1. Technical Field
The present disclosure relates to medical devices, and more particularly, to multi-layered porous films for use as surgical implants.
2. Background of Related Art
The use of medical devices, and more specifically, implants, is known. Surgical implants include, for example, meshes for hernia repair, buttresses for staple line reinforcement, patches and sealants for repair of tissue defects and hemostasis, scaffolds for tissue integration, and other wound closure and tissue repair devices. The performance requirements of each of these implants are different, and thus, the material and construction of these implants vary and are specific to the surgical procedure being performed.
It would be advantageous to provide a surgical implant that can be used in a variety of surgical applications, wherein the properties of each layer of the implant can be controlled by material selection, pore size, and pore distribution, and the layered construction of the implant can be tailored to produce an implant having the desired mechanical strength and tissue compatibility necessary for favorable host interaction.
A surgical implant of the present disclosure includes at least two porous substrates each having a plurality of openings. The porous substrates are in a stacked configuration and are interconnected to one another at a plurality of attachment points to define at least one void between the porous substrates.
According to an aspect of the present disclosure, a surgical implant includes a first porous film layer including a plurality of pores layered on top of a second porous film layer including a plurality of pores. The first and second porous film layers are interconnected to one another at a plurality of attachment points that define at least one void within the surgical implant between the first and second porous film layers. In embodiments, the attachment points are substantially evenly spaced about the surgical implant.
The first and second porous film layers may be fabricated from a biodegradable, a non-degradable material, or combinations thereof In embodiments, the first and second porous film layers are substantially planar. In other embodiments, the first and second porous film layers may be non-planar and shaped to conform to a specific tissue surface. The first and second porous film layers may have the same or a different thickness, the same or a different elasticity modulus, and/or the same or a different degree of porosity. In embodiments, the first and second porous film layers may be uniaxially oriented in the same or different directions.
The surgical implant may include an adhesion barrier layer and/or an adhesion layer applied to an outer surface of the first and/or second porous film layers. The adhesion barrier layer and adhesion layer may be provided as films. The surgical implant may also include a filler material disposed within the openings of the first porous layer, the openings of the second porous film layer, and/or the voids between the first and second porous film layers. In embodiments, the filler material is a drug. In some embodiments, the filler material is a hydrogel.
The surgical implant may include a third porous film layer including a plurality of pores. The third porous film layer is interposed between the first and second porous film layers, and is interconnected by at least one attachment point with at least one of the first and second porous film layers.
The foregoing objects and advantages of the disclosure will become more apparent from the reading of the following description in connection with the accompanying drawings, in which:
The present disclosure is directed to a multi-layered implant including at least two porous film layers joined at attachment points for use in a variety of surgical applications. The porous nature of the films and the multi-layered construction of the implant provide spaces for fluid transfer and filling, tissue ingrowth, and loading of filler materials, such as drug or biologic factors.
The following discussion includes a description of the presently disclosed surgical implant and exemplary embodiments of construction and use in accordance with the principles of the present disclosure. The presently disclosed surgical implants may be any medical device, such as scaffolds, grafts, patches, slings, pledgets, growth matrices, drug delivery devices, wound plugs, and, in general, soft tissue repair devices and surgical prostheses. It should be understood that the device may also be utilized as topically applied medical products, such as wound dressings, coverings, and the like, that can be used in medical/surgical procedures.
Referring now to the figures, wherein like components are designated by like reference numerals throughout the several views,
The porous substrates are fabricated from any biodegradable and/or non-degradable material. The term “biodegradable” as used herein is defined to include both bioabsorbable and bioresorbable materials. By biodegradable, it is meant that the material decomposes, or loses structural integrity under body conditions (e.g., enzymatic degradation or hydrolysis), or is broken down (physically or chemically) under physiologic conditions in the body, such that the degradation products are excretable or absorbable by the body. Absorbable materials are absorbed by biological tissues and disappear in vivo at the end of a given period, which can vary, for example, from hours to several months, depending on the chemical nature of the material. It should be understood that such materials include natural, synthetic, bioabsorbable, and/or certain non-absorbable materials, as well as combinations thereof.
Representative natural biodegradable polymers which may be used to form a porous substrate include: polysaccharides such as alginate, dextran, chitin, chitosan, hyaluronic acid, cellulose, collagen, gelatin, fucans, glycosaminoglycans, and chemical derivatives thereof (substitutions and/or additions of chemical groups including, for example, alkyl, alkylene, amine, sulfate, hydroxylations, carboxylations, oxidations, and other modifications routinely made by those skilled in the art); catgut; silk; linen; cotton; and proteins such as albumin, casein, zein, silk, and soybean protein; and combinations such as copolymers and blends thereof, alone or in combination with synthetic polymers.
Synthetically modified natural polymers which may be used to form a porous substrate include cellulose derivatives such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitrocelluloses, and chitosan. Examples of suitable cellulose derivatives include methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, cellulose sulfate sodium salt, and combinations thereof.
Representative synthetic biodegradable polymers which may be utilized to form a porous substrate include polyhydroxy acids prepared from lactone monomers (such as glycolide, lactide, caprolactone, ε-caprolactone, valerolactone, and δ-valerolactone), carbonates (e.g., trimethylene carbonate, tetramethylene carbonate, and the like), dioxanones (e.g., 1,4-dioxanone and p-dioxanone), 1,dioxepanones (e.g., 1,4-dioxepan-2-one and 1,5-dioxepan-2-one), and combinations thereof. Polymers formed therefrom include: polylactides; poly(lactic acid); polyglycolides; poly(glycolic acid); poly(trimethylene carbonate); poly(dioxanone); poly(hydroxybutyric acid); poly(hydroxyvaleric acid); poly(lactide-co-(ε-caprolactone-)); poly(glycolide-co-(ε-caprolactone)); polycarbonates; poly(pseudo amino acids); poly(amino acids); poly(hydroxyalkanoate)s such as polyhydroxybutyrate, polyhydroxyvalerate, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyhydroxyoctanoate, and polyhydroxyhexanoate; polyalkylene oxalates; polyoxaesters; polyanhydrides; polyester anyhydrides; polyortho esters; and copolymers, block copolymers, homopolymers, blends, and combinations thereof.
Some non-limiting examples of suitable non-degradable materials from which a porous substrate may be made include: polyolefins such as polyethylene (including ultra high molecular weight polyethylene) and polypropylene including atactic, isotactic, syndiotactic, and blends thereof; polyethylene glycols; polyethylene oxides; polyisobutylene and ethylene-alpha olefin copolymers; fluorinated polyolefins such as fluoroethylenes, fluoropropylenes, fluoroPEGSs, and polytetrafluoroethylene; polyamides such as nylon, Nylon 6, Nylon 6,6, Nylon 6,10, Nylon 11, Nylon 12, and polycaprolactam; polyamines; polyimines; polyesters such as polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, and polybutylene terephthalate; polyethers; polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; acrylic polymers; methacrylics; vinyl halide polymers such as polyvinyl chloride; polyvinyl alcohols; polyvinyl ethers such as polyvinyl methyl ether; polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride; polychlorofluoroethylene; polyacrylonitrile; polyaryletherketones; polyvinyl ketones; polyvinyl aromatics such as polystyrene; polyvinyl esters such as polyvinyl acetate; etheylene-methyl methacrylate copolymers; acrylonitrile-styrene copolymers; ABS resins; ethylene-vinyl acetate copolymers; alkyd resins; polycarbonates; polyoxymethylenes; polyphosphazine; polyimides; epoxy resins; aramids; rayon; rayon-triacetate; spandex; silicones; and copolymers and combinations thereof.
A porous substrate of a surgical implant of the present disclosure may be provided in a variety of shapes and sizes to accommodate a variety of defects and tissue fascia that may need repair. Generally, a porous substrate is substantially planar and configured as a sheet that may be arranged in a layered or stacked configuration. A porous substrate, however, may, in embodiments, include non-planar surfaces that are sized and shaped to conform to a tissue surface. A porous substrate can be produced at a desired size and shape, or may be cut to a suitable size and shape for the envisaged application of use. A porous substrate may be provided in a variety of thicknesses depending upon the properties desired, e.g., stiffness and strength. In embodiments, a porous substrate (individual layer) may be from about 25 μm to about 500 μm thick, in some embodiments, from about 40 μm to about 250 μm thick, and in other embodiments, from about 50 μm to about 100 μm thick.
The openings in a porous substrate of a surgical implant of the present disclosure may be present as a surface characteristic or a bulk material property, which partially or completely penetrates the porous substrate, and may be uniformly or randomly distributed across portions thereof. In some embodiments, the openings do not extend across the entire thickness of a porous substrate, but rather are present at a portion of the surface thereof. Those skilled in the art reading the present disclosure may envision a variety of distribution patterns and configurations of the openings in a porous substrate. It is envisioned that the porous substrate may, in embodiments, be partially or substantially non-porous.
The porous substrate may be rendered porous by any number of processes, including, for example, die rolling; laser micro-perforating; solvent leaching of salt, sugar, or starch crystals; among other mechanical, electrical, and chemical processes within the purview of those skilled in the art. The openings of the porous substrate may be sized and configured to permit fibroblast through-growth and ordered collagen laydown, resulting in integration of the surgical implant into the body. In embodiments, the openings may be from about 50 micrometers to about 500 micrometers in diameter, in some embodiments, from about 100 micrometers to about 400 micrometers in diameter, and in yet other embodiments, from about 200 micrometers to about 300 micrometers in diameter. In embodiments, the openings may cover from about 20% to about 80% of the area of a porous substrate, in some embodiments, from about 30% to about 70% of the area, in yet other embodiments, from about 40% to about 60% of the area of a porous substrate. It should be understood that different thicknesses, weights, and porosities of a porous substrate may be selected by varying material selection and manufacturing conditions.
Referring again to
In embodiments, as illustrated in
In embodiments, filler material 19 may include hydrogels which may be used as a means to absorb blood and as carriers of thrombogenic agents for blood clotting and hemostasis at wound sites. Hydrogels can be modified with any number of conjugated molecules such as cell adhesion proteins, growth factors, peptides, and endogenous growth factor capturing molecules, such as heparin sulfate, to promote tissue ingrowth and healing. In embodiments, the filler material 19 may include releasable factors that have an associated binding interaction that will release agents by unbinding and diffusion, or filler material degradation.
Examples of filler materials 19 which may be utilized in accordance with the present disclosure for example, include: anti-adhesives; antimicrobials; analgesics; antipyretics; anesthetics; antiepileptics; antihistamines; anti-inflammatories; cardiovascular drugs; diagnostic agents; sympathomimetics; cholinomimetics; antimuscarinics; antispasmodics; hormones; growth factors; muscle relaxants; adrenergic neuron blockers; antineoplastics; immunogenic agents; immunosuppressants; gastrointestinal drugs; diuretics; steroids; lipids; lipopolysaccharides; polysaccharides; platelet activating drugs; clotting factors; cancer treating chemical agents; and enzymes. It is also intended that combinations of filler materials may be used.
Other filler materials 19 include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g., oxybutynin); antitussives; bronchodilators; cardiovascular agents, such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics, such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents, such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins; cytotoxic drugs; chemotherapeutics, estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.
Examples of yet other suitable filler materials 19 include: viruses and cells; peptides, polypeptides and proteins, as well as analogs, muteins, and active fragments thereof; immunoglobulins; antibodies; cytokines (e.g., lymphokines, monokines, chemokines); blood clotting factors; hemopoietic factors; interleukins (IL-2, IL-3, IL-4, IL-6); interferons (β-IFN, α-IFN and γ-IFN); erythropoietin; nucleases; tumor necrosis factor; colony stimulating factors (e.g., GCSF, GM-CSF, MCSF); insulin; anti-tumor agents and tumor suppressors; blood proteins such as fibrin, thrombin, fibrinogen, synthetic thrombin, synthetic fibrin, synthetic fibrinogen; gonadotropins (e.g., FSH, LH, CG, etc.); hormones and hormone analogs (e.g., growth hormone); vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., bone or nerve growth factor, insulin-like growth factor); bone morphogenic proteins; TGF-B; protein inhibitors; protein antagonists; protein agonists; nucleic acids, such as antisense molecules, DNA, RNA, RNAi; oligonucleotides; polynucleotides; and ribozymes. It is contemplated that the filler material can be released over time. The filler material may be released or degrade over time or may be non-degradable.
Exemplary embodiments of construction and use of the present surgical implants are provided below. While embodiments are illustrated and described with respect to specific surgical applications, it should be understood that the surgical implants may be used in any of a variety of surgical procedures, and that elements and features illustrate or described in connection with one exemplary embodiment may be combined with elements and features of another exemplary embodiment.
Surgical implants of the present disclosure may be utilized in surgical stapling procedures. As illustrated in
Reference may be made to commonly owned U.S. Pat. No. 5,915,616 to Viola et al., entitled “Surgical Fastener Applying Apparatus,” the entire contents of which is incorporated herein by reference, for a detailed discussion of the construction and operation of an annular stapling device.
A surgical buttress 110, in accordance with the present disclosure, is positioned about the shaft 144 of the anvil assembly 140. Surgical buttress 110 includes porous layers 112 each having openings 114 disposed through at least a portion thereof, and a central aperture 113 for positioning the surgical buttress 110 about the shaft 144 of the anvil assembly 140. It should be understood that while the surgical buttress 110 is shown as being associated with the anvil assembly 140, the surgical buttress 110 may, alternatively or additionally, be associated with staple cartridge assembly 130. Surgical buttress 110 may be configured into any shape, size, or dimension suitable to fit any surgical stapling, fastening, or firing apparatus.
Surgical buttress 110 is provided to reinforce and seal staple lines applied to tissue by surgical stapling apparatus 100. The openings 114 and/or voids (not shown, similar to voids 18) of the surgical buttress 110 promote tissue ingrowth, and may fill with blood thereby improving clot integration into the surgical buttress 110. The relatively thin construction of the porous film layers 112 renders the surgical buttress 110 flexible and more easily penetrated by staples and a stapler knife blade. As described above, the openings 114 and/or voids (not shown) of the surgical buttress 110 may be loaded with filler material(s).
Surgical stapling apparatus 200 further includes a trigger 226 movably mounted on handle 220. Actuation of trigger 226 initially operates to move anvil jaw member 232 from the open to the closed position relative to staple cartridge jaw member 234 and subsequently actuates surgical stapling apparatus 200 to apply lines of staples to tissue. In order to properly orient jaw assembly 230 relative to the tissue to be stapled, surgical stapling apparatus 200 is additionally provided with a rotation knob 228 mounted on handle 220. Rotation of rotation knob 228 relative to handle 220 rotates elongate tubular member 222 and jaw assembly 230 relative to handle 220 so as to properly orient jaw assembly 230 relative to the tissue to be stapled.
A driver 250 is provided to move anvil jaw member 232 between the open and closed positions relative to staple cartridge jaw member 234. Driver 250 moves between a longitudinal slot 252 formed in anvil jaw member 232. A knife (not shown) is associated with driver 250 to cut tissue captured between anvil jaw member 232 and staple cartridge jaw member 234 as driver 250 passes through slot 252.
Reference may be made to commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, each to Milliman et al. and entitled “Surgical Stapling Apparatus,” the entire contents of each of which is incorporated herein by reference, for a detailed discussion of the construction and operation of a linear stapling device.
Surgical implants in accordance with the present disclosure may also be utilized to repair tissue defects, such as hernia repair procedures. As illustrated in
In embodiments, as illustrated in
It should be understood that while the attachment points are shown as uniting all of the layers of a surgical implant at a common point, the attachment points may be distributed in a variety of patterns, such as only between two successive layers, between all stacked layers, and combinations thereof. As illustrated in
Surgical implants in accordance with the present disclosure may also be utilized in reconstructive surgical procedures. As described above, mechanical properties of each porous layer, and thus the surgical implant, may be controlled by selecting, among other things, the materials, thickness, and pore density of each porous film layer. In embodiments, the production and assembly of the porous film layers may be tailored to provide improved size retention, toughness, and strength. The films may be drawn, stretched, molded or extruded under conditions, e.g., heated, ambient, or cooled temperatures in a machine and/or transverse direction, to produce films having different molecular orientation structures, and thus different film properties. The porous layers, each having different axial polymer chain alignments, may be stacked to produce a surgical implant having strong tensile properties in multiple planes. For example,
Surgical implants of the present disclosure may be utilized as scaffold materials for tissue regeneration. In embodiments, the porous layers of the surgical implant may be optimized for strength to support load bearing application and for cell attachment and ingrowth by providing a combination of porous layers of different thicknesses and surface areas. For example,
In embodiments, the openings and/or voids may be loaded with filler materials, as discussed above. For example, the openings and/or voids may be loaded with adhesion protein or heparin sulfate conjugated hydrogels or charged beads, that recruit specific cell types and growth factors to encourage cellular ingrowth and maturation. The surgical implants may also be filled with growth factors or anti-inflammatory drugs to improve tissue regeneration.
Surgical implants of the present disclosure may also be utilized for hemostasis. As illustrated in
While the first porous film layer 812a includes a sufficient number of openings 814a to allow for blood to infiltrate the surgical implant 810, such as through capillary or microfluidic filling, the second porous film layer 812b includes a minimal number and size of openings 814b to allow for the transfer of gases while encouraging blood retention in the surgical implant 810. In embodiments, absorbent materials could be included in the openings 814a, 814b and/or voids 818 of the surgical implant 810. Absorbent materials, e.g., hydrogels, allow collected blood and other wound fluid to gel and/or solidify thereby consolidating and containing these fluids in the surgical implant 810. Absorbent materials may swell during blood absorption, thereby exerting pressure on the wound to further reduce bleeding.
Surgical implants of the present disclosure may be utilized as a sealant or tissue patch, for example in duraplasty or lung sealant applications. As discussed with respect to
In embodiments, a surgical implant may be fabricated with porous film layers that match the elastic behavior of the tissue in which the surgical implant is placed. For example, in a lung sealing application, the porous film layers of a surgical implant may be formed of elastomeric degradable polymeric materials, such as polyurethanes, to substantially match lung elasticity and to be distensible during lung inflation and retraction during breathing.
In any of the embodiments disclosed herein, the film material can be a combination of biodegradable materials, a combination of non-degradable materials, or a combination thereof. In at least certain embodiments, it is preferred that both layers are made from biodegradable materials. It is contemplated that each of the first porous film layer and second porous film layers are both fabricated from at least one biodegradable material, from different biodegradable materials, from one biodegradable material and one non-biodegradable, or from at least two non-biodegradable materials.
While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as exemplifications of embodiments thereof. It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications within the scope and spirit of the claims of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3124136 | Usher | Mar 1964 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3797494 | Zaffaroni | Mar 1974 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4429695 | Green | Feb 1984 | A |
4452245 | Usher | Jun 1984 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5112496 | Dhawan et al. | May 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5281197 | Arias et al. | Jan 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5645915 | Kranzler et al. | Jul 1997 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5871135 | Williamson IV et al. | Feb 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6568398 | Cohen | May 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6790213 | Cherok | Sep 2004 | B2 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7179268 | Roy et al. | Feb 2007 | B2 |
7210810 | Iversen et | May 2007 | B1 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7571845 | Viola | Aug 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Bettuchi et al. | May 2010 | B2 |
7722642 | Williamson, IV | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crews et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban | May 2011 | B2 |
7967179 | Olson | Jun 2011 | B2 |
7988027 | Olson | Aug 2011 | B2 |
8011550 | Aranyi | Sep 2011 | B2 |
8016177 | Bettuchi | Sep 2011 | B2 |
8016178 | Olson | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8062330 | Prommersberger | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman | Feb 2012 | B2 |
8123767 | Bauman | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8146791 | Bettuchi | Apr 2012 | B2 |
8157149 | Olson | Apr 2012 | B2 |
8157151 | Ingmanson | Apr 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8178746 | Hildeberg et al. | May 2012 | B2 |
8192460 | Orban | Jun 2012 | B2 |
8210414 | Bettuchi | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli | Jul 2012 | B2 |
8235273 | Olson | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi | Sep 2012 | B2 |
8257391 | Orban | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8348126 | Olson | Jan 2013 | B2 |
8348130 | Shah | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema | Feb 2013 | B2 |
8371492 | Aranyi | Feb 2013 | B2 |
8371493 | Aranyi | Feb 2013 | B2 |
8393514 | Shelton, IV | Mar 2013 | B2 |
8408440 | Olson | Apr 2013 | B2 |
8413869 | Heinrich | Apr 2013 | B2 |
8413871 | Racenet | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros | Jun 2013 | B2 |
8453909 | Olson | Jun 2013 | B2 |
8453910 | Bettuchi | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. | Jul 2013 | B2 |
8479968 | Hodgkinson | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger | Jul 2013 | B2 |
8511533 | Viola | Aug 2013 | B2 |
8512402 | Marczyk | Aug 2013 | B2 |
8529600 | Woodard, Jr. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban | Oct 2013 | B2 |
8556918 | Bauman | Oct 2013 | B2 |
8561873 | Ingmanson | Oct 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess | Nov 2013 | B2 |
8616430 | Prommersberger | Dec 2013 | B2 |
8631989 | Aranyi | Jan 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi | Apr 2014 | B2 |
8721703 | Fowler | May 2014 | B2 |
8757466 | Olson | Jun 2014 | B2 |
8789737 | Hodgkinson | Jul 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | (Prommersberger) Stopek et al. | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9044227 | Shelton, Iv et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9107665 | Hodgkinson et al. | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161757 | Bettuchi | Oct 2015 | B2 |
9186144 | Stevenson et al. | Nov 2015 | B2 |
9192378 | Aranyi et al. | Nov 2015 | B2 |
9192379 | Aranyi et al. | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192383 | Milliman | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9198660 | Hodgkinson | Dec 2015 | B2 |
9198663 | Marczyk et al. | Dec 2015 | B1 |
9204881 | Penna | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237893 | Carter et al. | Jan 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9326773 | Casasanta, Jr. et al. | May 2016 | B2 |
9345479 | (Tarinelli) Racenet et al. | May 2016 | B2 |
9351729 | Orban, III et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364234 | (Prommersberger) Stopek et al. | Jun 2016 | B2 |
9433412 | Bettuchi et al. | Sep 2016 | B2 |
9433413 | Stopek | Sep 2016 | B2 |
20020028243 | Masters | Mar 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20020165563 | Grant et al. | Nov 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030120284 | Palacios | Jun 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030196668 | Harrison et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050143756 | Jankowski | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050283256 | Sommerich et al. | Dec 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060085030 | Bettuchi et al. | Apr 2006 | A1 |
20060135992 | Bettuchi | Jun 2006 | A1 |
20060141012 | Gingras | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070060863 | Goeken | Mar 2007 | A1 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070207186 | Scanlon | Sep 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080009811 | Cantor | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080200949 | Hiles | Aug 2008 | A1 |
20080216855 | Nasca | Sep 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080230583 | Heinrich | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090069893 | Paukshto | Mar 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090227969 | Jaeb | Sep 2009 | A1 |
20090277944 | Dalessandro et al. | Nov 2009 | A9 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20090299450 | Johnson | Dec 2009 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100087767 | McNeil | Apr 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110166673 | Patel | Jul 2011 | A1 |
20110215132 | Aranyi | Sep 2011 | A1 |
20110224631 | Simmons | Sep 2011 | A1 |
20120074199 | Olson | Mar 2012 | A1 |
20120080336 | Shelton | Apr 2012 | A1 |
20120083723 | Vitaris et al. | Apr 2012 | A1 |
20120145767 | Shah et al. | Jun 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120241499 | Baxter | Sep 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130310873 | Stopek (nee Prommersberger) et al. | Jan 2013 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130053798 | Coulthard | Feb 2013 | A1 |
20130105548 | Hodgkinson | May 2013 | A1 |
20130105553 | Racenet | May 2013 | A1 |
20130112732 | Aranyi | May 2013 | A1 |
20130112733 | Aranyi | May 2013 | A1 |
20130146641 | Shelton | Jun 2013 | A1 |
20130153633 | Casasanta | Jun 2013 | A1 |
20130153634 | Carter | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton | Jun 2013 | A1 |
20130153638 | Carter | Jun 2013 | A1 |
20130153639 | Hodgkinson | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130153641 | Shelton | Jun 2013 | A1 |
20130161374 | Swayze | Jun 2013 | A1 |
20130181031 | Olson | Jul 2013 | A1 |
20130193186 | Racenet | Aug 2013 | A1 |
20130193190 | Carter | Aug 2013 | A1 |
20130193191 | Stevenson | Aug 2013 | A1 |
20130193192 | Casasanta | Aug 2013 | A1 |
20130209659 | Racenet | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130277411 | Hodgkinson | Oct 2013 | A1 |
20130306707 | Viola | Nov 2013 | A1 |
20130327807 | Olson | Dec 2013 | A1 |
20140012317 | Orban | Jan 2014 | A1 |
20140021242 | Hodgkinson | Jan 2014 | A1 |
20140027490 | Marczyk | Jan 2014 | A1 |
20140034704 | Ingmanson | Jan 2014 | A1 |
20140048580 | Merchant | Feb 2014 | A1 |
20140061280 | Ingmanson | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
20140084042 | Stopek | Mar 2014 | A1 |
20140097224 | Prior | Apr 2014 | A1 |
20140117066 | Aranyi | May 2014 | A1 |
20140130330 | Olson | May 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140138423 | Whitfield | May 2014 | A1 |
20140151431 | Hodgkinson | Jun 2014 | A1 |
20140155916 | Hodgkinson | Jun 2014 | A1 |
20140158742 | Stopek | Jun 2014 | A1 |
20140166721 | Stevenson | Jun 2014 | A1 |
20140197224 | Penna | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140217147 | Milliman | Aug 2014 | A1 |
20140217148 | Penna | Aug 2014 | A1 |
20140239046 | Milliman | Aug 2014 | A1 |
20140239047 | Hodgkinson | Aug 2014 | A1 |
20140252062 | Mozdzierz | Sep 2014 | A1 |
20150001276 | Hodgkinson et al. | Jan 2015 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150097018 | Hodgkinson | Apr 2015 | A1 |
20150115015 | Prescott et al. | Apr 2015 | A1 |
20150122872 | Olson et al. | May 2015 | A1 |
20150164503 | Stevenson et al. | Jun 2015 | A1 |
20150164506 | Carter et al. | Jun 2015 | A1 |
20150164507 | Carter et al. | Jun 2015 | A1 |
20150196297 | (Prommersberger) Stopek et al. | Jul 2015 | A1 |
20150209033 | Hodgkinson | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150209048 | Carter et al. | Jul 2015 | A1 |
20150305743 | Casasanta et al. | Oct 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20160022268 | Prior | Jan 2016 | A1 |
20160045200 | Milliman | Feb 2016 | A1 |
20160058451 | (Tarinelli) Racenet et al. | Mar 2016 | A1 |
20160100834 | Viola et al. | Apr 2016 | A1 |
20160106430 | Carter et al. | Apr 2016 | A1 |
20160113647 | Hodgkinson | Apr 2016 | A1 |
20160157857 | Hodgkinson et al. | Jun 2016 | A1 |
20160174988 | D'Agostino et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2282761 | Sep 1998 | CA |
2 667 434 | May 2008 | CA |
101310680 | Nov 2008 | CN |
101332110 | Dec 2008 | CN |
1 99 24 311 | Nov 2000 | DE |
0 594 148 | Apr 1994 | EP |
0 327 022 | Apr 1995 | EP |
0 667 119 | Aug 1995 | EP |
1 064 883 | Jan 2001 | EP |
1 256 317 | Nov 2002 | EP |
1 256 318 | Nov 2002 | EP |
1 520 525 | Apr 2005 | EP |
1 621 141 | Feb 2006 | EP |
1 702 570 | Sep 2006 | EP |
1 759 640 | Mar 2007 | EP |
1 815 804 | Aug 2007 | EP |
1 825 820 | Aug 2007 | EP |
1 929 958 | Jun 2008 | EP |
1 994 890 | Nov 2008 | EP |
2 005 894 | Dec 2008 | EP |
2 005 895 | Dec 2008 | EP |
2 008 595 | Dec 2008 | EP |
2 039 308 | Mar 2009 | EP |
2 090 231 | Aug 2009 | EP |
2 090 244 | Aug 2009 | EP |
2 090 252 | Aug 2009 | EP |
2 163 211 | Mar 2010 | EP |
2 189 121 | May 2010 | EP |
2 198 787 | Jun 2010 | EP |
2 236 098 | Oct 2010 | EP |
2 236 099 | Oct 2010 | EP |
2 258 282 | Dec 2010 | EP |
2 292 276 | Mar 2011 | EP |
2 311 386 | Apr 2011 | EP |
2 436 348 | Apr 2012 | EP |
2 462 880 | Jun 2012 | EP |
2 497 431 | Sep 2012 | EP |
2 517 637 | Oct 2012 | EP |
2 586 380 | May 2013 | EP |
2 604 195 | Jun 2013 | EP |
2 604 197 | Jun 2013 | EP |
2 620 105 | Jul 2013 | EP |
2 620 106 | Jul 2013 | EP |
2 630 922 | Aug 2013 | EP |
2 644 125 | Oct 2013 | EP |
2 762 091 | Aug 2014 | EP |
2000-166933 | Jun 2000 | JP |
2002-202213 | Jul 2002 | JP |
2007-124166 | May 2007 | JP |
WO 9005489 | May 1990 | WO |
WO 9516221 | Jun 1995 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9713463 | Apr 1997 | WO |
WO 9817180 | Apr 1998 | WO |
9838923 | Sep 1998 | WO |
WO 9945849 | Sep 1999 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010075298 | Jul 2010 | WO |
WO 2011143183 | Nov 2011 | WO |
WO 2012044848 | Apr 2012 | WO |
Entry |
---|
Cai, W., Gupta, R. B. and Updated by Staff 2012. Hydrogels. Kirk-Othmer Encyclopedia of Chemical Technology. 1-20. |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). |
International Search Report corresponding to European Application No. EP 05 02 2585.3, completed on Jan. 25, 2006 and mailed on Feb. 3, 2006; 4 pages. |
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages. |
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages. |
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages. |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed on Apr. 21, 2008 and mailed on May 15, 2008; 1 page. |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages. |
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages. |
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 6 pages. |
International Search Report corresponding to European Application No. EP 10 25 0639.1, completed on Jun. 17, 2010 and mailed on Jun. 28, 2010; 7 pages. |
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages. |
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages. |
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages. |
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages. |
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages. |
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages. |
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages. |
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages. |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (7 pp). |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan 30, 2014 and mailed Feb. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 19 7958,5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 15 6342,9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 15 7195,0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp). |
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp). |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015. |
Chinese Notification of Reexamination corresponding to counterpart Int'l Appln. No. CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 14, 2015. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-216989 mailed Sep. 11, 2015. |
Canadian First Office Action corresponding to counterpart Int'l Appln. No. CA 2,686,105 dated Sep. 17, 2015. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 mailed Oct. 21, 2015. |
European Communication corresponding to counterpart Int'l Appln. No. EP 13 17 6895.4 dated Nov. 5, 2015. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210544552 dated Nov. 23, 2015. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Nov. 30, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 0491.1 dated Dec. 9, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 3819.0 dated Dec. 11, 2015. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,697,819 dated Jan. 6, 2016. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 17 4146.9 dated Jan. 20, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Jan. 25, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5 dated Feb. 1, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-098903 mailed Feb. 22, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 8753.1 dated Feb. 24, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019A dated Mar. 30, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0232.3 dated Apr. 12, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 11 18 3256.4 dated Apr. 20, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244169 dated May 10, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 10 25 0715.9 dated May 12, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410778512.0 dated May 13, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012227358 dated May 16, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 mailed May 17, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244380 dated May 20, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014227480 dated May 21, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012254977 dated May 30, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 3647.9 dated Jun. 3, 2016. |
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages. |
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 8749.9 completed May 21, 2013 and mailed May 31, 2013; 8 pages. |
Extended European Search Report corresponding to EP 07 00 5842.5, complete May 13, 2013 and mailed May 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages. |
Extended European Search Report corresponding to EP 13 15 6297.7 completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016. |
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 mailed Jun. 29, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012250278 dated Jul. 10, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 mailed Jul. 26, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 mailed Jul. 27, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060A dated Aug. 4, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 mailed Aug. 25, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 6, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 mailed Sep. 26, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 mailed Sep. 13, 2016. |
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016. |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp). |
Number | Date | Country | |
---|---|---|---|
20140155916 A1 | Jun 2014 | US |