The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and lens. When age or disease causes the lens to become less transparent, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an intraocular lenses (IOLs).
IOLs are used for cataract surgery to replace the natural lens of the eye and correct refractive errors. Among them are presbyopia-correcting lenses, which include extended depth of focus (EDOF) IOLs. However, the use of such presbyopia-correcting lenses may result in associated visual disturbances such as halos or glare.
Aspects of the present disclosure provide an intraocular lens (IOL) including a lens body having an anterior lens element and a posterior lens element, and an optical fluid in a cavity formed between the anterior lens element and the posterior lens element. The anterior lens element and the posterior lens element each comprise a lens material having a first Abbe number, and the optical fluid has a second Abbe number that is less than the first Abbe number.
Aspects of the present disclosure also provide a method for fabricating an intraocular lens (IOL). The method includes fabricating an anterior lens element and a posterior lens element, bonding the anterior lens element and the posterior lens element to form a cavity therebetweeen, and filling the cavity with an optical fluid. The anterior lens element and the posterior lens element each comprise a lens material having a first Abbe number, and the optical fluid has a second Abbe number that is less than the first Abbe number.
Aspects of the present disclosure further provide a method for configuring an intraocular lens (IOL). The method includes computing a radius of curvature of an anterior lens element of a lens body of an IOL and a radius of curvature of a posterior lens element of the lens body of the IOL, based on a lens base power of the IOL, a first refractive index and a first Abbe number of the anterior lens element and the posterior lens element, and a second refractive index and a second Abbe number of an optical fluid to fill a cavity between the anterior lens element and the posterior lens element, and a refractive index and an Abbe number of an optical fluid to fill a cavity between the anterior lens element and the posterior lens element, and forming the IOL or causing the IOL to be formed based on the computed radii of curvature of the anterior lens element and the posterior lens element.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is noted, however, that the appended drawings illustrate only some aspects of this disclosure and the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
The embodiments described herein provide an intraocular lens (IOL) having a triplet lens body for chromatic aberration correction, and methods and systems for fabricating the same. In certain embodiments, the IOL is an extended depth of focus (EDOF) IOL. In certain embodiments, the IOL having a triplet lens body includes an anterior lens element, a posterior lens element, and an optical fluid filling a cavity formed between the anterior and posterior lens elements. In certain embodiments, a method for fabricating an IOL with a triplet lens body includes producing an anterior lens element and a posterior lens element, bonding the anterior and posterior lens elements to form a cavity therebetween, and filling the cavity with an optical fluid.
In the embodiments illustrated in
In certain embodiments, as shown in
In certain embodiments, as shown in
The anterior lens element 102A and the posterior lens element 102P may be fabricated of biocompatible material, such as modified poly (methyl methacrylate) (PMMA), modified PMMA hydrogels, hydroxy-ethyl methacrylate (HEMA), PVA hydrogels, other silicone polymeric materials, and hydrophobic acrylic polymeric materials, for example, AcrySof® and Clareon®, available from Alcon, Inc., Fort Worth, Texas. The lens elements 102A and 102P may have a refractive index of between about 1.49 and about 1.56, and an Abbe number of between about 37 and about 53. The optical fluid to fill in the cavity 106 may be an incompressible or substantially incompressible fluid exhibiting a refractive index that is different from the lens elements 102A and 102P. The optical fluid may be silicone oil of ophthalmic grade, such as the optical fluid available from Entegris, Inc., Billerica, Massachusetts. The optical fluid may have a refractive index of between about 1.4 and about 1.55, for example, about 1.43, and an Abbe number of between about 40 and about 50, for example, about 44.4.
In some embodiments, as shown in
The IOL 100A further includes a main frame 108 coupled (e.g., glued or welded) to the peripheral portion of the lens body 102 or molded along with a portion of the lens body 102. The main frame 108 includes the haptic portion 104 including radially-extending struts (also referred to as “haptics”) 104A and 104B, and thus the haptics 104A and 104B extend outwardly from the lens body 102 to engage the perimeter wall of the capsular sac of the eye to maintain the lens body 102 in a desired position in the eye. The main frame 108 may be fabricated of biocompatible material, such as modified poly (methyl methacrylate) (PMMA), modified PMMA hydrogels, hydroxy-ethyl methacrylate (HEMA), PVA hydrogels, other silicone polymeric materials, hydrophobic acrylic polymeric materials, for example, AcrySof® and Clareon®, available from Alcon, Inc., Fort Worth, Texas. The haptics 104A and 104B typically have radial-outward ends that define arcuate terminal portions. The terminal portions of the haptics 104A and 104B may be separated by a length L of between about 6 mm and about 22 mm, for example, about 13 mm. The haptics 104A and 104B have a particular length so that the terminal portions create a slight engagement pressure when in contact with the equatorial region of the capsular sac after being implanted. While
It is noted that the shape and curvatures of the lens body 102 are shown for illustrative purposes only and that other shapes and curvatures are also within the scope of this disclosure. For example, the lens body 102 shown in
At step 210, an anterior lens element (e.g., anterior lens element 102A), a posterior lens element (e.g., posterior lens element 102P), and a main frame including haptics (e.g., main frame 108 including haptics 104A and 104B) are formed by a lens manufacturing technique known to one of ordinary skill in the art, such as injection molding and thermal curing processes. The main frame and the anterior lens element may be fabricated as one single piece or two separate pieces. One or more holes are created in the posterior lens element, near the edges of the posterior lens element, for filling a cavity, described below, with optical fluid at step 230.
At step 220, the anterior lens element, the posterior lens element, and the main frame are assembled and sealed to form a cavity (e.g., cavity 106 (shown in
At step 230, the cavity is filled with an optical fluid, such as silicone oil through the one or more holes in the posterior lens element, by a lens manufacturing technique known to one of ordinary skill in the art. In certain embodiments, the cavity is filled using a syringe-assisted method. The one or more holes in the posterior lens element are subsequently sealed.
The control module 302 includes a central processing unit (CPU) 312, a memory 314, and a storage 316. The CPU 312 may retrieve and execute programming instructions stored in the memory 314. Similarly, the CPU 312 may retrieve and store application data residing in the memory 314. The interconnect 306 transmits programming instructions and application data, among CPU 312, the I/O device interface 310, the user interface display 304, the memory 314, the storage 316, output device 308, etc. The CPU 312 can represent a single CPU, multiple CPUs, a single CPU having multiple processing cores, and the like. Additionally, in certain embodiments, the memory 314 represents volatile memory, such as random access memory. Furthermore, in certain embodiments, the storage 316 may be non-volatile memory, such as a disk drive, solid state drive, or a collection of storage devices distributed across multiple storage systems.
As shown, the storage 316 includes input parameters 318. The input parameters 318 include a lens base power, and refractive indices and Abbe numbers of lens elements and an optical fluid to fill a cavity between the lens elements. The memory 314 includes a computing module 320 for computing control parameters, such as shapes of the lens elements (e.g., radii of curvatures and thickness). In addition, the memory 314 further includes input parameters 322.
In certain embodiments, input parameters 322 correspond to input parameters 318 or at least a subset thereof. In such embodiments, during the computation of the control parameters, the input parameters 322 are retrieved from the storage 316 and executed in the memory 314. In such an example, the computing module 320 comprises executable instructions for computing the control parameters, based on the input parameters 322. In certain other embodiments, input parameters 322 correspond to parameters received from a user through user interface display 304. In such embodiments, the computing module 320 comprises executable instructions for computing the control parameters, based on information received from the user interface display 304.
In certain embodiments, the computed control parameters, are output via the output device 308 to a lens manufacturing system that is configured to receive the control parameters and form a lens accordingly. In certain other embodiments, the system 300 itself is representative of at least a part of a lens manufacturing systems. In such embodiments, the control module 302 then causes hardware components (not shown) of system 300 to form the lens according to the control parameters by the operations 200 described above. The details of a lens manufacturing system are known to one of ordinary skill in the art and are omitted here for brevity.
At step 410, control parameters, such as shapes of the lens elements 102A and 102P (e.g., radii of curvatures and thicknesses), are computed based on input parameters (e.g., a lens base power, and refractive indices and Abbe numbers of lens elements and optical fluid to fill a cavity between the lens elements). A variety of methods and techniques or algorithms may be used for selecting appropriate radii of curvatures and thicknesses for lens elements 102A and 102P in order to reduce chromatic aberrations. For example, a broad range of visual spectra may be used to calculate an optical power of each surface for a given dispersive material. Then appropriate radii of curvatures and thicknesses for lens elements 102A and 102P may be obtained using the calculated power and the optical properties of the dispersive material.
At step 420, an IOL (e.g., IOL 100) based on the computed control parameters, such as shapes of the lens elements 102A and 102P (e.g., radii of curvatures and thickness), is formed according to the operations 200 described above, using appropriate methods, systems, and devices typically used for manufacturing lenses, as known to one of ordinary skill in the art.
The embodiments described herein provide presbyopia-correcting IOLs in which chromatic aberration is corrected, while simultaneously avoiding the introduction of visual disturbances (e.g., halos, glare) more common to diffractive presbyopia-correcting IOLs. The presbyopia-correcting IOLs according to the embodiments described herein can be fabricated by producing an anterior lens element and a posterior lens element, bonding the anterior and posterior lens elements to form a cavity therebetween, and filling the cavity with an optical fluid. The methods described herein may simplify the conventional fabrication processes of such an IOL.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | |
---|---|---|---|
63364813 | May 2022 | US | |
63363828 | Apr 2022 | US | |
63269719 | Mar 2022 | US |