Multi-layer transparent structures for electronic device housings

Information

  • Patent Grant
  • 11368566
  • Patent Number
    11,368,566
  • Date Filed
    Monday, January 13, 2020
    5 years ago
  • Date Issued
    Tuesday, June 21, 2022
    2 years ago
Abstract
Transparent structures for portions of electronic device housings are disclosed. The transparent structures are formed from multiple layers of transparent (optically clear) materials. The multiple layers can include at least an outer glass layer and one or more other transparent layers that can be either glass or polymer layers. The multiple layers can be bonded together with one or more lamination layers. Accordingly, multi-layer transparent structures that are formed from multiple layers bonded together are able to be not only thin but also sufficiently strong and resistant to damage. The multi-layer transparent structures are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Description
BACKGROUND

Conventionally, some portable electronic devices use glass as a part of their devices, either internal or external. Externally, a glass part can be provided as part of a housing, such a glass part is often referred to as a cover glass. The transparent and scratch-resistance characteristics of glass make it well suited for such applications. Internally, glass parts can be provided to support display technology. More particularly, for supporting a display, a portable electronic device can provide a display technology layer beneath an outer cover glass. A sensing arrangement can also be provided with or adjacent the display technology layer. By way of example, the display technology layer may include or pertain to a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). The LCM generally includes an upper glass sheet and a lower glass sheet that sandwich a liquid crystal layer therebetween. The sensing arrangement may be a touch sensing arrangement such as those used to create a touch screen. For example, a capacitive sensing touch screen can include substantially transparent sensing points or nodes dispersed about a sheet of glass or plastic.


Unfortunately, however, use of glass with portable electronic devices requires that the glass be relatively thin. Generally speaking, the thinner the glass the more susceptible the glass is to damage when the portable electronic device is stressed or placed under a significant force. Chemically strengthening has been used to strengthen glass. While chemically strengthening is effective, there is a continuing need to provide improved ways to provide cover glass that is thin and sufficiently strong to resist breakage.


SUMMARY

The invention relates to transparent structures for portions of electronic device housings. The transparent structures are formed from multiple layers of transparent (optically clear) materials. The multiple layers can include at least an outer glass layer and one or more other transparent layers that can be either glass or polymer layers. The multiple layers can be bonded together with one or more lamination layers. Accordingly, multi-layer transparent structures that are formed from multiple layers bonded together are able to be not only thin but also sufficiently strong and resistant to damage. The multi-layer transparent structures are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).


The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.


As an electronic device, one embodiment can, for example, include at least an outer housing for the electronic device, and a plurality of electrical components provided within the outer housing. At least a portion of the outer housing can include at least a multi-layer housing structure. The multi-layer housing structure can include a first layer, a lamination layer, and a second layer. The first layer and second layer can be laminated together via the lamination layer.


As a consumer electronic product, one embodiment can, for example, include at least: a housing having a front surface, a back surface and side surfaces; electrical components provided at least partially internal to the housing, the electrical components including at least a controller, a memory, and a display, the display being provided at or adjacent the front surface of the housing; and a multi-layer cover structure provided at, over or in the front surface of the housing such that it is provided over the display. The multi-layer cover structure can include a first layer, a lamination layer and a second layer, and the first layer and second layer can be laminated together via the lamination layer.


As a method for forming a laminated glass structure, one embodiment can, for example, include at least the acts of: obtaining an outer glass layer, chemically strengthening the outer glass layer, obtaining a transparent layer, obtaining a lamination layer, and laminating the transparent layer to the outer glass layer via the lamination layer to form the laminated glass structure.


As a method for forming a laminated glass structure, one embodiment can, for example, include at least the acts of: obtaining a first glass layer, chemically strengthening the first glass layer, obtaining a second glass layer, chemically strengthening the second glass layer, obtaining a lamination layer, and forming the lamination glass structure from the first glass layer, the lamination layer and the second glass layer.


Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 is a simplified view of a multi-layer housing structure according to one embodiment.



FIGS. 2A-2C illustrate assembly of a multi-layer housing structure according to one embodiment.



FIG. 3 is a flow diagram of a lamination process according to one embodiment.



FIG. 4 is a flow diagram of a lamination process according to another embodiment.



FIG. 5 is a simplified view of a multi-layer housing structure according to another embodiment.



FIG. 6A is a simplified view of a multi-layer housing structure according to another embodiment.



FIG. 6B is a simplified view of a multi-layer housing structure according to another embodiment.



FIG. 6C is a simplified view of a multi-layer housing structure according to another embodiment.



FIG. 7 is a cross-sectional view of an electronic device housing according to one embodiment.



FIG. 8 is a perspective diagram of a handheld electronic device according to one embodiment.





DETAILED DESCRIPTION

The invention relates to transparent structures for portions of electronic device housings. The transparent structures are formed from multiple layers of transparent (optically clear) materials. The multiple layers can include at least an outer glass layer and one or more other transparent layers that can be either glass or polymer layers. The multiple layers can be bonded together with one or more lamination layers. Accordingly, multi-layer transparent structures that are formed from multiple layers bonded together are able to be not only thin but also sufficiently strong and resistant to damage. Since the transparent structures include at least one glass layer, the transparent structures can also be referred to as glass articles (or multi-layer glass articles). The multi-layer transparent structures are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).


Embodiments of the invention can relate to apparatus, systems and methods for improving strength of a glass article for a consumer product, such as a consumer electronic device. In one embodiment, the glass article may be an outer surface of a consumer electronic device. For example, the glass article may, for example, correspond to a glass cover that helps form part of a display area of the electronic device (i.e., situated in front of a display either as a separate part or integrated within the display). As another example, the glass article may form a part of a housing for the consumer electronic device (e.g., may form an outer surface other than in the display area). In another embodiment, the glass article may be an inner component of a consumer electronic device. For example, the glass article can be a component glass piece of a LCD display provided internal to the housing of the consumer electronic device.


The apparatus, systems and methods for improving strength of thin glass articles are especially suitable for glass covers or displays (e.g., LCD displays), particularly those assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass articles can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.3 and 2.5 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass articles can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.3 and 3 mm.


Embodiments of the invention are discussed below with reference to FIGS. 1-8. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. The illustrations provided in these figures are not necessarily drawn to scale; instead, the illustrations are presented in a manner to facilitate presentation.



FIG. 1 is a simplified view of a multi-layer housing structure 100 according to one embodiment. The multi-layer housing structure 100 can, for example, be used as at least a portion of an outer housing for an electronic device. More particularly, the multi-layer housing structure 100 is well suited for use as at least a portion of an outer housing for a portable electronic device (specifically, compact portable electronic devices).


The multi-layer housing structure 100 has a multi-layer structure. In particular, the multi-layer housing structure 100 includes a glass layer 102 that provides an outer surface for the multi-layer housing structure 100, and thus also for at least a portion of the outer housing for the electronic device. The multi-layer housing structure 100 also includes a lamination layer 104 as well as a transparent layer 106. The lamination layer 104 serves to bond together the glass layer 102 and the transparent layer 106. The bonding together of the glass layer 102 and the transparent layer 106 via the lamination layer 104 can be denoted as a lamination, whereby the multi-layer housing structure 100 is formed from the lamination of the transparent layer 106 to the glass layer 102 using the lamination layer 104.


Typically, the multi-layer housing structure 100 is to be optically clear or transparent. The glass layer 102 and the transparent layer 106 are inherently optically clear or transparent. The lamination layer 104 is also optically clear or transparent. Although it is desired that the distinct layers of the multi-layer housing structure 100 be optically clear or transparent, it is understood that certain materials may not be completely optically clear or transparent, thus, it is sufficient that these layers be substantially optically clear when formed into the multi-layer housing structure 100. Also, in some embodiments, the lamination layer 104 might be initially opaque before being activated to bond with other layers of the multi-layer housing structure 100; however, once the lamination layer 104 is activated, the lamination layer 104 turns clear or transparent (at least substantially so).


The transparent layer 106 is typically an internal layer that does not form an outer user surface for the housing for the electronic device. As a result, the transparent layer 106 can use different materials depending upon its particular product application. As an example, the transparent layer 106 can correspond to a glass layer or can correspond to a polymer-based layer.


In one embodiment, the lamination layer 104 can be referred to as a lamination film. The lamination layer 104 can pertain to any material that is suitable for lamination of the glass layer 102 with the transparent layer 106. One example of a lamination material is polyvinyl butyral (PVB). PVB is a resin that provides strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility. Other examples of lamination materials include thermoplastic polyurethane (TPU).



FIGS. 2A-2C illustrate assembly of a multi-layer housing structure according to one embodiment. As illustrated, the multi-layer housing structure being assembled is the multi-layer housing structure 100 illustrated in FIG. 1.


In FIG. 2A, the glass layer 102 is depicted as a separate member. In FIG. 2B, the lamination layer 104 is placed adjacent the bottom surface of the glass layer 102. Thereafter, as shown in FIG. 2C, the transparent layer 106 is placed adjacent the lamination layer 104. Once the multi-layer housing structure is arranged as illustrated in FIG. 2C, the lamination process which serves to bond the glass layer 102 to the transparent layer 106 using the lamination layer 104 can be activated. In one implementation, the lamination process can be activated by placing the multi-layer housing structure in a elevated temperature environment (e.g., an oven). In another implementation, the lamination process can be activated by placing the multi-layer housing structure in an RF environment where radio frequency energy can be induced into the lamination layer 104 to activate the lamination process.


Although the widths of the glass layer 102, the lamination layer 104 in the transparent layer 106 illustrated in FIGS. 2A-2C are shown as being same, it should be understood that the various layers need only be overlapping and thus the width of the respective players can vary depending upon implementation. For example, the transparent layer 106 could have a reduced width.



FIG. 3 is a flow diagram of a lamination process 300 according to one embodiment. The lamination process 300 can operate to assemble or form a laminated structure, such as a laminated glass structure having at least one glass layer.


The lamination process 300 initially obtains 302 an outer glass layer. The outer glass layer can serve as one side of the laminated structure can be formed or assembled. The outer glass layer can then be chemically strengthened 304. By chemically strengthening the outer glass layer, the outer glass layer is better able to resist damage (such as breakage), such as when subjected to an impact event.


In addition, a transparent layer is obtained 306. The transparent layer can serve as an inner layer or an intermediate layer for the multi-layer structure. The transparent layer can be formed of glass or can be formed of a polymer. A lamination layer can also be obtained 308. The lamination layer is a thin layer of a material that can serve to laminate together the outer glass layer to the transparent layer. Hence, the lamination process 300 then operates to laminate 310 the transparent layer with the outer glass layer via the lamination layer, thereby forming a laminated structure. For example, the lamination layer can be between the outer glass layer and the transparent layer, and then lamination can cause the lamination layer to bond to adjacent surfaces of the outer glass layer and the transparent layer.


To laminate 310 the transparent layer with the outer glass layer, the lamination layer typically needs to be activated, such as by heating the lamination layer or inducing energy (e.g., RF energy) into the lamination layer. The lamination serves to strongly bond, e.g., fuse, together the outer glass layer and the transparent layer. Following the lamination 310, the lamination process 300 is complete and can therefore end.



FIG. 4 is a flow diagram of a lamination process 400 according to another embodiment. The lamination process 400 can operate to assemble or form a laminated structure, such as a laminated glass structure having at least two glass layers.


The lamination process 400 can obtain 402 a first glass layer. The first glass layer can then be chemically strengthened 404. By chemically strengthening the first glass layer, the first glass layer is better able to resist damage (such as breakage), such as when subjected to an impact event.


In addition, as second glass layer can be obtained 406. Similarly, the second glass layer can be chemically strengthened 408. By chemically strengthening the second class layer, the second glass layer is better able to resist damage (such as breakage), such as when subjected to an impact event. In one embodiment, the chemical strengthening 404 applied to the first glass layer is performed to a different level, degree or state than is the chemical strengthening applied to the second class layer. In other words, it may be desirable to chemically strengthen the different glass layers of the multi-layer housing structure in different ways. Specifically, in one example, the outer glass layer could be chemically strengthened to provide a relatively deep depth of layer, whereas an inner layer or the second glass layer can have a smaller depth of layer but a higher compressive stress.


Still further, the lamination process 400 obtains 410 a lamination layer. The lamination layer can be used to form 412 the laminated glass structure from the first glass layer and the second glass layer after the laminated glass structure has been formed 412, the lamination process 400 can and.



FIG. 5 is a simplified view of a multi-layer housing structure 500 according to another embodiment. The multi-layer housing structure 500 includes three distinct glass layers that are laminated together to form a multi-layer structure that can be used as part of a housing for an electronic device. The multi-layer housing structure 500 can include a glass layer 502 that can serve as an outer surface member for a portion of the multi-layer housing structure 500. A lamination layer 504 can be provided between the glass layer 502 and a second glass layer 506. The lamination layer 504 can serve to bond together a bottom layer of the first glass layer 502 and a top surface of the second class layer 506. In addition, a second lamination layer 508 can be provided between the second glass layer 506 and a third glass layer 510. The lamination layer 508 can serve to bond together a bottom layer of the second class layer 506 and a top layer of the third glass layer 510.



FIG. 6A is a simplified view of a multi-layer housing structure 600 according to another embodiment. The multi-layer housing structure 600 includes two distinct layers that are laminated together to form a multi-layer structure that can be used as part of a housing for an electronic device. In particular, the multi-layer housing structure 600 can include a first glass layer 602 that serves as an outer surface member for the multi-layer housing structure 600. In addition, a lamination layer 604 can be provided between the first glass layer 602 and a polymer layer 606. The lamination layer 604 can serve to bond together a bottom surface of the first glass layer 602 and a top surface of the polymer layer 606. The bonding provided using the lamination layer 604 is stronger than an adhesive bond (e.g., pressure sensitive adhesive).



FIG. 6B is a simplified view of a multi-layer housing structure 620 according to another embodiment. The multi-layer housing structure 620 includes two distinct glass layers and one polymer layer that are laminated together to form a multi-layer structure that can be used as part of a housing for an electronic device. The multi-layer housing structure 620 can include a glass layer 622 that can serves as an outer surface member for a portion of the multi-layer housing structure 620. A lamination layer 624 can be provided between the glass layer 622 and a second glass layer 626. The lamination layer 624 can serve to bond together a bottom layer of the first glass layer 622 and a top surface of the second class layer 626. In addition, a second lamination layer 628 can be provided between the second glass layer 626 and a polymer layer 630. The lamination layer 628 can serve to bond together a bottom layer of the second class layer 626 and a top layer of the polymer layer 630.



FIG. 6C is a simplified view of a multi-layer housing structure 640 according to another embodiment. The multi-layer housing structure 640 includes one glass layer and two distinct polymer layers that are laminated together to form a multi-layer structure that can be used as part of a housing for an electronic device. The multi-layer housing structure 640 can include a glass layer 642 that can serves as an outer surface member for a portion of the multi-layer housing structure 640. A lamination layer 644 can be provided between the glass layer 642 and a first polymer layer 646. The lamination layer 644 can serve to bond together a bottom layer of the first glass layer 642 and a top surface of the first polymer layer 646. In addition, a second lamination layer 648 can be provided between the first polymer layer 646 and a second polymer layer 650. The lamination layer 648 can serve to bond together a bottom layer of the first polymer layer 646 and a top layer of the second polymer layer 650.



FIG. 7 is a cross-sectional view of an electronic device housing 700 according to one embodiment. In one embodiment, the electronic device housing 700 can incorporate a multi-layer structure as discussed above.


The electronic device housing 700 includes a housing 702. The housing 702 include a side member 704 and a bottom member 706. A multi-layer translucent member 708 can be provided as a top surface for the electronic device housing 700. For example, the multi-layer translucent member 708 can be a multi-layer structure, often referred to as a cover glass, which can include at least one glass layer (glass member) and may also include at least one polymer-based layer (polymer-based member). For example, the polymer-based layer(s), if provided, can be formed of plastic. In different embodiment, the multi-layer translucent member 708 can be implemented as shown in FIGS. 1, 5 and 6A-6C.


The electronic device housing 700 can include a display screen assembly 710. The display screen assembly 710 can be secured to a bottom surface of the translucent member 708 by a layer of adhesive 812 (e.g., translucent adhesive). The display screen assembly 710 can include one or a plurality of distinct technology components that can be laminated together. In one implementation, the technology components can, for example, include a sensing layer (e.g., touch sensors), a display technology layer (e.g., LCD panel) and/or a backlight layer. In another implementation, the technology components can, for example, include an organic light emitting diode (OLED) panel with or without a sensing layer (e.g., touch sensors).


In addition, however, the electronic device housing 700 depicts one embodiment of the display screen assembly 710 has having at least three (3) distinct technology layers, namely, a Liquid Crystal Display (LCD) panel layer 710a (e.g., TFT LCD), a touch sensing layer 710b and a backlight layer 710c. These layers themselves can include multiple layers or additional layers can also be present, such as polarizers, color filters, etc.


An internal space 718 is provided internal to the electronic device housing 700 whereby various electrical components (e.g., including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.


In general, the various members, parts or assemblies of the electronic device housing 700 can be formed of any of a variety of materials, e.g., glass, polymers or metal. In one embodiment, the multi-layer translucent member 708 is at least partially formed of glass, and the housing 702 is formed from glass, polymer (e.g., plastic) or metal.


Additionally, it should be understood that one or more of the layers of the display screen assembly 710 could be integrated with the multi-layer translucent member 708. In one example, the LCD panel layer 710a could be integrated with the multi-layer translucent member 708 such as by being bonded (e.g., laminated) to the bottom surface of the multi-layer translucent member 708. In another example, the LCD panel layer 710a and the touch sensing layer 710b could be integrated with the multi-layer translucent member 708 such as by being successively bonded (e.g., laminated) to the bottom surface of the multi-layer translucent member 708. In still another example, the LCD panel layer 710a, the touch sensing layer 710b and the backlight layer 710c could be integrated with the multi-layer translucent member 708 such as by being successively bonded (e.g., laminated) to the bottom surface of the multi-layer translucent member 708. An adhesive layer can be used to secure any of the remaining layers of the display screen assembly 710 not integrated to the multi-layer translucent member 708 through lamination.



FIG. 8 is a perspective diagram of a handheld electronic device 800 according to one embodiment. The handheld electronic device 800 may include a housing 802, e.g., a periphery member, that is arranged to at least partially surround the periphery of the handheld electronic device 800 to form some or all of the outer-most side, top and bottom surfaces of the handheld electronic device 800. The handheld electronic device 800 also includes a cover piece 804 that is arranged to be substantially coupled to housing 802 to effectively enclose an inner volume of the handheld electronic device 800. The cover piece 804 may include a multi-layer transparent member 806, e.g., cover glass provided over a display of the handheld electronic device 800. In one embodiment, the cover piece 804 includes a protective frame 808 in which the multi-layer transparent member 806 is held. The multi-layer transparent member 806 can serve as the top surface of the housing 802. A display region 807 of the multi-layer transparent member 806 is that portion of the multi-layer transparent member 806 that corresponds to the display (e.g., active display region). Using the techniques described herein, the multi-layer transparent member 806 can include at least one glass layer and at least one transparent layer (glass or polymer) bonded together.


The housing 802 may have any suitable shape, including, for example, one or more elements that may be combined to form a rectangular structure. The housing 802 may at least partially enclose an inner volume in which electronic device components may be assembled and retained. The shape of the housing 802 may substantially define boundaries of the inner volume, and may be determined based upon the size and type of components placed within the inner volume.


The housing 802 may have any suitable size, and the size may be determined based on any suitable criteria. Suitable criteria may include, but are not limited to including, aesthetics or industrial design, structural considerations, components required for a desired functionality, and/or product design. The housing 802 may have any suitable cross-section, including for example a variable cross-section or a constant cross-section. In some embodiments, the cross-section may be selected based on desired structural properties for the housing 802. For example, the cross-section of housing 802 may be substantially rectangular, such that the height of the housing 802 is substantially larger than the width of the housing 802. Such a cross-sectional shape may provide structural stiffness in compression and tension, as well as in bending. In some embodiments, the dimensions of the housing 802 cross-section may be determined relative to the dimensions of the components contained by housing 802.


In some embodiments, the housing 802 may include features 810. The features 810 may generally include one or more openings, knobs, extensions, flanges, chamfers, or other features for receiving components or elements of the device. The features 810 of the housing 802 extend from any surface of housing 802, including for example from internal surfaces, e.g., to retain internal components or component layers, or from external surfaces. In particular, the housing 802 may include a slot or opening (not shown) for receiving a card or tray within the handheld electronic device 800. The housing 802 may also include a connector opening (not shown), e.g., for a 30-pin connector, through which a connector may engage one or more conductive pins of the handheld electronic device 800. Other features 810 included on the housing 802 may include, but are not limited to, an opening for providing audio to a user, an opening for receiving audio from a user, an opening for a connector (e.g., audio connector or power supply connector), and/or features for retaining and enabling a button such as a volume control or silencing switch.


As noted above, the electronic device can be a handheld electronic device or a portable electronic device. The invention can serve to enable a glass cover to be not only thin but also adequately strong. Since handheld electronic devices and portable electronic devices are mobile, they are potentially subjected to various different impact events and stresses that stationary devices are not subjected to. As such, the invention is well suited for implementation of glass surfaces for handheld electronic device or a portable electronic device that are designed to be thin.


The strengthened glass, e.g., glass covers or cover windows, is particularly useful for thin glass applications. For example, the thickness of a glass cover being strengthened can be between about 0.5-2.5 mm. In other embodiments, the strengthening is suitable for glass products whose thickness is less than about 2 mm, or even thinner than about 1 mm, or still even thinner than about 0.6 mm.


In one embodiment, the size of the glass cover depends on the size of the associated electronic device. For example, with handheld electronic devices, the size of the glass cover is often not more than five (5) inches (about 12.7 cm diagonal. As another example, for portable electronic devices, such as smaller portable computers or tablet computers, the size of the glass cover is often between four (4) (about 10.2 cm) to twelve (12) inches (about 30.5 cm) diagonal. As still another example, for portable electronic devices, such as full size portable computers, displays (including televisions) or monitors, the size of the glass cover is often between ten (10) (about 25.4 cm) to twenty (20) inches (about 50.8 cm) diagonal or even larger.


However, it should be appreciated that with larger screen sizes, the thickness of the glass layers may need to be greater. The thickness of the glass layers may need to be increased to maintain planarity of the larger glass layers. While the displays can still remain relatively thin, the minimum thickness can increase with increasing screen size. For example, the minimum thickness of the glass cover can correspond to about 0.3 mm for small handheld electronic devices, about 0.5 mm for smaller portable computers or tablet computers, about 1.0 mm or more for full size portable computers, displays or monitors, again depending on the size of the screen. However, more generally, the thickness of the glass cover can depend on the application and/or the size of electronic device.


As discussed above, glass cover or, more generally, a glass piece may be chemically treated such that surfaces of the glass are effectively strengthened. Through such strengthening, glass pieces can be made stronger so that thinner glass pieces can be used with consumer electronic device. Thinner glass with sufficient strength allows for consumer electronic device to become thinner.


The techniques describe herein may be applied to glass surfaces used by any of a variety of electronic devices including but not limited handheld electronic devices, portable electronic devices and substantially stationary electronic devices. Examples of these include any known consumer electronic device that includes a display. By way of example, and not by way of limitation, the electronic device may correspond to media players, mobile phones (e.g., cellular phones), PDAs, remote controls, notebooks, tablet PCs, monitors, all in one computers and the like.


In general, the steps associated with the methods described herein may vary widely. Steps may be added, removed, altered, combined, and reordered without departing from the spirit or the scope of the invention.


The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.


Additional details on strengthening edges of glass articles and/or different chemical baths can be found in: (i) U.S. Provisional Patent Application No. 61/156,803, filed Mar. 2, 2009 and entitled “TECHNIQUES FOR STRENGTHENING GLASS COVERS FOR PORTABLE ELECTRONIC DEVICES”, which is herein incorporated by reference; (ii) International Patent Application No. PCT/US2010/025979, filed Mar. 2, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference; (iii) U.S. Provisional Patent Application No. 61/374,988, filed Aug. 18, 2010, and entitled “ENHANCED STRENGTHENING OF GLASS”, which is hereby incorporated herein by reference; (iv) U.S. patent application Ser. No. 12/895,823, filed Sep. 30, 2010 and entitled “ENHANCED STRENGTHENING OF GLASS”; (v) U.S. patent application Ser. No. 12/895,372, filed Sep. 30, 2010 and entitled “TECHNIQUES FOR STRENGTHENING GLASS COVERS FOR PORTABLE ELECTRONIC DEVICES”, which is herein incorporated by reference; (vi) U.S. patent application Ser. No. 12/895,393, filed Sep. 30, 2010 and entitled “TECHNIQUES FOR STRENGTHENING GLASS COVERS FOR PORTABLE ELECTRONIC DEVICES”, which is herein incorporated by reference; (vii) Provisional Patent Application No. 61/301,585, filed Feb. 4, 2010 and entitled “TECHNIQUES FOR STRENGTHENING GLASS COVERS FOR PORTABLE ELECTRONIC DEVICES,” which is hereby incorporated herein by reference; (viii) U.S. Provisional Patent Application No. 61/410,290, filed Nov. 4, 2010, and entitled “ENHANCED STRENGTHENING OF GLASS”, which is hereby incorporated herein by reference; (ix) PCT International Application No. PCT/US2011/023499, filed Feb. 2, 2011, and entitled “ENHANCED CHEMICAL STRENGTHENING GLASS OF COVERS FOR PORTABLE ELECTRONIC DEVICES”, which is hereby incorporated herein by reference; (x) U.S. patent application Ser. No. 12/847,926, filed Jul. 30, 2010, and entitled “ELECTRONIC DEVICE HAVING SELECTIVELY STRENGTHENING GLASS COVER GLASS”, which is hereby incorporated herein by reference; (xi) U.S. Provisional Patent Application No. 61/453,404, filed Mar. 16, 2011, and entitled “ELECTRONIC DEVICE HAVING SELECTIVELY STRENGTHENED GLASS”, which is hereby incorporated herein by reference; and (xii) U.S. patent application Ser. No. 13/235,090, filed Sep. 16, 2011, and entitled “ELECTRONIC DEVICE HAVING SELECTIVELY STRENGTHENED GLASS”, which is hereby incorporated herein by reference.


Additional details on compact housing configurations for portable electronic device can be found in: (i) U.S. patent application Ser. No. 13/246,707, filed Sep. 27, 2011, and entitled “HOUSING FOR PORTABLE ELECTRONIC DEVICE WITH REDUCED BORDER REGION”, which is herein incorporated by reference; and (ii) U.S. patent application Ser. No. 13/246,697, filed Sep. 27, 2011, and entitled “HOUSING FOR PORTABLE ELECTRONIC DEVICE WITH REDUCED BORDER REGION”, which is herein incorporated by reference.


Although only a few embodiments of the invention have been described, it should be understood that the invention may be embodied in many other specific forms without departing from the spirit or the scope of the present invention. By way of example, the steps associated with the methods of the invention may vary widely. Steps may be added, removed, altered, combined, and reordered without departing from the spirit of the scope of the invention. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.


While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular embodiment of the disclosure. Certain features that are described in the context of separate embodiments can also be implemented in combination. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. A portable electronic device comprising: a display screen assembly; anda housing at least partially surrounding the display screen assembly and comprising: a first housing component comprising: a first layer formed from a first glass material, defining a front exterior surface of the housing positioned over the display screen assembly, and having a first chemically strengthened layer; anda second layer formed from a second glass material laminated with the first layer and having a second chemically strengthened layer that is different from the first chemically strengthened layer; anda second housing component coupled to the first housing component and defining a rear exterior surface of the housing.
  • 2. The portable electronic device of claim 1, wherein: the first chemically strengthened layer has a first depth along the front exterior surface of the housing; andthe second chemically strengthened layer has a second depth less than the first depth level.
  • 3. The portable electronic device of claim 2, wherein: the first chemically strengthened layer has a first compressive stress along the front exterior surface of the housing; andthe second chemically strengthened layer has a second compressive stress, greater than the first compressive stress, along a surface of the second layer.
  • 4. The portable electronic device of claim 1, wherein: the first housing component further comprises a third layer formed from a transparent polymer material; andthe third layer is laminated with the first layer and the second layer.
  • 5. The portable electronic device of claim 4, wherein the third layer is positioned below the first and second layers.
  • 6. The portable electronic device of claim 1, wherein the first glass material of the first layer is fused to the second glass material of the second layer.
  • 7. The portable electronic device of claim 1, wherein: the first glass material of the first layer is laminated to the second glass material of the second layer by a lamination layer; andthe lamination layer comprises a transparent polymer material.
  • 8. The portable electronic device of claim 7, wherein the transparent polymer material of the lamination layer comprises a polyvinyl butyral resin material.
  • 9. A portable electronic device comprising: a display screen assembly; anda housing enclosing the display screen assembly and comprising: a multi-layer housing component comprising: a first layer formed from a first glass material, defining an exterior surface of the housing, and having a first chemically strengthened region having a first depth of layer along the exterior surface; anda second layer formed from a second glass material coupled to the first layer and having a second chemically strengthened region having a second depth of layer less than the first depth of layer.
  • 10. The portable electronic device of claim 9, wherein: the first glass material of the first layer is coupled to the second glass material of the second layer by a lamination layer positioned between the first and second layers.
  • 11. The portable electronic device of claim 9, wherein the multi-layer housing component further comprises a polymer layer coupled to the second layer.
  • 12. The portable electronic device of claim 9, wherein the multi-layer housing component defines a display region positioned over the display screen assembly.
  • 13. The portable electronic device of claim 9, wherein: the display screen assembly comprises a touch sensing layer; andthe touch sensing layer is laminated to the multi-layer housing component.
  • 14. The portable electronic device of claim 9, wherein the multi-layer housing component defines a substantially transparent region.
  • 15. The portable electronic device of claim 9, wherein: the first layer has a first thickness that ranges between 0.5 mm and 1.0 mm; andthe second layer has a second thickness that ranges between 0.5 mm and 1.0 mm.
  • 16. The portable electronic device of claim 9, wherein: the multi-layer housing component is a first housing component defining a first portion of the exterior surface of the housing; andthe housing further comprises a second housing component coupled to the first housing component and defining a second portion of the exterior surface of the housing.
  • 17. An electronic device comprising: a display screen assembly; anda housing enclosing the display screen assembly and comprising: a laminated housing component comprising: a first glass layer defining a front exterior surface of the housing and a display region positioned over the display screen assembly, the first glass layer comprising a first chemically strengthened layer;a second glass layer laminated with the first glass layer, the second glass layer comprising a second chemically strengthened layer that is different than the first chemically strengthened layer; anda polymer layer formed from a transparent polymer material and laminated with the second glass layer, the display screen assembly attached to the polymer layer; anda rear housing component coupled to the laminated housing component and defining a rear exterior surface of the housing.
  • 18. The electronic device of claim 17, wherein first chemically strengthened layer is positioned along the front exterior surface of the housing.
  • 19. The electronic device of claim 17, wherein: the first glass layer is bonded to the second glass layer by a first lamination layer; andthe second glass layer is bonded to the polymer layer by a second lamination layer.
  • 20. The electronic device of claim 17, wherein the display screen assembly further comprises a touch sensing layer that is bonded to the second polymer layer.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation patent application of U.S. patent application Ser. No. 16/429,583, filed Jun. 3, 2019 and titled “Multi-Layer Transparent Structures for Electronic Device Housings,” which is a continuation patent application of U.S. patent application Ser. No. 15/338,157, filed Oct. 28, 2016 and titled “Multi-layer Transparent Structures for Electronic Device Housings,” now U.S. Pat. No. 10,320,959, which is a continuation patent application of U.S. patent application Ser. No. 13/249,038, filed Sep. 29, 2011 and titled “Multi-layer Transparent Structures for Electronic Device Housings,” now U.S. Pat. No. 9,516,149, the disclosures of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (273)
Number Name Date Kind
2643020 Dalton Jun 1953 A
3415637 Glynn Dec 1968 A
3441398 Hess Apr 1969 A
3467508 Loukes et al. Sep 1969 A
3498773 Due et al. Mar 1970 A
3558415 Rieser et al. Jan 1971 A
3626723 Plumat Apr 1971 A
3607172 Poole et al. Sep 1971 A
3619240 Toussaint et al. Nov 1971 A
3652244 Plumat Mar 1972 A
3753840 Plumat Aug 1973 A
3798013 Inoue et al. Mar 1974 A
3843472 Toussaint et al. Oct 1974 A
3857689 Koizumi et al. Dec 1974 A
3926605 Kunkle Dec 1975 A
3951707 Kurtz et al. Apr 1976 A
4015045 Rinehart Mar 1977 A
4052184 Anderson Oct 1977 A
4119760 Rinehart Oct 1978 A
4130684 Little, Jr. et al. Dec 1978 A
4156755 Rinehart May 1979 A
4165228 Ebata et al. Aug 1979 A
4148082 Ganswein et al. Dec 1979 A
4212919 Hoda Jul 1980 A
4218230 Hogan Aug 1980 A
4277299 Cherenko et al. Jul 1981 A
4277538 Beckmann et al. Jul 1981 A
4346601 France Aug 1982 A
4353649 Kishii Oct 1982 A
4393700 Fabian Jul 1983 A
4425810 Simon et al. Jan 1984 A
4537820 Nowobliski et al. Aug 1985 A
4646722 Silverstein et al. Mar 1987 A
4733973 Machak et al. Mar 1988 A
4824722 Jarrett Apr 1989 A
4842629 Clemens et al. Jun 1989 A
4844724 Sakai et al. Jul 1989 A
4846868 Aratani Jul 1989 A
4849002 Rapp Jul 1989 A
4855186 Grolig et al. Aug 1989 A
4872896 LaCourse et al. Oct 1989 A
4911743 Brinkmann et al. Mar 1990 A
4937129 Yamazaki Jun 1990 A
4946523 Meussner Aug 1990 A
4957364 Chesler Sep 1990 A
4959548 Kupperman et al. Sep 1990 A
4983197 Froning et al. Jan 1991 A
4986130 Engelhaupt et al. Jan 1991 A
4999071 Nakamura et al. Mar 1991 A
5041173 Shikata et al. Aug 1991 A
5104435 Oikwawa et al. Apr 1992 A
5129934 Koss Jul 1992 A
5157746 Tobita et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5238743 Grolig et al. Aug 1993 A
5254149 Hashemi et al. Oct 1993 A
5269888 Morasca Dec 1993 A
5281303 Beguin et al. Jan 1994 A
5369267 Johnson et al. Nov 1994 A
5411563 Yeh May 1995 A
5437193 Schleitweiler et al. Aug 1995 A
5445871 Murase et al. Aug 1995 A
5483261 Yasutake Jan 1996 A
5488204 Mead et al. Jan 1996 A
5525138 Hashemi et al. Jun 1996 A
5625154 Matsuhiro et al. Apr 1997 A
5654057 Kitayama Aug 1997 A
5725625 Kitayama et al. Mar 1998 A
5733622 Starcke et al. Mar 1998 A
5766493 Shin Jun 1998 A
5780371 Rifqi et al. Jul 1998 A
5816225 Koch et al. Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5826601 Muraoka et al. Oct 1998 A
5835079 Shieh Nov 1998 A
5880411 Gillespie et al. Mar 1999 A
5880441 Gillespie et al. Mar 1999 A
5930047 Gunz et al. Jul 1999 A
5953094 Matsuoka et al. Sep 1999 A
5985014 Ueda et al. Nov 1999 A
6050870 Suginoya et al. Apr 2000 A
6114039 Rifqui Sep 2000 A
6120908 Papanu et al. Sep 2000 A
6159608 Friedmand et al. Dec 2000 A
6166915 Lake et al. Dec 2000 A
6188391 Seely et al. Feb 2001 B1
6245313 Suzuki et al. Jun 2001 B1
6261398 Costa Jul 2001 B1
6287674 Verlinden et al. Sep 2001 B1
6307590 Yoshida Oct 2001 B1
6310610 Beaton et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6325704 Brown et al. Dec 2001 B1
6327011 Kim Dec 2001 B2
6350664 Haji et al. Feb 2002 B1
6393180 Farries et al. May 2002 B1
6429840 Sekiguchi Aug 2002 B1
6437867 Zeylikovich et al. Aug 2002 B2
6516634 Green et al. Feb 2003 B1
6521862 Brannon Feb 2003 B1
6621542 Aruga Sep 2003 B1
6690387 Zimmerman et al. Feb 2004 B2
6718612 Bajorek Apr 2004 B2
6769274 Cho et al. Aug 2004 B2
6772610 Albrand et al. Aug 2004 B1
6810688 Duisit et al. Nov 2004 B1
6936741 Munnig et al. Aug 2005 B2
6955971 Ghyselen et al. Oct 2005 B2
7012700 De Groot et al. Mar 2006 B2
7013709 Hajduk et al. Mar 2006 B2
7015894 Morohoshi Mar 2006 B2
7070837 Ross Jul 2006 B2
7165362 Jobs et al. Jan 2007 B2
7166531 van den Hoek et al. Jan 2007 B1
7184064 Zimmerman et al. Feb 2007 B2
7201965 Gulati et al. Apr 2007 B2
7261943 Fugiel et al. Aug 2007 B2
7461564 Glaesmann Dec 2008 B2
7558054 Prest et al. Jul 2009 B1
7626807 Hsu Dec 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7810355 Feinstein et al. Oct 2010 B2
7872644 Hong et al. Jan 2011 B2
7918019 Chang et al. Apr 2011 B2
7966785 Zadesky et al. Jun 2011 B2
8013834 Kim Sep 2011 B2
8110268 Hegemier et al. Feb 2012 B2
8111248 Lee et al. Feb 2012 B2
8123897 Kimura et al. Feb 2012 B2
8196636 Sung et al. Jun 2012 B2
8278379 Toyama et al. Oct 2012 B2
8312743 Pun et al. Nov 2012 B2
8315043 Lynch et al. Nov 2012 B2
8391010 Rothkopf Mar 2013 B2
8393175 Kohli et al. Mar 2013 B2
8551283 Pakula et al. Oct 2013 B2
8673163 Zhong Mar 2014 B2
8684613 Weber et al. Apr 2014 B2
8824140 Prest Sep 2014 B2
20020035853 Brown et al. Mar 2002 A1
20020105793 Oda Aug 2002 A1
20020155302 Smith et al. Oct 2002 A1
20020157199 Piltingsrud Oct 2002 A1
20030024274 Cho et al. Feb 2003 A1
20030057183 Cho et al. Mar 2003 A1
20030077453 Oaku et al. Jul 2003 A1
20030234771 Mulligan et al. Dec 2003 A1
20040051944 Stark Mar 2004 A1
20040119701 Mulligan et al. Jun 2004 A1
20040137828 Takashashi et al. Jul 2004 A1
20040142118 Takechi Jul 2004 A1
20040163414 Eto et al. Aug 2004 A1
20050058423 Brinkmann et al. Mar 2005 A1
20050105071 Ishii May 2005 A1
20050135724 Helvajian et al. Jun 2005 A1
20050174525 Tsuboi Aug 2005 A1
20050193772 Davidson et al. Sep 2005 A1
20050245165 Harada et al. Nov 2005 A1
20050259438 Mizutani Nov 2005 A1
20050285991 Yamazaki Dec 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060055936 Yun et al. Mar 2006 A1
20060063351 Jain Mar 2006 A1
20060070694 Rehfeld et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060197753 Hotelling et al. Sep 2006 A1
20060227331 Wollmer et al. Oct 2006 A1
20060238695 Miyamoto Oct 2006 A1
20060250559 Bocko et al. Nov 2006 A1
20060268528 Zadesky et al. Nov 2006 A1
20060292822 Xie Dec 2006 A1
20060294420 Schneider Dec 2006 A1
20070003796 Isono et al. Jan 2007 A1
20070013822 Kawata et al. Jan 2007 A1
20070029519 Kikuyama et al. Feb 2007 A1
20070030436 Sasabayashi Feb 2007 A1
20070039353 Kamiya Feb 2007 A1
20070046200 Fu et al. Mar 2007 A1
20070063876 Wong Mar 2007 A1
20070089827 Funatsu Apr 2007 A1
20070122542 Halsey et al. May 2007 A1
20070132737 Mulligan et al. Jun 2007 A1
20070196578 Karp et al. Aug 2007 A1
20070236618 Magg et al. Oct 2007 A1
20080020919 Murata Jan 2008 A1
20080026260 Kawai Jan 2008 A1
20080074028 Ozolins et al. Mar 2008 A1
20080094716 Ushiro et al. Apr 2008 A1
20080135157 Higuchi Jun 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080202167 Cavallaro et al. Aug 2008 A1
20080230177 Crouser et al. Sep 2008 A1
20080243321 Walser et al. Oct 2008 A1
20080251057 Slobodin Oct 2008 A1
20080264176 Bertrand et al. Oct 2008 A1
20080286548 Ellison et al. Nov 2008 A1
20090046240 Bolton Feb 2009 A1
20090049773 Zadesky et al. Feb 2009 A1
20090067141 Dabov et al. Mar 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090096937 Bauer et al. Apr 2009 A1
20090100872 Hawtof et al. Apr 2009 A1
20090153729 Hiltunen et al. Jun 2009 A1
20090162703 Kawai Jun 2009 A1
20090197048 Glaesemann et al. Aug 2009 A1
20090220761 Dejneka et al. Sep 2009 A1
20090257189 Wang et al. Oct 2009 A1
20090311497 Aoki Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20090324939 Feinstein et al. Dec 2009 A1
20100009154 Allan et al. Jan 2010 A1
20100024484 Kashima Feb 2010 A1
20100028607 Lee et al. Feb 2010 A1
20100035038 Barefoot et al. Feb 2010 A1
20100053632 Alphonse et al. Mar 2010 A1
20100062284 Watanabe et al. Mar 2010 A1
20100119846 Sawada May 2010 A1
20100137031 Griffin et al. Jun 2010 A1
20100154992 Feinstein et al. Jun 2010 A1
20100167059 Hasimoto et al. Jul 2010 A1
20100171920 Nishiyama Jul 2010 A1
20100179044 Sellier et al. Jul 2010 A1
20100206008 Harvey et al. Aug 2010 A1
20100215862 Gomez et al. Aug 2010 A1
20100216514 Smoyer et al. Aug 2010 A1
20100224767 Kawano et al. Sep 2010 A1
20100265188 Chang et al. Oct 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100285275 Baca et al. Nov 2010 A1
20100296027 Matsuhira et al. Nov 2010 A1
20100315570 Dinesh et al. Dec 2010 A1
20100321305 Chang et al. Dec 2010 A1
20110003619 Fujii Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110019354 Prest et al. Jan 2011 A1
20110030209 Chang et al. Feb 2011 A1
20110063550 Gettemy et al. Mar 2011 A1
20110067447 Zadesky et al. Mar 2011 A1
20110072856 Davidson et al. Mar 2011 A1
20110102346 Orsley et al. May 2011 A1
20110149321 Eda et al. Jun 2011 A1
20110164372 McClure et al. Jul 2011 A1
20110182084 Tomlinson Jul 2011 A1
20110186345 Pakula et al. Aug 2011 A1
20110188846 Sorg Aug 2011 A1
20110199687 Sellier et al. Aug 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110255000 Weber et al. Oct 2011 A1
20110255250 Dinh Oct 2011 A1
20110267833 Verrat-Debailleul et al. Nov 2011 A1
20110279383 Wilson et al. Nov 2011 A1
20110300908 Grespan et al. Dec 2011 A1
20120018323 Johnson et al. Jan 2012 A1
20120227399 Yeates Feb 2012 A1
20120099113 de Boer et al. Apr 2012 A1
20120105400 Mathew et al. May 2012 A1
20120118628 Pakula et al. May 2012 A1
20120135195 Glaesemann et al. May 2012 A1
20120136259 Milner et al. May 2012 A1
20120151760 Steijner Jun 2012 A1
20120188743 Wilson et al. Jul 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120202040 Barefoot et al. Aug 2012 A1
20120236477 Weber et al. Sep 2012 A1
20120236526 Weber et al. Sep 2012 A1
20120281381 Sanford Nov 2012 A1
20120328843 Cleary et al. Dec 2012 A1
20130071601 Bibl et al. Mar 2013 A1
20130083506 Wright et al. Apr 2013 A1
20130182259 Brezinski et al. Jul 2013 A1
20130213565 Lee et al. Aug 2013 A1
20140176779 Weber et al. Jun 2014 A1
Foreign Referenced Citations (119)
Number Date Country
283630 Oct 1970 AT
1277090 Dec 2000 CN
136449 Sep 2002 CN
1694589 Nov 2005 CN
101025502 Aug 2007 CN
101206314 Jun 2008 CN
101523275 Feb 2009 CN
101465892 Jun 2009 CN
102131357 Jul 2011 CN
101267509 Aug 2011 CN
1322339 Nov 2011 CN
202799425 Mar 2013 CN
1496586 Jun 1969 DE
1771268 Dec 1971 DE
3212612 Oct 1983 DE
10322350 Dec 2004 DE
1038663 Sep 2000 EP
1206422 Nov 2002 EP
1592073 Nov 2005 EP
1593658 Nov 2005 EP
2025556 Feb 2009 EP
2036867 Mar 2009 EP
2075237 Jul 2009 EP
2196870 Jun 2010 EP
2233447 Sep 2010 EP
2483216 Aug 2012 EP
2635540 Sep 2013 EP
2797627 Feb 2001 FR
2801302 May 2001 FR
1346747 Feb 1974 GB
S42011599 Jun 1963 JP
S48006925 Mar 1973 JP
S5537451 Mar 1980 JP
S5567529 May 1980 JP
S5595645 Jul 1980 JP
S55136979 Oct 1980 JP
S55144450 Nov 1980 JP
S59013638 Jan 1984 JP
S5937451 Feb 1984 JP
S61097147 May 1986 JP
6066696 Oct 1986 JP
S6360129 Mar 1988 JP
S63222234 Sep 1988 JP
H0532431 Feb 1993 JP
H05249422 Sep 1993 JP
6242260 Sep 1994 JP
H07050144 Feb 1995 JP
H09073072 Mar 1997 JP
S5231757 Mar 1997 JP
H09507206 Jul 1997 JP
09312245 Dec 1997 JP
2000086261 Mar 2000 JP
2000163031 Jun 2000 JP
200203895 Jul 2000 JP
2001083887 Mar 2001 JP
2002160932 Jun 2002 JP
2002338283 Nov 2002 JP
2002342033 Nov 2002 JP
2003502257 Jan 2003 JP
2003146705 May 2003 JP
2004094256 Mar 2004 JP
2004259402 Sep 2004 JP
2004339019 Dec 2004 JP
2005140901 Jun 2005 JP
2005156249 Jun 2005 JP
2005156766 Jun 2005 JP
2009234856 Jun 2005 JP
2007099557 Apr 2007 JP
2008001590 Jan 2008 JP
2008007360 Jan 2008 JP
2008063166 Mar 2008 JP
2008066126 Mar 2008 JP
2008192194 Aug 2008 JP
2008195602 Aug 2008 JP
2008216938 Sep 2008 JP
2008306149 Dec 2008 JP
2009167086 Jul 2009 JP
2008196602 Oct 2009 JP
2009230341 Oct 2009 JP
2010060908 Mar 2010 JP
2010064943 Mar 2010 JP
2010116276 May 2010 JP
2010195600 Sep 2010 JP
2010237493 Oct 2010 JP
2011032124 Feb 2011 JP
2011032140 Feb 2011 JP
2011158799 Aug 2011 JP
2011231009 Nov 2011 JP
2011527661 Nov 2011 JP
2013537723 Oct 2013 JP
20060005920 Jan 2006 KR
20100019526 Feb 2010 KR
20110030919 Mar 2011 KR
201007521 Feb 2010 TW
201235744 Sep 2012 TW
WO0047529 Aug 2000 WO
WO0242838 May 2002 WO
WO2004014109 Feb 2004 WO
WO2004061806 Jul 2004 WO
WO2004106253 Dec 2004 WO
WO2007089054 Aug 2007 WO
WO2008044694 Apr 2008 WO
WO2008143999 Nov 2008 WO
WO2009003029 Dec 2008 WO
WO2009078406 Jun 2009 WO
WO2009099615 Aug 2009 WO
WO2009102326 Aug 2009 WO
WO2009125133 Oct 2009 WO
WO2010005578 Jan 2010 WO
WO2010014163 Feb 2010 WO
WO2010019829 Feb 2010 WO
WO2010080988 Jul 2010 WO
WO2010101961 Sep 2010 WO
WO2011008433 Jan 2011 WO
WO2011041484 Apr 2011 WO
WO2012015960 Feb 2012 WO
WO2012027220 Mar 2012 WO
WO2012106280 Aug 2012 WO
WO2013106242 Jul 2013 WO
Non-Patent Literature Citations (14)
Entry
Aben, “Laboratory of Photoelasticity,” Institute of Cybernetics at TTU, www.ioc.ee/res/photo.html, Oct. 5, 2000.
Author Unknown, “Chemically Strengthened Glass,” Wikipedia, Apr. 19, 2009.
Author Unknown, “iPhone 4,” Wikipedia, 17 pages, Jan. 4, 2012.
Author Unknown, “Toward Making Smart Phone Touch-Screens More Glare and Smudge Resistant,” e! Science News, http://escienscenews.com/articles/2009/08/19toward.making.smart.phone.touch.screens.more.glare.and.smudge.resistant, 1 page, Aug. 19, 2009.
Forooghian et al., Investigative Ophthalmology & Visual Science, vol. 49, No. 10, Oct. 2008.
Karlsson et al., “The Technology of Chemical Glass Strengthening—a review,” Glass Technology, European Jounral of Glass Science and Technology, vol. 51, No. 2, pp. 41-54, Apr. 2010.
Kingery et al., “Introduction to Ceramics,” 2nd Edition, John Wiley & Sons, pp. 792 and 833-844, 1976.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25, Apr. 1985.
Mehrl et al., “Designer's Notebook: Proximity Detection IR LED and Optical Crosstalk,” http://ams.com/eng/content/view/download/145137, 5 pages, Aug. 1, 2011.
Ohkuma, “Development of a Manufacturing Process of a Thin, Lightweight LCD Cell,” Department of Cell Process Development, IBM, Japan, Section 13.4.
Rubin, “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages, Dec. 1991.
Rubin, “Combining Gestures and Direct Manipulation,” CHI'92, pp. 659-660, May 1992.
Varshneya, Arun K., Chemical Strengthening of Glass: Lessons Learned and Yet to be Learned International Journal of Applied Glass Science, pp. 131-142, 2010.
Westerman, “Hand Tracking, Finger Identification and Chordic Manipulation of a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Electrical Engineering, 364 pages, Spring 1999.
Related Publications (1)
Number Date Country
20200153949 A1 May 2020 US
Continuations (3)
Number Date Country
Parent 16429583 Jun 2019 US
Child 16740522 US
Parent 15338157 Oct 2016 US
Child 16429583 US
Parent 13249038 Sep 2011 US
Child 15338157 US