito Nov 1997 A
5702347 Yabe Dec 1997 A
5707344 Nakazawa Jan 1998 A
5725474 Yasui Mar 1998 A
5725476 Yasui Mar 1998 A
5725477 Yasui Mar 1998 A
5725478 Saad Mar 1998 A
5777797 Miyano Jul 1998 A
5782751 Matsuno Jul 1998 A
5800341 McKenna Sep 1998 A
5810715 Moriyama Sep 1998 A
5810717 Maeda Sep 1998 A
5810770 Chin Sep 1998 A
5830121 Enomoto Nov 1998 A
5836894 Sarvazyan Nov 1998 A
5860913 Yamaya Jan 1999 A
5870234 EbbesmeierneeSchitthof Feb 1999 A
5916148 Tsuyuki Jun 1999 A
5940126 Kimura Aug 1999 A
6058109 Lechleider May 2000 A
6095970 Hidaka Aug 2000 A
6095971 Takahashi Aug 2000 A
6117068 Gourley Sep 2000 A
6181481 Yamamoto Jan 2001 B1
6196967 Lim Mar 2001 B1
6261226 McKenna Jul 2001 B1
6277064 Yoon Aug 2001 B1
6359674 Horiuchi Mar 2002 B1
6375610 Verschuur Apr 2002 B2
6402738 Ouchi Jun 2002 B1
6419626 Yoon Jul 2002 B1
6476851 Nakamura Nov 2002 B1
6520908 Ikeda Feb 2003 B1
6636254 Onishi Oct 2003 B1
6638214 Akiba Oct 2003 B2
6673012 Fujii Jan 2004 B2
6690337 Mayer, III Feb 2004 B1
6712760 Sano Mar 2004 B2
6832984 Stelzer Dec 2004 B2
6888119 Iizuka May 2005 B2
6997871 Sonnenschein Feb 2006 B2
7154378 Ertas Dec 2006 B1
7435218 Krattiger Oct 2008 B2
7621869 Ratnakar Nov 2009 B2
7630148 Yang Dec 2009 B1
7701650 Lin Apr 2010 B2
7713246 Shia May 2010 B2
7746572 Asami Jun 2010 B2
7813047 Wang Oct 2010 B2
7828725 Maruyama Nov 2010 B2
7918788 Lin Apr 2011 B2
7927272 Bayer Apr 2011 B2
7967745 Gilad Jun 2011 B2
7976462 Wright Jul 2011 B2
8064666 Bayer Nov 2011 B2
8182422 Bayer May 2012 B2
8197399 Bayer Jun 2012 B2
8235887 Bayer Aug 2012 B2
8262558 Sato Sep 2012 B2
8287446 Bayer Oct 2012 B2
8289381 Bayer Oct 2012 B2
8300325 Katahira Oct 2012 B2
8310530 Bayer Nov 2012 B2
8353860 Boulais Jan 2013 B2
8447132 Galil May 2013 B1
8449457 Aizenfeld May 2013 B2
8460182 Ouyang Jun 2013 B2
8585584 Ratnakar Nov 2013 B2
8587645 Bayer Nov 2013 B2
8672836 Higgins Mar 2014 B2
8715168 Ratnakar May 2014 B2
8797392 Bayer Aug 2014 B2
8872906 Bayer Oct 2014 B2
8926502 Levy Jan 2015 B2
9044185 Bayer Jun 2015 B2
9101266 Levi Aug 2015 B2
9101268 Levy Aug 2015 B2
9101287 Levy Aug 2015 B2
9144664 Jacobsen Sep 2015 B2
9289110 Woolford Mar 2016 B2
9314147 Levy Apr 2016 B2
9320419 Kirma Apr 2016 B2
20010036322 Bloomfield Nov 2001 A1
20020017515 Obata Feb 2002 A1
20020047897 Sugimoto Apr 2002 A1
20020087047 Remijan Jul 2002 A1
20020109771 Ledbetter Aug 2002 A1
20020109774 Meron Aug 2002 A1
20020161279 Luloh Oct 2002 A1
20020161281 Jaffe Oct 2002 A1
20020172498 Esenyan Nov 2002 A1
20020183591 Matsuura Dec 2002 A1
20030030918 Murayama Feb 2003 A1
20030063398 Abe Apr 2003 A1
20030076411 Iida Apr 2003 A1
20030083552 Remijan May 2003 A1
20030128893 Castorina Jul 2003 A1
20030139650 Homma Jul 2003 A1
20030153897 Russo Aug 2003 A1
20030158503 Matsumoto Aug 2003 A1
20030163029 Sonnenschein Aug 2003 A1
20040015054 Ino Jan 2004 A1
20040046865 Ueno Mar 2004 A1
20040061780 Huffman Apr 2004 A1
20040064019 Chang Apr 2004 A1
20040077927 Ouchi Apr 2004 A1
20040106850 Yamaya Jun 2004 A1
20040133072 Kennedy Jul 2004 A1
20040138532 Glukhovsky Jul 2004 A1
20040158129 Okada Aug 2004 A1
20040160682 Miyano Aug 2004 A1
20040190159 Hasegawa Sep 2004 A1
20040249247 Iddan Dec 2004 A1
20040260151 Akiba Dec 2004 A1
20050018042 Rovegno Jan 2005 A1
20050020876 Shioda Jan 2005 A1
20050038317 Ratnakar Feb 2005 A1
20050047134 Mueller Mar 2005 A1
20050057687 Irani Mar 2005 A1
20050090709 Okada Apr 2005 A1
20050096501 Stelzer May 2005 A1
20050119527 Banik Jun 2005 A1
20050124858 Matsuzawa Jun 2005 A1
20050222499 Banik Oct 2005 A1
20050234296 Saadat Oct 2005 A1
20050234347 Yamataka Oct 2005 A1
20050251127 Brosch Nov 2005 A1
20050272975 McWeeney Dec 2005 A1
20050277808 Sonnenschein Dec 2005 A1
20050283048 Gill Dec 2005 A1
20060004257 Gilad Jan 2006 A1
20060047184 Banik Mar 2006 A1
20060063976 Aizenfeld Mar 2006 A1
20060069314 Farr Mar 2006 A1
20060111613 Boutillette May 2006 A1
20060114986 Knapp Jun 2006 A1
20060149129 Watts Jul 2006 A1
20060171693 Todd Aug 2006 A1
20060173245 Todd Aug 2006 A1
20060183975 Saadat Aug 2006 A1
20060184037 Ince Aug 2006 A1
20060189845 Maahs Aug 2006 A1
20060215406 Thrailkill Sep 2006 A1
20060235306 Cotter Oct 2006 A1
20060252994 Ratnakar Nov 2006 A1
20060264704 Fujimori Nov 2006 A1
20060293556 Gamer Dec 2006 A1
20070015989 Desai Jan 2007 A1
20070049803 Moriyama Mar 2007 A1
20070055100 Kato Mar 2007 A1
20070079029 Carlson Apr 2007 A1
20070088193 Omori Apr 2007 A1
20070100206 Lin May 2007 A1
20070106119 Hirata May 2007 A1
20070118015 Wendlandt May 2007 A1
20070142711 Bayer Jun 2007 A1
20070162095 Kimmel Jul 2007 A1
20070167681 Gill Jul 2007 A1
20070177008 Bayer Aug 2007 A1
20070177009 Bayer Aug 2007 A1
20070185384 Bayer Aug 2007 A1
20070188427 Lys Aug 2007 A1
20070197875 Osaka Aug 2007 A1
20070203396 McCutcheon Aug 2007 A1
20070206945 Delorme Sep 2007 A1
20070213591 Aizenfeld Sep 2007 A1
20070229656 Khait Oct 2007 A1
20070241895 Morgan Oct 2007 A1
20070244353 Larsen Oct 2007 A1
20070244354 Bayer Oct 2007 A1
20070247867 Hunter Oct 2007 A1
20070249907 Boulais Oct 2007 A1
20070265492 Sonnenschein Nov 2007 A1
20070265498 Ito Nov 2007 A1
20070270642 Bayer Nov 2007 A1
20070279486 Bayer Dec 2007 A1
20070286764 Noguchi Dec 2007 A1
20070293720 Bayer Dec 2007 A1
20080009673 Khachi Jan 2008 A1
20080021274 Bayer Jan 2008 A1
20080025413 Apostolopoulos Jan 2008 A1
20080036864 McCubbrey Feb 2008 A1
20080045797 Yasushi Feb 2008 A1
20080058601 Fujimori Mar 2008 A1
20080071290 Larkin Mar 2008 A1
20080091065 Oshima Apr 2008 A1
20080130108 Bayer Jun 2008 A1
20080151070 Shiozawa Jun 2008 A1
20080161646 Gomez Jul 2008 A1
20080163652 Shatskin Jul 2008 A1
20080167529 Otawara Jul 2008 A1
20080177139 Courtney Jul 2008 A1
20080183034 Henkin Jul 2008 A1
20080183043 Spinnler Jul 2008 A1
20080221388 Courtney Jul 2008 A1
20080246771 ONeal Oct 2008 A1
20080253686 Bayer Oct 2008 A1
20080262312 Carroll Oct 2008 A1
20080275298 Ratnakar Nov 2008 A1
20080303898 Nishimura Dec 2008 A1
20090005643 Smith Jan 2009 A1
20090023998 Ratnakar Jan 2009 A1
20090030275 Nicolaou Jan 2009 A1
20090054790 Czaniera Feb 2009 A1
20090062615 Yamaya Mar 2009 A1
20090076327 Ohki Mar 2009 A1
20090082624 Joko Mar 2009 A1
20090086017 Miyano Apr 2009 A1
20090135245 Luo May 2009 A1
20090137875 Kitagawa May 2009 A1
20090143647 Banju Jun 2009 A1
20090147076 Ertas Jun 2009 A1
20090182917 Kim Jul 2009 A1
20090209811 Higuchi Aug 2009 A1
20090213211 Bayer Aug 2009 A1
20090216084 Yamane Aug 2009 A1
20090225159 Schneider Sep 2009 A1
20090231419 Bayer Sep 2009 A1
20090234183 Abe Sep 2009 A1
20090253966 Ichimura Oct 2009 A1
20090287188 Golden Nov 2009 A1
20090287192 Vivenzio Nov 2009 A1
20090299144 Shigemori Dec 2009 A1
20100010309 Kitagawa Jan 2010 A1
20100016673 Bandy Jan 2010 A1
20100053312 Watanabe Mar 2010 A1
20100069713 Endo Mar 2010 A1
20100073470 Takasaki Mar 2010 A1
20100073948 Stein Mar 2010 A1
20100076268 Takasugi Mar 2010 A1
20100123950 Fujiwara May 2010 A1
20100130822 Katayama May 2010 A1
20100141763 Itoh Jun 2010 A1
20100160729 Smith Jun 2010 A1
20100174144 Hsu Jul 2010 A1
20100231702 Tsujimura Sep 2010 A1
20100245653 Bodor Sep 2010 A1
20100249513 Tydlaska Sep 2010 A1
20100280322 Mizuyoshi Nov 2010 A1
20100296178 Genet Nov 2010 A1
20100326703 Gilad Dec 2010 A1
20110004058 Oneda Jan 2011 A1
20110004059 Arneson Jan 2011 A1
20110034769 Adair Feb 2011 A1
20110063427 Fengler Mar 2011 A1
20110084835 Whitehouse Apr 2011 A1
20110140003 Beck Jun 2011 A1
20110160530 Ratnakar Jun 2011 A1
20110160535 Bayer Jun 2011 A1
20110169931 Pascal Jul 2011 A1
20110184243 Wright Jul 2011 A1
20110211267 Takato Sep 2011 A1
20110254937 Yoshino Oct 2011 A1
20110263938 Levy Oct 2011 A1
20110282144 Gettman Nov 2011 A1
20110292258 Adler Dec 2011 A1
20120040305 Karazivan Feb 2012 A1
20120050606 Debevec Mar 2012 A1
20120053407 Levy Mar 2012 A1
20120057251 Takato Mar 2012 A1
20120065468 Levy Mar 2012 A1
20120076425 Brandt Mar 2012 A1
20120162402 Amano Jun 2012 A1
20120200683 Oshima Aug 2012 A1
20120209071 Bayer Aug 2012 A1
20120209289 Duque Aug 2012 A1
20120212630 Pryor Aug 2012 A1
20120220832 Nakade Aug 2012 A1
20120224026 Bayer Sep 2012 A1
20120229615 Kirma Sep 2012 A1
20120232340 Levy Sep 2012 A1
20120232343 Levy Sep 2012 A1
20120253121 Kitano Oct 2012 A1
20120277535 Hoshino Nov 2012 A1
20120281536 Gell Nov 2012 A1
20120289858 Ouyang Nov 2012 A1
20120300999 Bayer Nov 2012 A1
20130053646 Yamamoto Feb 2013 A1
20130057724 Miyahara Mar 2013 A1
20130060086 Talbert Mar 2013 A1
20130066297 Shtul Mar 2013 A1
20130077257 Tsai Mar 2013 A1
20130085329 Morrissette Apr 2013 A1
20130109916 Levy May 2013 A1
20130116506 Bayer May 2013 A1
20130131447 Benning May 2013 A1
20130137930 Menabde May 2013 A1
20130141557 Kawata Jun 2013 A1
20130150671 Levy Jun 2013 A1
20130158344 Taniguchi Jun 2013 A1
20130169843 Ono Jul 2013 A1
20130172670 Levy Jul 2013 A1
20130172676 Levy Jul 2013 A1
20130197309 Sakata Aug 2013 A1
20130197556 Shelton Aug 2013 A1
20130222640 Baek Aug 2013 A1
20130253268 Okada Sep 2013 A1
20130264465 Dai Oct 2013 A1
20130267778 Rehe Oct 2013 A1
20130271588 Kirma Oct 2013 A1
20130274551 Kirma Oct 2013 A1
20130281925 Benscoter Oct 2013 A1
20130296649 Kirma Nov 2013 A1
20130303979 Stieglitz Nov 2013 A1
20130317295 Morse Nov 2013 A1
20140018624 Bayer Jan 2014 A1
20140031627 Jacobs Jan 2014 A1
20140046136 Bayer Feb 2014 A1
20140107418 Ratnakar Apr 2014 A1
20140148644 Levi May 2014 A1
20140184766 Amling Jul 2014 A1
20140213850 Levy Jul 2014 A1
20140225998 Dai Aug 2014 A1
20140276207 Ouyang Sep 2014 A1
20140296628 Kirma Oct 2014 A1
20140296643 Levy Oct 2014 A1
20140296866 Salman Oct 2014 A1
20140298932 Okamoto Oct 2014 A1
20140309495 Kirma Oct 2014 A1
20140316198 Krivopisk Oct 2014 A1
20140316204 Ofir Oct 2014 A1
20140320617 Parks Oct 2014 A1
20140333742 Salman Nov 2014 A1
20140333743 Gilreath Nov 2014 A1
20140336459 Bayer Nov 2014 A1
20140343358 Hameed Nov 2014 A1
20140343361 Salman Nov 2014 A1
20140343489 Lang Nov 2014 A1
20140364691 Krivopisk Dec 2014 A1
20140364692 Salman Dec 2014 A1
20140364694 Avron Dec 2014 A1
20150005581 Salman Jan 2015 A1
20150045614 Krivopisk Feb 2015 A1
20150057500 Salman Feb 2015 A1
20150094536 Wieth Apr 2015 A1
20150099925 Davidson Apr 2015 A1
20150099926 Davidson Apr 2015 A1
20150105618 Levy Apr 2015 A1
20150164308 Ratnakar Jun 2015 A1
20150182105 Salman Jul 2015 A1
20150196190 Levy Jul 2015 A1
20150201827 Sidar Jul 2015 A1
20150208900 Vidas Jul 2015 A1
20150208909 Davidson Jul 2015 A1
20150223676 Bayer Aug 2015 A1
20150230698 Cline Aug 2015 A1
20150305601 Levi Oct 2015 A1
20150313445 Davidson Nov 2015 A1
20150313450 Wieth Nov 2015 A1
20150313451 Salman Nov 2015 A1
20150320300 Gershov Nov 2015 A1
20150342446 Levy Dec 2015 A1
20150359415 Lang Dec 2015 A1
20150374206 Shimony Dec 2015 A1
20160015257 Levy Jan 2016 A1
20160015258 Levin Jan 2016 A1
20160058268 Salman Mar 2016 A1
Foreign Referenced Citations (123)
Number Date Country
2297986 Mar 1999 CA
2765559 Dec 2010 CA
2812097 Mar 2012 CA
2798716 Jun 2013 CA
2798729 Jun 2013 CA
103348470 Oct 2013 CN
103403605 Nov 2013 CN
103491854 Jan 2014 CN
103702604 Apr 2014 CN
103732120 Apr 2014 CN
104717916 Jun 2015 CN
105246393 Jan 2016 CN
105324065 Feb 2016 CN
105324066 Feb 2016 CN
105338875 Feb 2016 CN
105358042 Feb 2016 CN
105358043 Feb 2016 CN
105377106 Mar 2016 CN
105407788 Mar 2016 CN
202010016900 May 2011 DE
1690497 Aug 2006 EP
1835844 Sep 2007 EP
1968425 Sep 2008 EP
1986541 Nov 2008 EP
1988813 Nov 2008 EP
2023794 Feb 2009 EP
2023795 Feb 2009 EP
2190341 Jun 2010 EP
2211683 Aug 2010 EP
2457492 May 2012 EP
2457493 May 2012 EP
1988812 Nov 2012 EP
2520218 Nov 2012 EP
2604175 Jun 2013 EP
2618718 Jul 2013 EP
2635932 Sep 2013 EP
2648602 Oct 2013 EP
2649648 Oct 2013 EP
2672878 Dec 2013 EP
2736400 Jun 2014 EP
2744390 Jun 2014 EP
2442706 Nov 2014 EP
2865322 Apr 2015 EP
2908714 Aug 2015 EP
2979123 Feb 2016 EP
2991537 Mar 2016 EP
2994032 Mar 2016 EP
2994033 Mar 2016 EP
2994034 Mar 2016 EP
2996536 Mar 2016 EP
2996541 Mar 2016 EP
2996542 Mar 2016 EP
2996621 Mar 2016 EP
12196628 Mar 2015 GB
H1043129 Feb 1998 JP
H10239740 Sep 1998 JP
11137512 May 1999 JP
2005253543 Sep 2005 JP
2006025888 Feb 2006 JP
2006068109 Mar 2006 JP
2010178766 Aug 2010 JP
2012135432 Jul 2012 JP
2013116277 Jun 2013 JP
2013123647 Jun 2013 JP
2013123648 Jun 2013 JP
2013208459 Oct 2013 JP
2013215582 Oct 2013 JP
2013230383 Nov 2013 JP
2013542467 Nov 2013 JP
2013544617 Dec 2013 JP
2014524303 Sep 2014 JP
2014524819 Sep 2014 JP
2015533300 Nov 2015 JP
2006073676 Jul 2006 WO
2006073725 Jul 2006 WO
2007070644 Jun 2007 WO
2007092533 Aug 2007 WO
2007092636 Aug 2007 WO
2007087421 Nov 2007 WO
2007136859 Nov 2007 WO
2007136879 Nov 2007 WO
2008015164 Feb 2008 WO
2009014895 Jan 2009 WO
2009015396 Jan 2009 WO
2009049322 Apr 2009 WO
2009049324 Apr 2009 WO
2009062179 May 2009 WO
2010146587 Dec 2010 WO
2012038958 Mar 2012 WO
2012056453 May 2012 WO
2012075153 Jun 2012 WO
2012077116 Jun 2012 WO
2012077117 Jun 2012 WO
2012096102 Jul 2012 WO
2012120507 Sep 2012 WO
2013014673 Jan 2013 WO
2013024476 Feb 2013 WO
2014061023 Apr 2014 WO
2014160983 Oct 2014 WO
2014179236 Nov 2014 WO
2014182723 Nov 2014 WO
2014182728 Nov 2014 WO
2014183012 Nov 2014 WO
2014186230 Nov 2014 WO
2014186519 Nov 2014 WO
2014186521 Nov 2014 WO
2014186525 Nov 2014 WO
2014186775 Nov 2014 WO
2014210516 Dec 2014 WO
2015002847 Jan 2015 WO
2015047631 Apr 2015 WO
2015050829 Apr 2015 WO
2015084442 Jun 2015 WO
2015095481 Jun 2015 WO
2015112747 Jul 2015 WO
2015112899 Jul 2015 WO
2015134060 Sep 2015 WO
2015168066 Nov 2015 WO
2015168664 Nov 2015 WO
2015171732 Nov 2015 WO
2015175246 Nov 2015 WO
2016014581 Jan 2016 WO
2016033403 Mar 2016 WO
Non-Patent Literature Citations (77)
Entry
Notice of Allowance dated Dec. 27, 2016 for U.S. Appl. No. 14/317,863.
International Search Report for PCT/US14/37004, dated Sep. 25, 2014.
International Search Report for PCT/US2014/037526, dated Oct. 16, 2014.
International Search Report for PCT/US14/38094, dated Nov. 6, 2014.
International Search Report for PCT/US2015/012751, dated Jun. 26, 2015.
International Search Report for PCT/US2014/58143, dated Jan. 21, 2015.
International Search Report for PCT/US2014/071085, dated Mar. 27, 2015.
International Search Report for PCT/US2015/027902, dated Jul. 23, 2015.
International Search Report for PCT/US2015/012506, dated Dec. 11, 2015.
International Search Report for PCT/US2015/29421, dated Aug. 7, 2015.
International Search Report for PCT/US2015/28962, dated Jul. 28, 2015.
International Search Report for PCT/US2015/47334, dated Dec. 28, 2015.
International Search Report for PCT/US2015/41396, dated Sep. 29, 2015.
International Search Report for PCT/US2015/66486, dated Dec. 17, 2015.
International Search Report for PCT/US2015/6548, dated Feb. 26, 2016.
Office Action dated Feb. 26, 2016 for U.S. Appl. No. 14/274,323.
Office Action dated Feb. 4, 2016 for U.S. Appl. No. 14/271,234.
Notice of Allowance dated Mar. 29, 2016 for U.S. Appl. No. 13/680,646.
Corrected Notice of Allowance dated Apr. 13, 2016 for U.S. Appl. No. 13/680,646.
Office Action dated Mar. 24, 2016 for U.S. Appl. No. 13/212,627.
Office Action dated Mar. 28, 2016 for U.S. Appl. No. 13/119,032.
Notice of Allowance dated Mar. 28, 2016 for U.S. Appl. No. 13/413,059.
Office Action dated Mar. 23, 2016 for U.S. Appl. No. 13/713,449.
Office Action dated May 6, 2016 for U.S. Appl. No. 14/263,896.
Office Action dated May 25, 2016 for U.S. Appl. No. 14/271,234.
Office Action dated May 5, 2016 for U.S. Appl. No. 14/278,338.
Office Action dated Jun. 30, 2016 for U.S. Appl. No. 13/655,120.
Office Action dated Jun. 28, 2016 for U.S. Appl. No. 14/278,293.
Office Action dated Jul. 1, 2016 for U.S. Appl. No. 14/229,699.
Office Action dated Jul. 15, 2016 for U.S. Appl. No. 14/273,923.
Notice of Allowance dated Jul. 15, 2016 for U.S. Appl. No. 14/274,323.
Office Action dated Jul. 22, 2016 for U.S. Appl. No. 14/549,265.
Sherman L.M., Plastics That Conduct Hear, Plastics Technology, Jun. 2001—article obtained online from http://www.ptonline.com/articles/plastics-that-conduct-heat.
Office Action dated Aug. 11, 2016 for U.S. Appl. No. 14/318,249.
Office Action dated Apr. 28, 2016 for U.S. Appl. No. 13/992,014.
Notice of Allowance dated Aug. 26, 2016 for U.S. Appl. No. 13/212,627.
Office Action dated Sep. 2, 2016 for U.S. Appl. No. 14/278,338.
Office Action dated Sep. 16, 2016 for U.S. Appl. No. 13/992,014.
Notice of Allowance dated Oct. 12, 2016 for U.S. Appl. No. 13/119,032.
Office Action dated Oct. 7, 2016 for U.S. Appl. No. 13/713,449.
Office Action dated Oct. 5, 2016 for U.S. Appl. No. 14/271,270.
Notice of Allowance dated Ocotber 13, 2016 for U.S. Appl. No. 14/273,923.
Notice of Allowance dated Nov. 9, 2016 for U.S. Appl. No. 13/557,114.
Office Action dated Dec. 1, 2016 for U.S. Appl. No. 14/278,293.
Office Action dated Dec. 9, 2016 for U.S. Appl. No. 14/549,265.
Office Action dated Dec. 16, 2016 for U.S. Appl. No. 14/263,896.
Notice of Allowance dated Dec. 28, 2016 for U.S. Appl. No. 14/229,699.
Office Action dated Dec. 27, 2016 for U.S. Appl. No. 14/603,137.
Office Action dated Dec. 29, 2016 for U.S. Appl. No. 15/077,513.
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 14/457,268.
Office Action dated Jan. 17, 2017 for U.S. Appl. No. 14/318,189.
Notice of Allowance dated Jan. 31, 2017 for U.S. Appl. No. 14/271,234.
Office Action dated Feb. 2, 2017 for U.S. Appl. No. 14/278,338.
Office Action dated Feb. 9, 2017 for U.S. Appl. No. 14/746,986.
Office Action dated Feb. 6, 2017 for U.S. Appl. No. 14/751,835.
Office Action dated Feb. 14, 2017 for U.S. Appl. No. 14/271,270.
Office Action dated Feb. 23, 2017 for U.S. Appl. No. 14/318,249.
Office Action dated Mar. 9, 2017 for U.S. Appl. No. 14/791,316.
Office Action dated Mar. 21, 2017 for U.S. Appl. No. 13/992,014.
Office Action dated Mar. 20, 2017 for U.S. Appl. No. 14/278,293.
Notice of Allowance dated Mar. 21, 2017 for U.S. Appl. No. 14/549,265.
Office Action dated Mar. 22, 2017 for U.S. Appl. No. 14/705,355.
Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/838,509.
Notice of Allowance dated Apr. 12, 2017 for U.S. Appl. No. 14/603,137.
Notice of Allowance dated Apr. 18, 2017 for U.S. Appl. No. 13/713,449.
Office Action dated Apr. 19, 2017 for U.S. Appl. No. 14/988,551.
Notice of Allowability dated Apr. 21, 2017 for U.S. Appl. No. 14/549,265.
Office Action dated May 11, 2017 for U.S. Appl. No. 14/278,293.
Office Action dated May 10, 2017 for U.S. Appl. No. 14/988,551.
Office Action dated May 5, 2017 for U.S. Appl. No. 15/077,513.
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 14/271,270.
Office Action dated May 15, 2017 for U.S. Appl. No. 14/278,293.
Office Action dated May 18, 2017 for U.S. Appl. No. 14/278,338.
Notice of Allowance dated May 16, 2017 for U.S. Appl. No. 14/746,986.
Office Action dated May 23, 2017 for U.S. Appl. No. 13/655,120.
Notice of Allowance dated May 25, 2017 for U.S. Appl. No. 14/318,189.
Office Action dated May 23, 2017 for U.S. Appl. No. 14/500,975.
Related Publications (1)
Number Date Country
20170280981 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
61840706 Jun 2013 US
Continuations (1)
Number Date Country
Parent 14317863 Jun 2014 US
Child 15464702 US