None.
Touch screen technology has become an important component of many modern electronics, such as tablet computers and cellular phones. Typically, touch screen technology incorporates the use of resistive or capacitive sensor layers which make up part of the display. Screens for devices which utilize such technology are often prone to damage due to the increased level of direct contact by the user with the screen. Such damage typically includes both scratching and breakage of the screen itself depending on the materials used and the use thereof. As a result, resistive and capacitive touch sensors usually include translucent electrically insulating covers placed on top of the display structure in order to protect and isolate the touch sensor panel from environmental conditions, abrasion, oxygen, and harmful chemical agents.
Typically, glass or polyester films are employed as protective covers in touch screen panels. Polyester films, while flexible, can only provide a minimal level of hardness. Specifically, such films provide a surface pencil hardness ranging about 1H-2H. Therefore, polyester films are susceptible to scratches. Additionally, glass covers, which are able to produce pencil hardness readings above 7H, do provide very good scratch protection. However, such glass covers do not provide a high level of flexibility and are therefore susceptible to breaking upon impact with a hard surface.
In an embodiment, a scratch resistant film, comprising: a substrate; and a coating disposed on the substrate, wherein the coating comprises a cross-linked polymer structure formed from a plurality of functionalized monomers, wherein the coating comprises a plurality of layers, wherein the scratch resistant film has a pencil hardness of at least 6H.
In an embodiment, a method of manufacturing a scratch resistant film, comprising: altering a surface energy of at least a portion of a substrate; disposing a first layer of coating on the substrate, wherein the first layer of coating comprises a plurality of functionalized monomers and a solvent; curing the first layer of coating; disposing a second layer of coating on the first layer of coating, wherein the second layer of coating has a lower surface energy than a surface energy of the first layer of coating; curing the second layer of coating; and forming, in response to curing the second layer of coating, a scratch-resistant film.
In an alternate embodiment, a scratch resistant film, comprising: a substrate; a scratch resistant coating disposed on the substrate; wherein the scratch resistant coating comprises a cross-linked polymer structure comprising a plurality of layers and formed from a plurality of functionalized monomers; wherein a pencil hardness of the scratch-resistant coating is at least 6H.
For a detailed description of exemplary embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
As used herein, the word “approximately” means “plus or minus 10%.” Additionally, as used herein, the word “transparent” means any material that's allows the transmission of light waves within a transmittance rate of 90% or greater.
Most coating films applied in touch screen devices exhibit a polymer-based molecular structure. Polymers are relatively large molecules which result from chemically linking thousands of relatively small molecules called monomers. Monomers, due to their weak intermolecular forces, can exist in the form of gases, liquids, or structurally weak molecular structures.
Cross-linked polymer structures B are linked together in a three dimensional structure that increases the intermolecular forces (usually covalent bonds) within the polymer chains and reduces the polymeric chain relaxation that usually manifests as a dent or gouge under pressure. Therefore, polymer-based coating films which contain cross-linked polymer structures B, will tend to have better scratch resistant properties than the same polymeric structure without crosslinking.
Although the mechanical strength is higher for a cross-linked polymer structure, application or coating of the polymer onto a substrate may not be possible through a solution process. This is due to the fact that cross-linked polymers cannot dissolve in a solvent and typically swell when placed therein. Coating compositions in a liquid state allow molecules to move and react more efficiently. Organic materials with low molecular weights behave as viscous, liquid-like gels, while materials with high density cross-linked networks are very rigid in their solid state. In accordance with the preferred embodiments, a cross-linked structure is created after it is applied to a substrate in a liquid form. The cross-linked structure may be formed after the material is applied to the substrate.
Embodiments of the invention employ a scratch resistant coating based on a cross-linked structure on multiple layers. This coating may be comprised of multiple layers and may be transparent, translucent, opaque, or combinations thereof as appropriate for the application. Instead of originating from a polymer chain, the coating may be comprised of monomers and oligomers that react simultaneously at different joint points to create a cross-linked, three dimensional polymer structure that exhibits very high cross-linked densities, and hence, scratch resistant features. Specifically, the transparent, scratch resistant coating may comprise mono and multifunctional acrylic monomers and oligomers. This coating may be applied over a rigid substrate or a film formed on that substrate, or over a transparent and flexible substrate, an opaque or translucent substrate, or a film formed over any of those substrates. The coating may be applied over printed patterns, conductive patterns, or other formations disposed on the substrate. The film may be used as a protective cover for displays in electronic devices such as cellular phones and tablet computers, and the coating may be applied in multiple layers. In some embodiments, there may be two layers of coating and in other embodiments there may be more than two layers. The coating layers may be of the same or differing compositions, or combinations thereof. In some embodiments, each layer of coating is cured after being disposed on to the substrate prior to a disposing another layer. The first layer of coating, as well as subsequent layers, may be cured by UV, thermal process, lamellar air flow, or combinations thereof. The hardness of each layer of coating increases gradually. For example, if the outermost layer of coating has a pencil hardness of 6H, the pencil hardness of the layer of coating underneath the outermost layer may be less than that of the outermost layer and more than the pencil hardness of the substrate. The hardness of the whole stack may be at least 6H when measured using a pencil hardness test.
At block 706, a first coating station 208 disposes at least one layer of a coating on to the substrate 204. The first coating station 208 is used to apply a first layer of coating 202a on the substrate 204. It is understood that in some embodiments the coating may not be scratch-resistant as-applied and further processing may be utilized to bring out this property. This first layer of coating 202a may be applied uniformly over the entire surface of the substrate, or in select areas. In the embodiment shown, the first coating station 208 utilizes a Slot-Die process in which the first coating station 208 disposes the first layer of coating by pressure or gravity onto flexible and transparent substrate 204, forming a relatively precise, conformal layer with a thickness ranging from about 1 to 50 microns, with the preferred thickness being between 15 and 20 microns. In some embodiments, instead of a Slot Die coating process, the first layer of coating 202a may also be applied through other commonly employed coating techniques such as Gravure Coating, Meyer Rod Coating, and spray coating.
Referring still to
Upon exiting the first transition zone 214, the substrate 204 and the coating 202a disposed on its surface passes into a first curing station 210 at block 710. While in the first curing station 210, the first layer of coating 202a forms a cross-linked polymer structure (see B in
In an embodiment, the first layer of coating 202a may be cured from about 0.1 seconds to about 2.0 seconds. Additionally, the UV light source 216 may have a wavelength from about 220 to 480 nm, with target intensity in the range from about 0.25 to about 20.00 J/cm2 under an ambient atmosphere. Finally, if an inert environment is applied, the UV light intensity requirement can be reduced up to one order of magnitude and to achieve an equivalent degree of crosslinking.
In an embodiment, subsequent to curing the first layer of coating at first curing station 210, a second layer of coating 202b is disposed at a second coating station 220 at block 712 using coating techniques such as Gravure Coating, Meyer Rod Coating, Slot-die, and spray coating. In an embodiment, the second layer of coating 202b has a lower surface energy than the first layer of coating 202a, which encourages the wetting (even settling) of the second layer of coating 202b when disposed on the first layer of coating 202a. In some embodiments, combinations of methods may be used to dispose the first or second layers (202a, 202b) of coating on the substrate 204. In one embodiment, the same method is used to deposit both layers 202a and 202b, and in an alternate embodiment different methods are used. A second transition zone 222 at block 714 may act in a similar manner to the first transition zone 214. A block 716, upon exiting the second transition zone 222, the substrate 204 and the second layer of coating 202b disposed on its surface passes into a second curing station 226 which may employ an ultraviolet light source 224. While in the second curing station 226, the second layer of coating 202b forms a cross-linked polymer structure (see B in
Upon exiting the second curing station 226 or the first curing station 216 if the second layer 202b is not disposed, the scratch resistant film 500 may be deposited on a wind-up roll 218. While in some embodiments the substrate 204 may originate from the roller 212, the substrate 204 in other embodiments may not be a flexible substrate that originates from the roller 212 and may instead comprise rigid or other flexible substrates 204 that are fed into the system 200 using a plurality of known substrate feeding methods.
In some embodiments, the substrate 204 may comprise polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, cellulosic polymer, polymethyl(methyl)acrylates, or glass. Specifically, suitable materials for the substrate 204 may include DuPont/Teijin Melinex 454 and Dupont/Teijin Melinex ST505, the latter being a heat stabilized film specially designed for processes where heat treatment is involved. Additionally, in some embodiments, the thickness of the substrate 204 may range from 12 to 500 microns, with a preferred thickness of 50 to 150 microns. A rigid substrate may be of any suitable thickness as appropriate for the application and/or processing method(s).
Depending on the material used for the substrate 204, the cleaning at block 704 may comprise a corona treatment which may vary by watt/density within a wide range depending upon the substrate type and/or dimensions. For example, when the substrate 204 is composed of PET film, the intensity level in Corona treatment station 206 may range from about 1 W/min/m2 to about 50 W/min/m2, while the preferred surface energy may range from about 40 to 95 Dynes/cm. In another embodiment, when the substrate 204 is composed of polycarbonate, the intensity level in Corona treatment station 206 may range from about 1 to 50 W/min/m2, while preferred surface energy may range from about 40 to 95 Dynes/cm.
The scratch resistant coating 202 may comprise solid content within a concentration by weight of up to 100%, with a photo-initiator or thermo-initiator concentration in the range of about 1% to 6%. Additionally, the coating 202 may contain about 10 wt. % to about 70 wt. % solids, and, in some embodiments, preferably from about 20 wt. % to about 30 wt. % solvent to regulate viscosity. The solid content may depend on the coating method used and the desired thickness and properties of the finished product.
Examples of solvents that may be used in the coating 202 include but are not limited to ketone-type solvents such as acetone, methyl ethyl ketone, and iso-butyl ethyl ketone, as well as alcohol-type solvents such as ethoxy ethanol and methoxy ethanol. The addition of a solvent does not adversely affect the scratch resistant properties of the coating 202 because it evaporates after the layers are disposed when the substrate 204 goes through an oven channel. Such solvents may also eliminate any residuals left after the substrate 204 passes through the first corona treatment station 206.
In other embodiments, the coating 202 may be composed of 100% of solid content. Generally, when 100% solids content are used, the preferred coating thickness of coating 202 remains substantially the same after being deposited on substrate 204 in a first coating station 208 and passing through curing station 216 (described below). It is easier to achieve thicker coating while using 100% solid resins. Alternatively, when a solvent is used, the thickness of coating 202 will reduce as it is moved throughout coating application system 200 due to the fact that the solvent evaporates out. For example, if a scratch resistant coating 202, with a thickness of 20 microns and a solvent concentration of 20% is deposited on the substrate 204, the thickness may be reduced by 20% or down to 16 microns or less after the substrate 204 passes through curing station 216. The solvents can help manipulate the viscosity that can match the coating facility operation required and it is relatively easier to achieve a thinner coating. This coating 202 may be applied in one or more layers, each layer may comprise a different thickness or the same thickness as the previous layer. In some embodiments, a predetermined hardness of a first layer of coating 202a may be achieved prior to disposing the second layer of coating 202b. This is discussed in detail below.
As stated above, the scratch resistant coating 202 is comprised of a plurality of functional group monomers which react to form a cross-linked polymer structure. Examples of potential functional group monomers that can be used may include propoxylated trimethylolpropane tri(meth)acrylate, highly propoxylated glyceryl triacrylate, trimethylolpropane triacrylate, high purity trimethylolpropane triacrylate, low viscosity trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, trifunctional acrylate ester, pentaerythritol tetraacrylate, di-tri methylolpropane tetraacrylate, dipentaerythritol pentaacrylate, ethoxylated pentaerythritol tetraacrylate, multifunctional aliphatic urethane or oligomer, multifunctional aromatic urethane or oligomer, and pentaacrylate ester.
Additionally, in order to have proper viscosity for coating process and to control the stress of the cross-linked polymer, lower functionalized monomers can also be introduced. Examples of potential lower functionalized monomers which may be used include polyethylene glycol diacrylate, dipropylene glycol diacrylate, propoxylated neopentyl glycol diacrylate, 1,3-butylene glycol dimethacrylate, neopentyl glycol dimethacrylate, 1,6 hexanediol dimethacrylate, 1,4-butanediol dimethacrylate, and diethylene glycol dimethacrylate.
Finally, a photo initiator including co-initiators and sensitizers as needed under certain conditions can be included in the scratch resistant coating 202 when such coating is cured using a UV light source. The photo-initiators may be, for example, acetophenone, anisoin, anthraquinone, anthraquinone-2-sulfonic acid, sodium salt monohydrate, (benzene) tricarbonylchromium, benzil, benzoin, benzoin ethyl ether, benzoin isobutyl ether, benzoin methyl ether, benzophenone, benzophenone/1-hydroxycyclohexyl phenyl ketone, 50/50 blend, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 4-benzoylbiphenyl, 2-benzyl-2-(dimethylamino)-4′-morpholinobutyrophenone, 4,4′-bis(diethylamino)benzophenone, 4,4′-bis(dimethylamino)benzophenone, camphorquinone, 2-chlorothioxanthen-9-one, (cumene)cyclopentadienyliron(ii) hexafluorophosphate, dibenzosuberenone, 2,2-diethoxyacetophenone, 4,4′-dihydroxybenzophenone, 2,2-dimethoxy-2-phenylacetophenone, 4-(dimethylamino)benzophenone, 4,4′-dimethylbenzil, 2,5-dimethylbenzophenone, 3,4-dimethylbenzophenone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide/2-hydroxy-2-methylpropiophenone, 50/50 blend, 4′-ethoxyacetophenone, 2,4,6-trimethylbenzoyldiphenylphophine oxide, phenyl bis(2,4,6-trimethyl benzoyl)phosphine oxide, 2-ethylanthraquinone, ferrocene, 3′-hydroxyacetophenone, 4′-hydroxyacetophenone, 3-hydroxybenzophenone, 4-hydroxybenzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methylpropiophenone, 2-methylbenzophenone, 3-methylbenzophenone, methybenzoylformate, 2-methyl-4′-(methylthio)-2-morpholinopropiophenone, phenanthrenequinone, 4′-phenoxyacetophenone, thioxanthen-9-one, triarylsulfonium hexafluoroantimonate salts, mixed, 50% in propylene carbonate, and triarylsulfonium hexafluorophosphate salts, mixed, 50% in propylene carbonate.
Turning now to
In the embodiment in
Referring now to
Due to the use of the first E-beam module 402 and/or the second E-beam module 406, there may not be a thermo or photo-initiator added to the coating 202 (in either layer 202a or 202b) because the electrons within the solution act as the initiator. In an embodiment, E-beam doses applied to the scratch resistant coating 202 may range from about 0.5 to 5 MRads for about 0.01 to 5 seconds.
Cross-link density refers to the percentage of cross-linked bonds within a given polymer. Such density is related to reaction time and temperature. Generally, a higher intensity and faster reaction translates into a higher cross-linked density. As such, different curing methods provide different densities in terms of the percentage of cross-linked reaction. Maximum cross-linked densities (measured after curing) may range from about 50% to 60% using a thermo curing process, 60% to 70% using UV curing, and up to 80% using E-beam curing. In some embodiments, from a manufacturing perspective in terms of processing speed, cost and power requirements, UV curing may be the preferred curing method. Alternatively, if a superior optical finish is desired, thermo-curing may be preferred.
Referring to
In some embodiments, the coating 202 may be disposed over the substrate 204 as well as something else disposed on the substrate, for example, ink, paper, or other materials that were disposed on the substrate 204 prior to the application of the coating 202. The materials may be disposed on the substrate 204 prior to the application of the first coating layer 202a or in between the first coating layer 202a and the second coating layer 202b (or other subsequent layers), or may be disposed on the substrate and/or between the layers of coating in various combinations thereof.
In some embodiments, the scratch resistant film 500 may further include a transparent and flexible adhesive layer (not shown), which is adhered to substrate 204 on the opposite side of the substrate 204 on which the coating 202 is disposed. The adhesive layer allows attachment of the scratch resistant film 500 to electronic touch displays and other surfaces which may include those found on devices such as, mobile phones and tablet computers. The thickness of the adhesive layer may range from about 20 microns to about 50 microns. For example, adhesive layer may be constructed from 3M Optically Clear Adhesive #8171. In some embodiments, as discussed above and shown in
Referring now to
Using thicknesses from about 5 to 50 microns, pencil hardness of coating 202 on top of the substrate 204 that is made of PET is measured from 2H up to 9H, depending on the thickness of the scratch resistant coating 202. Employing a preferred thickness of 15 microns on the scratch resistant coating 202 over PET substrate 204, surface pencil hardness greater than or equal to 6H can be achieved. Performance characteristics of coating 202 that is applied to a PET substrate 204 are shown in Table 1.
Additionally, performance characteristics of scratch resistant coating 202 applied to a polycarbonate substrate are shown in Table 2.
In comparing Table 1 and Table 2, it can be seen that the scratch resistance varies as a result of the different substrate materials, whereas other properties may not be impacted or significantly impacted. The reason is that polycarbonate substrate is softer than PET substrate. Therefore, the maximum surface hardness that coating 202 is able to achieve may be lower when applied over a polycarbonate substrate as opposed to a PET substrate.
While the preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described and the examples provided herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims.