1. The Technical Field
The present invention is directed generally to a solid state keyboard. More particularly, the present invention is directed to a solid state keyboard integrating decorative and functional layers.
2. The Related Art
Keypad input systems typically are assemblies of several components. For example, a typical keypad includes a glass, plastic, or flexible film face plate or front panel that acts as a user interface. This face plate might include graphics that describe the keypad's functionality and/or other indicia, such as a logo, for purely decorative purposes. Such a keypad further includes another panel that includes, for example, field effect sensor electrodes and control circuitry. These two panels typically are manufactured as separate subassemblies that are later joined to form a finished keypad.
Some keypads use reconfigurable keys in connection with a reconfigurable display. One example of such a system includes a dot matrix display that provides prompts to a user and solicits input from the user via one or more mechanical switches, for example, membrane switches, situated about the display and proximate the various prompts. Such a system may guide a user through various menu levels, wherein the displayed prompts corresponding to a particular switch vary from level to level and the function of the switch changes correspondingly. One drawback with such a system is that it is not always clear to the user which switch, if any, is associated with a particular display prompt. Another is that membrane switches, commonly used in such applications, are prone to premature failure when used in high traffic applications.
Computer touch screen technology, as sometimes used in connection with cash register input pads and consumer product information kiosks, offers a better solution, but involves greater cost and complexity. Indeed, such systems typically require PC-based or proprietary decoding hardware. Further, the hardware requirements for such systems prohibit their use in applications where little space is available.
The present invention is an integrated solid state keypad having multiple layers, including decorative layers and functional layers. The keypad includes one or more keys which preferably are embodied as field effect sensors. In certain embodiments, one or more of the keys are reconfigurable keys that can be used in connection with a reconfigurable display. Preferably, the reconfigurable keys are embodied as field effect sensors having transparent electrode structure.
Layers 22,24,26,28 are layers of decorative material. These decorative material layers can provide functional information, such as graphics depicting the function of a particular key, or purely decorative graphics, for example, a decorative pattern or logo, are applied to one or both sides of substrate 20.
In preferred embodiments, decorative layers 22,24,26,28 comprise organic decorative materials, for example, screen printed inks, epoxies, and ultraviolet curable materials. Other decorative materials, including inorganic materials, can be used, as well. The various decorative layers can be substantially opaque, translucent, or substantially transparent. In embodiments having viewing window 14, any decoration located within the area of viewing window 14 preferably is substantially transparent so that a user can view a display (not shown) that might be mounted behind viewing window 14 or so that backlighting can be penetrate viewing window 14. Further, decoration located within the area of viewing window 14 can be selected to have certain optical properties so that such decoration acts as an optical filter.
Layer 30 is an optional, substantially transparent layer of conductive material. Referring to
As discussed further below, electrical circuit components can be coupled to transparent electrodes and traces 32 to form field effect sensors, capacitive sensors, or other sensors. Transparent conductive layer 30 can be applied in various ways. For example, transparent conductive layer 30 can be deposited in a desired pattern using screen printing or micro-deposition techniques. Alternatively, transparent conductive layer 30 can be plated or applied as a thin film utilizing, for example, sputtering or thermal evaporation techniques, and then patterned and etched to yield transparent electrodes and traces 32. Other suitable techniques, for example, spin coating, also can be used to apply transparent conductive layer 30, as would be known to one skilled in the art.
Layer 40 is a layer of conventional conductive material disposed on transparent conductive layer 30. Preferably, conventional conductive material layer 40 is made of a polymer thick film silver or copper epoxy, such as that supplied by Acheson Colloids Company of Port Huron, Michigan. In other embodiments, this layer can be made of plated copper or other conductive material. Referring to
Referring to
Layer 50 also can provide electrical insulation between conventional conductive material layer 40 and transparent conductive layer 30 and further layers of keypad 10. For example, a particular circuit design might require the use of crossovers 70, as illustrated in
Layer 60 is an optional dielectric layer that can be used in embodiments involving crossovers 70. As discussed above in connection with layer 50, optional dielectric layer 60 provides electrical insulation between electrical crossovers and conductive portions of keypad 10 to be bridged by such crossovers.
A reconfigurable display (not shown) can be disposed on the rear side of keypad 10 adjacent the area corresponding to viewing window 14, allowing a user to view the display through viewing window 14. Such embodiments preferably include reconfigurable keys 14 comprising field effect sensors or other sensors having transparent electrode structure with in the area corresponding to viewing window 14. The functions of such sensors preferably would be reconfigurable, as would be known to one skilled in the art, to conform to the subject matter set forth in the display in the area corresponding to such sensors.
While specific embodiments of the present invention have been shown and described above, it will be obvious to those skilled in the art that numerous modifications made be made without departing from the spirit of the invention, the scope of which is defined by the claims below.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/464,483, filed on Apr. 22, 2003, the disclosure of which is incorporated herein by reference. This application further claims priority as continuation-in-part from U.S. Pat. No. 7,218,498, which in turn claims benefit of U.S. Provisional Patent Application No. 60/334,040, filed Nov. 20, 2001, and U.S. Provisional Patent Application No. 60/341,551, filed Dec. 18, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4035593 | Riniker | Jul 1977 | A |
4090045 | Marsh | May 1978 | A |
4251734 | Mayer et al. | Feb 1981 | A |
4471177 | Doughty | Sep 1984 | A |
4901074 | Sinn et al. | Feb 1990 | A |
5239152 | Caldwell et al. | Aug 1993 | A |
5594222 | Caldwell | Jan 1997 | A |
6137072 | Martter et al. | Oct 2000 | A |
6585435 | Fang | Jul 2003 | B2 |
6879317 | Quinn et al. | Apr 2005 | B2 |
7242393 | Caldwell | Jul 2007 | B2 |
20030122794 | Caldwell | Jul 2003 | A1 |
20050006213 | Engelmann | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
91 12 597 | Jun 1992 | DE |
Number | Date | Country | |
---|---|---|---|
20050062620 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60464483 | Apr 2003 | US | |
60341551 | Dec 2001 | US | |
60334040 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10272377 | Oct 2002 | US |
Child | 10829493 | US |