Multi-layered inductor array

Information

  • Patent Grant
  • 6437677
  • Patent Number
    6,437,677
  • Date Filed
    Thursday, September 28, 2000
    23 years ago
  • Date Issued
    Tuesday, August 20, 2002
    22 years ago
Abstract
A multi-layered inductor array is constructed to reduce and minimize variations in the inductance values and DC resistance values of a plurality of inductors contained in a multi-layered structure. In this multi-layered inductor array, four spiral inductors having an equal number of winding turns are aligned from the left end surface of the multi-layered structure to the right end surface thereof. In the direction in which the four spiral inductors are aligned, the lengths of the spiral portions of the inductors positioned at the central portion of the multi-layered structure are greater than those of the spiral portions of the spiral inductors positioned at both end portions thereof.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a multi-layered inductor array including a plurality of inductors.




2. Description of the Related Art




A conventional multi-layered inductor array


1


is shown in FIG.


5


. The multi-layered inductor array


1


includes magnetic sheets


2


having coil conductors


3




a


to


6




e


provided thereon. The coil conductors


3




a


to


3




e


are electrically connected in series to each other through via-holes


12


formed in the magnetic sheets


2


to define a spiral inductor L


1


. Similarly, coil conductors


4




a


to


4




e


,


5




a


to


5




e


, and


6




a


to


6




e


are also electrically connected in series to each other through the via-holes


12


formed in the magnetic sheets


2


to define spiral inductors L


2


, L


3


, and L


4


, respectively.




The individual magnetic sheets


2


, as shown in

FIG. 5

, are laminated together, and on the upper and lower portions of the laminated magnetic sheets


2


, magnetic cover sheets (not shown) having no conductors provided on the surfaces thereof are disposed. Then, the laminated magnetic sheets


2


are integrally fired to define a multi-layered structure


15


as shown in FIG.


6


. On the front and back side-surfaces of the multi-layered structure


15


, external electrodes


21




a


to


24




a


and


21




b


to


24




b


of the inductors L


1


to L


4


are disposed, respectively.




In the multi-layered inductor array


1


, to reduce the size of the inductor array


1


, when the inductors L


1


to L


4


are arranged close to each other in the multi-layered structure


15


, independence between the magnetic paths of the inductors L


1


to L


4


is reduced, and as a result, magnetic couplings between the inductors L


1


to L


4


occur. Thus, the inductors L


1


to L


4


in the multi-layered structure


15


have different inductance values.




As shown in

FIG. 7

, since the magnetic paths of the spiral inductors L


1


and L


4


disposed on the right and left end surfaces of the multi-layered structure


15


are narrower at the end surfaces thereof, the inductance values of the inductors L


1


and L


4


are reduced. To solve this problem, the number of winding turns of the spiral inductors L


1


and L


4


is increased as compared to that of the spiral inductors L


2


and L


3


, and the diameters of the spiral portions of the inductors L


1


and L


4


are increased as compared to those of the inductors L


2


and L


3


, to compensate for the reduction of the inductance values. However, since the lengths of the coil conductors of the inductors L


1


and L


4


are different from the lengths of the coil conductors of the inductors L


2


and L


3


, the DC resistance values of the inductors L


1


to L


4


differ.




SUMMARY OF THE INVENTION




In order to overcome the above-described problems, preferred embodiments of the present invention provide a multi-layered inductor array that minimizes variations in the inductance values and DC resistance values of three or more inductors provided in a multi-layered structure.




According to a preferred embodiment of the present invention, a multi-layered inductor array includes a multi-layered structure defined by a laminated body of a plurality of magnetic layers and a plurality of coil conductors, at least three spiral inductors provided by electrically connecting the coil conductors to be aligned inside the multi-layered structure, and external electrodes disposed on surfaces of the multi-layered structure that are electrically connected to leading end portions of the plurality of spiral inductors. In this multi-layered inductor array, the plurality of spiral inductors have an equal number of winding turns, and, in the direction in which the spiral inductors are aligned, the lengths of the spiral portions of the inductors positioned at both end portions of the multi-layered structure shorter than the length of the spiral portion of the remaining spiral inductor.




Because magnetic paths of the spiral inductors positioned at both end portions of the multi-layered structure are narrow on the end surfaces thereof, the inductance values of the inductors is reduced. However, since the lengths of the spiral portions of these inductors positioned at both end portions of the multi-layered structure are shorter than the length of the spiral portion of the remaining inductor, the inductance values of the spiral portion of the remaining inductor is adjusted to also be reduced. Thus, variations in the inductance values between the spiral inductors are greatly suppressed.




Other features, elements, characteristics and advantages of preferred embodiments of the present invention will become apparent from the following detailed description of preferred embodiments thereof with reference to the attached drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an exploded perspective view of a multi-layered inductor array according to a first preferred embodiment of the present invention;





FIG. 2

is a perspective view of the appearance of the multi-layered inductor array shown in

FIG. 1

;





FIG. 3

is a sectional view taken along line III—III in the multi-layered inductor array shown in

FIG. 2

;





FIG. 4

is an exploded perspective view of a multi-layered inductor array according to a second preferred embodiment of the present invention;





FIG. 5

is an exploded perspective view showing the structure of a conventional multi-layered inductor array;





FIG. 6

is a perspective view of the appearance of the multi-layered inductor array shown in

FIG. 5

; and





FIG. 7

is a sectional view taken along line VII—VII in the multi-layered inductor array shown in FIG.


6


.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




As shown in

FIG. 1

, a multi-layered inductor array


31


according to a first preferred embodiment of the present invention includes substantially rectangular magnetic sheets


32


having coil conductors


34




a


,


35




a


,


33




a


,


36




a


,


33




b


to


36




b


,


33




c


to


36




c


(see FIG.


3


),


33




d


to


36




d


(see FIG.


3


),


33




e


,


36




e


,


34




e


, and


35




e


provided thereon. The coil conductors


33




a


to


36




e


are provided on the surfaces of the magnetic sheets


32


by printing, spattering, evaporation, or other suitable methods. The coil conductors


33




a


to


36




e


are preferably made of Ag, Ag—pd, Cu, Ni, or other suitable material. The magnetic sheets


32


preferably include a magnetic material, such as ferrite, or other suitable magnetic material.




The coil conductors


33




a


to


33




e


are electrically connected in series to each other through via-holes


42


disposed on the magnetic sheets


32


to define a spiral inductor L


1


having approximately 3.5 winding turns. Similarly, the coil conductors


34




a


to


34




e


,


35




a


to


35




e


,


36




a


to


36




e


are also electrically connected in series to each other through the via-holes


42


disposed on the magnetic sheets


32


to define spiral inductors L


2


, L


3


, and L


4


having approximately 3.5 winding turns.




The spiral inductors L


1


and L


2


are wound in a clockwise direction, while the spiral inductors L


3


and L


4


are wound in a counterclockwise direction. In other words, patterns of the coil conductors


33




a


to


33




e


and


34




a


to


34




e


forming the inductors L


1


and L


2


and patterns of the coil conductors


35




a


to


35




e


and


36




a


to


36




e


forming the inductors L


3


and L


4


are positioned symmetrically on the sheets


32


.




An end portion of the inductor L


1


, that is, a leading conductor


38




a


connected to the coil conductor


33




a


, is exposed on the left side portion of the front edge portion of the sheet


32


. The other end portion thereof, that is, a leading conductor


38




b


connected to the coil conductor


33




e


, is exposed on the left side portion of the back edge portion of the sheet


32


. An end portion of the inductor L


2


, that is, a leading conductor


39




a


nnected to the coil conductor


34




a


, is exposed close to the left side of the center portion of the front edge portion of the sheet


32


. The other end portion thereof, that is, a leading conductor


39




b


connected to the coil conductor


34




e


, is exposed close to the left side of the center portion of the back edge portion of the sheet


32


. An end portion of the inductor L


3


, that is, a leading conductor


40




a


connected to the coil conductor


35




a


, is exposed close to the right side of the center portion of the front edge portion of the sheet


32


. The other end portion thereof, that is, a leading conductor


40




b


connected to the coil conductor


35




e


is exposed close to the right side of the center portion of the back edge portion of the sheet


32


. An end portion of the inductor L


4


, that is, a leading conductor


41




a


connected to the coil conductor


36




a


, is exposed on the right side portion of the front edge portion of the sheet


32


, and the other end portion thereof, that is, a leading conductor


41




b


connected to the coil conductor


36




e


, is exposed on the right side portion of the back edge portion of the sheet


32


.




As shown in

FIG. 1

, the above-described magnetic sheets


32


are laminated together, and on the upper and lower portions of the laminated magnetic sheets, magnetic cover sheets (not shown) having no conductors provided thereon are disposed. Then, the laminated magnetic sheets are integrally fired to form a multi-layered structure


45


as shown in FIG.


2


. On the front and back surfaces of the multi-layered structure


45


, external electrodes


46




a


to


49




a


and


46




b


to


49




b


of the inductors L


1


to L


4


are provided. The external electrodes


46




a


to


49




a


are electrically connected to the leading conductors


38




a


to


41




a


on the one side portion of the inductors L


1


to L


4


. The external electrodes


46




b


to


49




b


are electrically connected to the leading conductors


38




b


to


41




b


on the other side portion of the inductors L


1


to L


4


. The external electrodes


46




a


to


49




a


and


46




b


to


49




b


are provided by firing or wet-plating after applying a conductive paste material such as Ag, Ag—Pd, Cu, Ni or other suitable material.




In the multi-layered inductor array


31


as shown in

FIG. 3

, the four spiral inductors L


1


to L


4


are aligned from the left end surface


45




a


to the right end surface


45




b


inside the multi-layered structure


45


. In the direction in which the spiral inductors L


1


to L


4


are aligned, the lengths b of the spiral portions of the inductors L


2


and L


3


positioned at the central portion of the multi-layered structure


45


are greater than the lengths a of the spiral portions of the inductors L


1


and L


4


positioned at the left and right end portions of the multi-layered structure


45


. When the lengths of the spiral parts of the inductors are increased while the numbers of winding turns thereof are equal, the leakage fluxes of the inductors are greatly increased, thus the inductance values thereof are greatly reduced.




The effective area of the magnetic path of the spiral inductor L


1


is reduced on the left end surface


45




a


of the multi-layered structure


45


. The effective area of the magnetic path of the spiral inductor L


4


is reduced on the right end surface


45




b


of the multi-layered structure


45


. As a result, the inductance value of each of the inductors L


1


and L


4


is greatly reduced. When the lengths b of the spiral portions of the inductors L


2


and L


3


are greater than the lengths a of the spiral portions of the inductors L


1


and L


4


, the inductance-lowering rate of the inductors L


2


and L


3


is substantially equal to the inductance-lowering rate of the inductors L


1


and L


4


. As a result, in the multi-layered inductor array


31


, variations in the inductance values of the inductors L


1


to L


4


are greatly reduced.




The inductance-lowering rate of the spiral inductors L


2


and L


3


can be adjusted by varying the thickness of the magnetic sheet


32


having the coil conductors


34




a


and


35




a


provided thereon and the thickness of the magnetic sheet


32


having the coil conductors


33




e


and


36




e


provided thereon. With this arrangement, variations in the inductance values are easily adjusted. In addition, it is not necessary to provide an additional coil conductor pattern in an inductor array and to prepare a jig such as a molding metal die for a via-hole


42


.




Furthermore, it is not necessary to change the diameter of the coil and the number of winding turns of the coil in each of the inductors L


1


to L


4


, and the lengths of the coil conductors of the inductors L


1


to L


4


are substantially equal. Thus, the DC resistance values of the inductors L


1


to L


4


do not differ.




As shown in

FIG. 4

, a multi-layered inductor array


51


in accordance with a second preferred embodiment of the present invention has substantially the same structure as the multi-layered inductor array


31


shown in

FIGS. 1

to


3


, in which the coil conductors


33




a


to


33




e


,


34




a


to


34




e


,


35




a


to


35




e


, and


36




a


to


36




e


defining the inductors L


1


, L


2


, L


3


, and L


4


, respectively, are arranged in the same direction on the sheets


32


. However, in the multi-layered inductor array


51


of the second preferred embodiment, the coil conductors


33




e


to


36




e


are provided on the same magnetic sheet


32


. In other words, in the inductor array


51


, the coil conductors


34




a


and


35




a


positioned on the upper portions of the inductors L


2


and L


3


are provided on a different magnetic sheet


32


from that on which the coil conductors


33




a


and


36




a


are provided. With this arrangement, the lengths b of the spiral portions of the inductors L


2


and L


3


are greater than the lengths a of the spiral portions of the inductors L


1


and L


4


. However, alternatively, the lengths b may be greater than the lengths a by providing the coil conductors


33




a


to


36




a


on the same magnetic sheet


32


while providing the coil conductors


34




e


and


35




e


on the lower portions of the inductors L


2


and L


3


on a different sheet


32


from that on which the coil conductors


33




e


and


36




e


are provided.




The multi-layered inductor array


51


provides the same effects and advantages as those obtained in the multi-layered inductor array


31


according to the first preferred embodiment. In addition, the coil conductors


33




a


to


36




e


having the same configuration are arranged on the same sheet


32


, and via-holes


42


are provided at substantially equal distances. As a result, when the via-holes


42


are provided by a molding metal die or other suitable device, it is not necessary to determine the limit value of the distance between the via-holes


42


when forming the via-holes


42


. Therefore, unlike via-holes that are not formed at equal distances, the present invention produces much smaller inductor arrays. Moreover, since the coil conductors


33




a


to


36




e


having the same configuration are arranged, when the coil conductors


33




a


to


36




e


are printed on the same sheet


32


, variations of printing, such as spreading or deviations are greatly reduced between the coil conductors


33




e


to


36




e


.




The multi-layered inductor array in accordance with the present invention is not restricted to the above-described preferred embodiments. Various modifications and changes can be made within the scope of the invention. For example, the number of inductors contained in the multi-layered structure may be three, five, or more.




Furthermore, in the above-described preferred embodiments, although magnetic sheets having patterns provided thereon are laminated to be integrally fired, the magnetic sheets may be fired in advance before being laminated. In addition, the inductor array of the present invention may be produced by a method, which will be described as follows. After providing a magnetic layer formed of a paste magnetic material by printing or other suitable method, on a surface of the magnetic layer, a paste conductive pattern is applied to form an arbitrary pattern. Then, on the arbitrary pattern, the paste magnetic material is again applied to form a magnetic layer containing the pattern. Similarly, by repeating the application procedures in sequence, an inductor array having a multi-layered structure is obtained.




Under the conditions described below, Table 1 shows variations in the inductance values of the multi-layered inductor array


31


(sample A) shown in

FIGS. 1

to


3


. Table 1 also shows variations in the inductance values of the conventional multi-layered inductor array


1


shown in

FIGS. 5

to


7


for comparison. In the conventional example and the sample A shown in Table 1, trial models having spiral inductors with different numbers of winding turns were produced, and the inductance values of the models were measured to be corrected under the condition of 3.5 turns as the number of winding turns.




Dimensions of chip: 3.2 mm×1.6 mm×0.8 mm




Pattern width of coil conductor: 120μm (when printed)




Thickness of coil conductor: 15 μm (when printed)




Thickness of magnetic sheet: 50 μm (when printed)















TABLE 1













INDUCTANCE VALUE AT




VARIATION IN







1 MHz (μH)




INDUCTANCE

















L1




L2




L3




L4




VALUE (%)




















SAMPLE A




1.578




1.593




1.593




1.568




1.6






CONVENTIONAL




1.574




1.779




1.778




1.570




12.5






EXAMPLE














In Table 1, the variations in the inductance values were obtained by the following formula:






{(Lmax−Lmin)/Lx}×100






Lmax: maximum inductance value




Lmin: minimum inductance value




Lx: inductance average value




Table 1 shows that the variation in the inductance values of the sample A is greatly reduced as compared to the inductance values of the conventional example.




As described above, according to various preferred embodiments of the present invention, when the lengths of the spiral portions of the inductors positioned at both end portions of the multi-layered structure are less than the length of the spiral portion of the remaining inductor, the inductance value of the remaining inductor is greatly reduced. As a result, the inductance-lowering rate of the remaining spiral inductor is substantially equal to the inductance-lowering rate of the spiral inductors positioned at both end portions of the multi-layered structure. With this arrangement, variations in the inductance values of three or more inductors disposed in the multi-layered structure having limited dimensions are greatly reduced. Moreover, since the lengths of the coil conductors and the pattern widths of the inductors do not differ, variations in the DC resistances of the inductors are increased.




It should be understood that the foregoing description is only illustrative of preferred embodiments of the present invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the present invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variations that fall within the scope of the appended claims.



Claims
  • 1. A multi-layered inductor array comprising:a multi-layered structure including a plurality of magnetic layers and a plurality of coil conductors; at least three spiral inductors having spiral portions and defined by the coil conductors being electrically connected to each other and aligned in the multi-layered structure; and external electrodes disposed on surfaces of the multi-layered structure to be electrically connected to leading end portions of the at least three spiral inductors; wherein each of the at least three spiral inductors have an equal number of winding turns, and the lengths of the spiral portions of the at least three spiral inductors positioned at both end portions of the multi-layered structure are less than the length of the spiral portion of the remaining inductors of said at least three spiral inductors in the direction in which the spiral inductors are aligned.
  • 2. A multi-layered inductor array according to claim 1, wherein said coil conductors of said at least three spiral inductors are electrically connected to each other through via holes provided in the magnetic sheets.
  • 3. A multi-layered inductor array according to claim 2, wherein said via holes are disposed at equal intervals on said magnetic sheets.
  • 4. A multi-layered inductor array according to claim 1, wherein each of said at least three spiral inductors includes approximately 3.5 turns.
  • 5. A multi-layered inductor array according to claim 1, wherein each of said at least three spiral inductors includes a leading end portion exposed at a front side portion of the multi-layered structure, and a leading end portion exposed at a back side portion of the multi-layered structure.
  • 6. A multi-layered inductor array according to claim 1, further including magnetic cover sheets disposed on upper and lower surfaces of said multi-layered structure.
  • 7. A multi-layered inductor array according to claim 6, wherein said magnetic cover sheets do not have inductors provided thereon.
  • 8. A multi-layered inductor array according to claim 1, wherein said at least three spiral inductors includes four spiral inductors.
  • 9. A multi-layered inductor array according to claim 1, wherein the spiral inductors positioned at both end portions of the multi-layered structure are wound in opposite directions.
  • 10. A multi-layered inductor array according to claim 1, wherein said plurality of magnetic layers defined a laminated body.
  • 11. A multi-layered inductor array comprising:a plurality of magnetic layers having a plurality of coil conductors provided thereon, and stacked in a vertical direction; at least three spiral inductors defined by coil conductors of the plurality of coil conductors being electrically connected and aligned in the vertical direction; and external electrodes disposed on surfaces of the stacked magnetic layers to be electrically connected to leading end portions of the plurality of spiral inductors; wherein each of the at least three spiral inductors have an equal number of winding turns, and the lengths of the spiral portions of the at least three spiral inductors positioned at both end portions of the multi-layered inductor array are less than the length of the spiral portion of the remaining inductors of said at least three spiral inductors in the vertical direction.
  • 12. A multi-layered inductor array according to claim 11, wherein said coil conductors of said at least three spiral inductors are electrically connected to each other through via holes provided in the plurality of magnetic sheets.
  • 13. A multi-layered inductor array according to claim 12, wherein said via holes are disposed at equal intervals on said plurality of magnetic sheets.
  • 14. A multi-layered inductor array according to claim 11, wherein each of said at least three spiral inductors includes approximately 3.5 turns.
  • 15. A multi-layered inductor array according to claim 11, wherein each of said at least three spiral inductors includes a leading end portion exposed at a front side portion of the multi-layered inductor array, and a leading end portion exposed at a back side portion of the multi-layered inductor array.
  • 16. A multi-layered inductor array according to claim 11, further including magnetic cover sheets disposed on upper and lower surfaces of said stacked magnetic layers.
  • 17. A multi-layered inductor array according to claim 16, wherein said magnetic cover sheets do not have inductors thereon.
  • 18. A multi-layered inductor array according to claim 11, wherein said at least three spiral inductors includes four spiral inductors.
  • 19. A multi-layered inductor array according to claim 11, wherein the spiral inductors positioned at both end portions of the multi-layered inductor array are wound in opposite directions.
  • 20. A multi-layered inductor array according to claim 11, wherein said plurality of magnetic layers define a laminated body.
Priority Claims (1)
Number Date Country Kind
11-275023 Sep 1999 JP
US Referenced Citations (2)
Number Name Date Kind
5850682 Ushiro Dec 1998 A
6191667 Takenaka et al. Feb 2001 B1
Foreign Referenced Citations (2)
Number Date Country
11-16738 Jan 1999 JP
11-54331 Feb 1999 JP