Various embodiments described herein relate to insulation systems. One specific example includes exhaust pipe insulation systems.
Insulation systems can be used to retain heat or cold within an enclosure. Insulation systems can also be used for safety to protect users from a hot region of equipment. In selected insulation systems, multiple material layers are used, wherein each layer serves a different purpose. Improved exhaust insulation systems are desired.
In the following detailed description of the invention, reference is made to the accompanying drawings that form a part hereof and in which are shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made.
The exhaust insulation system 100 includes a base insulation layer 110. In one example, the base insulation layer 110 includes a fiber mat insulation layer. The base insulation layer 110 shown in
In one example, the fiber mat insulation layer 110 includes a glass fiber mat. Glass fiber mats have an advantage of being less expensive than ceramic fiber mats or other high temperature fiber mats. In selected examples the performance of other fiber materials provides advantages that justify the increased cost over glass fiber mats.
The fiber mat insulation layer 110 may, for example, be formed from a fiber mat such as a vitreous silicate fiber mat, a ceramic fiber mat or a high-temperature (HT) ceramic fiber mat. In one example, a combination of fiber types may be included in the fiber mat insulation layer 110. The type of mat may be selected based on performance characteristics. The chart below illustrates thermal conductivity versus temperature for three different fiber mats.
A vitreous silicate mat does not form Crystobalite, is bio-soluble and has low irritability when handling. Crystobalite is undesirable in some circumstances due to health concerns. It is also less expensive that ceramic fiber mat and has low shot content. Shot content (the amount of non-fiber particles found in a mat) may be undesirable because non-fiber particles do not trap insulating air as effectively as fibers. Ceramic fibers are more expensive than vitreous silicate but offer insulation up to higher peak and service temperatures. In one example, ceramic fibers have a high melt temperature (>3000° Fahrenheit). Ceramic fiber mats can also provide low heat storage and better sound absorption than a vitreous silicate mat, making it preferred in some installation environments. Ceramic fiber mats can also be free of binder or lubricant and be immune to thermal shock.
In one example, the fiber matt insulation layer includes one or more types of high temperature insulating wool fibers. Examples include, but are not limited to, alkaline earth silicate wool (AES wool), aluminum silicate wool (ASW), refractory ceramic fiber (RCF), and polycrystalline wool (PCW).
In one example, the base insulation layer 110 includes a braided fiber fabric insulation layer, such as a braided glass fabric insulation layer. A braided fabric includes a number of fibers or yarns that are interwoven without yarns being twisted about one another. In one example, a braided base insulation layer 110 includes a bi-axial braided base insulation layer 110. In one example, a braided base insulation layer 110 includes a bi-axial braided sleeve. One advantage of a braided sleeve includes the ability to conform to the workpiece 102 over a large range of diameters. For example, by axially compressing or stretching a braided sleeve, an inner diameter of the braided sleeve may vary by as much as 50 percent.
Additionally, braided sleeves are dimensionally consistent. Once a braided sleeve is installed over a workpiece 102, and an inner diameter is tightened by stretching, there is minimal variation in a thickness of the braided sleeve. If subsequent layers of the system 100 are desired, it is easier to slide them over the base insulation layer 110 if the thickness dimension is consistent. Further, once a braided sleeve is installed, it tends to stay in place, making subsequent layers easier to install. After stretching a braided sleeve, the braided sleeve will tend to grip the workpiece, keeping the braided sleeve in place. A drawback is that a braided glass does not compress once fitted over a component, tends to cost significantly more than mat insulation and can have poorer performance in certain applications.
Additionally, by wrapping the fiber mat insulation layer 110, later processing steps in forming the system 100 are facilitated because, for example, the fiber mat insulation layer 110 is held firmly in place by the polyimide layer 112 and the polyimide layer provides a smooth surface and firm base for an outer fabric layer. Although polyimide is shown in
In one example, the fabric includes glass fibers that form the fabric. In one example, the glass fibers include E-glass. In one example the outer fabric layer 114 includes a braided glass fiber fabric. In one example the outer fabric layer 114 includes a bi-axially braided glass fiber fabric. In one example the outer fabric layer 114 includes a knitted glass fiber fabric. A phenolic, thermosetting resin-impregnated braid is illustrated in
A mount 156 is shown coupled to the workpiece. As discussed in examples above, in one example, the workpiece is an exhaust pipe component, although the invention is not so limited. An outer fabric layer 154 is further shown in
In one example, a knit weave fabric is used as an outer fabric layer 114 as illustrated in
To better illustrate the method and apparatuses disclosed herein, a non-limiting list of embodiments is provided here:
Example 1 includes an exhaust insulation system. The system includes a base insulation layer, a polyimide layer at least partially surrounding the base insulation layer, and a braided glass outer fabric layer, wherein the fabric is impregnated with a resin.
Example 2 includes the exhaust insulation system of example 1, wherein the base insulation layer includes a fiber mat insulation layer having substantially random fiber orientations within a plane of the mat.
Example 3 includes the exhaust insulation system of any one of examples 1-2, wherein the middle layer includes a band of polyimide wrapped spirally around the fiber mat insulation layer.
Example 4 includes the exhaust insulation system of any one of examples 1-3, wherein the band of polyimide compresses the fiber mat insulation layer against an exhaust pipe.
Example 5 includes the exhaust insulation system of any one of examples 1-4, wherein the band of polyimide compresses the fiber mat insulation layer within a range of about 40 percent to about 60 percent from an uncompressed state.
Example 6 includes the exhaust insulation system of any one of examples 1-5, wherein the band of polyimide compresses the fiber mat insulation layer to about 0.45 inches from an uncompressed thickness of about 0.75 inches.
Example 7 includes the exhaust insulation system of any one of examples 1-6, wherein the band of polyimide compresses the fiber mat insulation layer to about 0.60 inches from an uncompressed thickness of about 1.00 inches.
Example 8 includes the exhaust insulation system of any one of examples 1-7, wherein the braided glass outer fabric layer is impregnated with a thermoset resin.
Example 9 includes the exhaust insulation system of any one of examples 1-8, wherein the braided glass outer fabric layer is impregnated with a phenolic thermoset resin.
Example 10 includes the exhaust insulation system of any one of examples 1-9, further including retaining bands on ends of the outer fabric layer to clamp the exhaust insulation system to an exhaust pipe.
Example 11 includes the exhaust insulation system of any one of examples 1-10, wherein the braided glass outer fabric layer includes a biaxially braided glass fiber fabric.
Example 12 is an exhaust insulation system. The exhaust insulation system includes a base insulation layer, a polyimide compression layer at least partially surrounding the base insulation layer, and a knit outer fabric layer, wherein the fabric is impregnated with a resin.
Example 13 includes the exhaust insulation system of example 12, wherein the base insulation layer includes a fiber mat insulation layer having substantially random fiber orientations within a plane of the mat.
Example 14 includes the exhaust insulation system of any one of examples 12-13, wherein the polyimide compression layer includes a spiral band of polyimide wrapped around the base insulation layer.
Example 15 includes the exhaust insulation system of any one of examples 12-14, wherein the polyimide compression layer reduces a thickness of the base insulation layer by about 40% to about 60% from an uncompressed state.
Example 16 includes the exhaust insulation system of any one of examples 12-15, wherein the knit outer fabric layer is impregnated with a phenolic thermoset resin.
Example 17 includes a method of insulating an exhaust pipe. The method includes covering a portion of the exhaust pipe with a fiber mat base insulation layer, wrapping and compressing the fiber mat base insulation layer with a polyimide compression wrap, and covering the fiber mat base insulation layer and the compression wrap with a knit glass outer fabric layer, wherein the fabric is impregnated with a resin.
Example 18 includes the method of example 17, wherein wrapping and compressing the fiber mat base insulation layer with the polyimide compression wrap includes wrapping and compressing the fiber mat base insulation layer with a spiral band of polyimide compression wrap.
Example 19 includes the method of any one of examples 17-18, further including curing a thermoset resin impregnated in the outer fabric layer.
Example 20 includes the method of any one of examples 17-19, wherein curing the thermoset resin impregnated in the outer fabric layer includes curing a phenolic resin.
The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application claims priority to U.S. Provisional Patent Application No. 62/869,443, entitled “MULTI-LAYER EXHAUST SYSTEM AND METHOD,” filed on Jul. 1, 2019, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62869443 | Jul 2019 | US |