This application is a National Phase filing under 35 U.S.C. § 371 of International Patent Application No. PCT/IL2016/050698, filed Jun. 29, 2016, which is based upon and claims the benefit of the priority date of Israeli Patent Application No. 6239683, filed Jun. 29, 2015, each of which is incorporated herein by reference.
The present invention relates to the field of human shelters erected in armed conflict zones, and more particularly to the field of shelters that can be easily erected on site in conflict zones and contain a multi layered protection.
In many battle fields, when it is necessary to protect the troops, trenches are being dag, or protective walls are being erected. For many years, the protective walls were made of sacks filled with local earth or sand. This system is very cheap and easy to implement since it can be carried out by relatively small sacks that, when filled, can be easily carried out by a person. Thus, if enough sacks are piled, they enable enough protection against light and medium flat-trajectory weapons like rifles and machine guns.
In many armed conflict zones around the world, there is a need to protect the military forces from being injured by steep-trajectory weapons, like rockets, missiles, and mortars. In this case, piling of sacks filled with earth or sand is not satisfactory since there is a need to supply enough protection from the upper side as well.
A large variety of structures and solutions are used, such as shelters, bunkers or other types of constructed buildings. Despite the fact that these structures provide the necessary protection, they suffer from various disadvantages; they are very expensive, require a large erection time, and cannot be re-used in another site.
In order to provide a sheltering structure that protects against steeptrajectory weapons, various solutions are known in the market. A structure known as “Mivtsar Yehuda” (namely, Yehuda Fortress) by Yehuda Fences Ltd. (www.yfence.co.il), is a military fortification structure that is designed for fast erection for protection of a maritime container in the size of 600×250×250 cm. The “Mivtsar Yehuda” consists of elements that are constructed of a galvanized steel net envelope, and an inner sheet made of a UV protected geo-textile cloth. When these elements are filled with earth, they form a bulged box-like shape. Placing the filled elements one adjacent the other enables to erect a protective structure around the container. However, a main disadvantage of this structure is that the basic elements cannot be used directly for building a protective roof. Thus, in order to enable placing of the earth-filled elements as a protective roof, first, a special steel structural frame has to be erected, whether it is a one-piece structure, or, a modular structure made of steel beams, rods and plates that are modularly connected to each other in order to form a strong structure that can withstand a high load thereon without collapsing. Second, the steel structural frame is placed on the previously erected structure of filled elements, and then, third, new filled elements are placed on the structural frame to be used as a protective roof. Since the structural frame has a relatively high height in order to withstand the heavy loads apply thereon, it exposes the protected item, in this case, the container, to medium inclination trajectory exploding items. Thus, it is necessary to form the structural frame large enough, i.e., with a large overlapping relative to the vertical walls made by the filled elements, in order to assure that the container is well protected from the top side. Furthermore, if an explosive charge falls and explodes adjacent the entrance to the protected area, there is a direct line of explosion towards the protected area. This problem could be avoided just with addition of a substantial number of filled elements.
HESCO Bastion Ltd. (www.hesco.com), based in the UK, manufactures a force protection product known as a Concertainer unit. The Concertainer unit is a multi-cellular wall system manufactured from welded Zinc-Alu coated steel wire mesh and joined with vertical, helical coil joints. The units are lined with heavy-duty non-woven polypropylene geotextile. The concertainer units use locally available fill material to rapidly construct defensive barriers and other structures with minimal manpower and resources. The concertainer units can be extended and joined together to provide effective and economical structures according to threat needs and level of protection required. A rapid in-theatre deployment utilizes a specially designed and engineered container to provide a significant increase in the quantity of concertainer units that can be transported in a 20 ft ISO container footprint. HESCO have developed the HLBR (HESCO lightweight bunker roof), a rapid and easily erectable lightweight roof specifically designed to provide protection against IDF weapons. The roof can be built on almost any walls capable of taking the load that the roof will impose upon it. Again, this roof is a specially built item in order to withstand the load applied thereon, and it cannot be made from the same units that form the walls.
An HESCO bunker set has been developed to utilize 40 ft and 20 ft ISO containers. Walls are constructed using specifically adapted Mil 1 Concertainer units to give a protective wall thickness of in excess of 1 m. The roof design provides 0.6 m of overhead cover. Material bunkers provide access from one end of the bunker, while personnel bunkers provide access from both ends. Again, in this design, the roof cannot utilize the same units forming the walls.
It is an object to provide a multi layered protection system that significantly reduces or overcomes the aforementioned disadvantages.
It is a further object to provide a modular protection system that is transportable.
It is still a further object to provide a modular protection structure that is easily and quickly erected and disassembled.
It is still yet a further object to provide a modular protection system that is easy to operate.
It is also a further object to provide a modular protection system that provides multi layered protection.
It is another object to provide a multi layered protection system that may be entirely used a multitude of times.
In accordance with the presented embodiments, there is provided a multi layered protection system comprising:
a plurality of box-shaped structural elements, each having a frame made of beams, wherein the frame is bounded by a floor at a lower side, a roof at an upper side, and four sides, and wherein at least two box-shaped structural elements of the plurality are positioned adjacently to one another so as to form a modular protection structure having outer sides;
a plurality of walls configured to bound said outer sides;
at least one layer of protective wall configured to be mounted adjacent to said plurality of walls and the roof.
In accordance with another embodiment, said at least one layer of protective wall is a protective panel that covers the wall or the roof.
In accordance with another embodiment, side beams of the beams are provided with oppositely directed vertical rails configured to receive the protective panel.
In accordance with another embodiment, said at least one protective wall comprises a plurality of protective boards mounted adjacently to cover the wall.
In accordance with another embodiment, side beams of the beams and at least a portion of the plurality of walls are provided with rings for receiving a corresponding pin of the protective board.
In accordance with another embodiment, pair of rails configured to receive a protective panel are parallel to each other.
In accordance with another embodiment, pair of rails configured to receive a protective panel are converging in a downward direction.
In accordance with another embodiment, the structural elements are formed from an ISO container.
In accordance with another embodiment, the structural elements are formed from a 20 ft ISO container.
In accordance with another embodiment, the structural elements of the modular protection structure are secured to each other.
In accordance with another embodiment, protective wall is distanced from its adjacent wall by a separation buffer.
In accordance with another embodiment, in the modular protection structure, each structural element abuts an adjacent structural element.
In accordance with another embodiment, the multi layered protection system can withstand blasts of a 120 mm mortar shell.
In accordance with another embodiment, the protective panel is formed from a solid steel plate.
In accordance with another embodiment, the protective boards are made from a solid steel plate.
In accordance with another embodiment, each of the protective boards is provided on an inner side with pins adapted to suspend on corresponding rings on the frame and the walls, and from the outer side with handles configured to allow a person to suspend the protective board onto the walls and rings configured to receive corresponding pins of another layer of protective boards.
In accordance with another embodiment, the protective walls are formed from active protection layers.
In accordance with another embodiment, the structural element can be expandable structural element that can expand from both opposite sides.
In accordance with another embodiment, the roof is provided with lifting ears configured to allow lifting the structural element.
In accordance with another embodiment, said protective panel is provided with lifting ears configured to allow lifting the protective panel in a vertical or horizontal state.
In accordance with another embodiment, one of the plurality of walls is provided with a door and wherein the adjacent protective wall correspond to have a corresponding opening.
In accordance with another aspect, a method of erecting a multi layered protection system in an erection site is provided that comprises:
delivering to the erection site at least one box-shaped structural element having a frame made of beams, wherein said frame is bounded by a floor at a lower side, a roof at an upper side, and four sides;
positioning the structural elements one by the other to form a protective structure having outer sides;
closing the outer sides with walls;
adjacently positioning at least one layer of protective wall on the outer walls and the roof.
In accordance with another embodiment, closing the outer sides with walls is performed before the delivering according to an erection plan.
In accordance with another embodiment, the structural element is an expandable element that is expanded to about 3 times the volume of the structural element.
In accordance with another embodiment, said adjacently positioning the protective wall comprising inserting a protective panel through corresponding rails on the beams of the structural element so as to cover an entire wall.
In accordance with another embodiment, said adjacently positioning the protective wall comprising suspending at least one layer of a plurality of protective boards on the outer walls of the structural element.
For a better understanding of the present invention and to show how the same may be carried out in practice, reference will now be made to the accompanying drawings, in which:
It is depicted a multi layered protection system comprising:
a plurality of box-shaped structural elements, each having a frame made of beams, wherein the frame is bounded by a floor at a lower side, a roof at an upper side, and four sides, and wherein at least two box-shaped structural elements of the plurality are positioned adjacently to one another so as to form a modular protection structure having outer sides;
a plurality of walls configured to bound said outer sides;
at least one layer of protective wall configured to be mounted adjacent to said plurality of walls and the roof.
Attention is first drawn to
Each structural element 10 can be independently produced to be appropriate for being a part of a multi layered protection system 12. However, it is beneficial to use standard ISO containers since they are relatively cheap, handy, and their frame has been widely approved as being strong, rigid, and durable.
Typically, for most uses, the multi layered protection system 12 utilized 20 ft ISO containers to form each structural element 10. However, according to some embodiments, 40 ft ISO containers may be effectively used as well.
Thus,
In
The side beams 16 of the frame 14 are provided with vertically directed opposite rails 36. The rails 36 are generally parallel to each other and face each other so as to receive a board as will be explained hereinafter. Optionally, according to some embodiments, the rails 36 are slightly converging toward each other in a downward direction.
Lifting ears 52 are provided on the upper portion of the frame 14, directed upwardly so as to allow carrying the structural element using a crane, as an example.
Each of the structural elements 10 is transported to an erection site 40 (as shown in
As mentioned herein before, the vertical beams of the structural element's frame are provided with rails 36 adapted to receive protective panels for increasing the ballistic resistance of the walls of the multi layered protective system. The protective panels are substantially at the same size of the sides of the structural elements so that they cover the whole side and may be formed from at least one layer of steel or other protective material. Thus, in many cases, the protective panels are formed from a 30 mm steel plate. However, according to preferred embodiments of the present invention, the protective panels are formed from several layers of protection, either passive or active protection, according to protective panels that are known in the art.
Optionally, instead of rails, the frame and the walls can be provided with elements adapted to secure a plurality of smaller protective boards that can be installed onto the sides of the structural elements in layers, as will be shown herein after.
The erection site is chosen in an area that is accessible to the trucks that transport the structural elements as well as the protective panels. Furthermore, the erection site is prepared to be level, flat, and compacted, such that it can withstand the weight of all the structural elements 10 together with the protective panels 46 without showing any signs of local sinking.
As shown in
At the next step, after all the structural elements 10 have been positioned in place and optionally secured together, the protective panels 46 are installed over the outer walls 30 of the structural elements 10 as shown in
By way of the above described construction of the rails 36, it is easier to insert a panel lower end 60 into the rails 36. Then, when the protective panel 46 is lowered to its final position, the panel lower end 60 rests firmly between the rails 36 at both sides thereof. As seen in
At the next step, as shown in
Thus, as shown in
Upon completion of the erection of the multi layered protection system 12, the structure is provided, preferably through a quick connection, with a ventilation system, chemical and biological filtration system, air conditioning, electrical power either by the mains or by a locally operated generator, communication systems, both common and secured, and any other additional systems that may be required. The multi layered protection system 12 can be completely erected in 4-5 hours from the moment the structural elements 10 and the protective panels 46 reached the erection site 40. Upon ending the need of use, the multi layered protection system 12 is disassembled in a reverse order and may be stored for future use. Thus, as explained above, the multi layered protection system 12 is modular, and it can be assembled and disassembled according to needs without affecting local infrastructures and agricultural areas.
In the erection plan described above, the combination of the walls 30 and the roof (removed in the plan figures from clarity reasons) of the structural elements together with the protective panels 46 that are separated therefrom by means of a separation buffer 70, forms a multi layered protective system 66 that can withstand blasts of a 120 mm mortar shell, either direct hit thereof, or the shock wave created after the blast, without affecting the people that stay within the multi layered protective system. Since the structural elements are separated from the protective panels 46 using the buffer 70, they can be transported and lifted separately. This embodies a great advantage during the lifting action due to the reduced lifting weight and possibility to use a lighter crane and a lighter truck, factors that are critical during conflict times and emergency situations.
In the same regard of reducing the time to erect the multilayer shelter system as well as reducing the amount of trucks that carry the structural elements, reference is now made to
Optionally or alternatively, instead of placing full size protective panels as explained herein before that needs a crane to be placed adjacent to the walls of the multi layer protection system, according to another embodiment, smaller sized protective boards can be used.
Reference is now made to
It should be noted that the protective boards can be placed also on a dedicated construction that can be positioned adjacent to the wall that is being protected with multi layer protection. Those constructions are known in the art.
As can be seen in
Thus, a protective wall 140 as shown in
Although the embodiments have been described to a certain degree of particularity, it should be understood that various alterations and modifications could be made without departing from the spirit or scope of the invention as hereinafter claimed.
For example, even though not specifically mentioned, the structural element containing a door is positioned such that the door is positioned away from the conflicting zone. The protective panel that covers a wall with a door does not have to be provided with an open door aperture. Alternatively, the door aperture may be covered by a door formed from a structure similar to the structure of the protective panel. In this case, it may be beneficial that the outer door, i.e., the door of the protective panel be opened outwardly, and, the door of the wall be opened inwardly.
If it is required to give protection to the armored vehicles of the troops within the multi layered protective system, the vehicles may be protected by additional protective panels in a form that meets the protection needs.
Number | Date | Country | Kind |
---|---|---|---|
239683 | Jun 2015 | IL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2016/050698 | 6/29/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/002119 | 1/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4557099 | Johnson | Dec 1985 | A |
4722155 | Ericsson | Feb 1988 | A |
4989379 | Suzuki | Feb 1991 | A |
5706614 | Wiley, Jr. | Jan 1998 | A |
5950373 | von Hoff et al. | Sep 1999 | A |
8132493 | Adams | Mar 2012 | B1 |
8484929 | Begdouri | Jul 2013 | B1 |
8596018 | Dagher et al. | Dec 2013 | B2 |
8770422 | Cantin | Jul 2014 | B2 |
20040206015 | Greenboim | Oct 2004 | A1 |
20050223651 | Lange-Kornbak et al. | Oct 2005 | A1 |
20090090236 | Misencik | Apr 2009 | A1 |
20110197746 | Melrose et al. | Aug 2011 | A1 |
20120006369 | Cantin et al. | Jan 2012 | A1 |
20120151851 | Cantin | Jun 2012 | A1 |
20130233164 | Kestermont | Sep 2013 | A1 |
20140076138 | Owen | Mar 2014 | A1 |
20170130474 | Rebollar Buldain | May 2017 | A1 |
20170198489 | Klein | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
19835955 | Feb 2000 | DE |
9814670 | Apr 1998 | WO |
2008150174 | Dec 2008 | WO |
2012101598 | Aug 2012 | WO |
WO-2016009427 | Jan 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20180187444 A1 | Jul 2018 | US |