The field of this invention is completions and more particularly in unconsolidated formations that produce methane hydrate where there is a need for sand control and flow distribution to protect the screen while stabilizing the borehole.
Methane hydrate exists as a solid substance in layers that contain sand and other sediment. Hydrate to methane gas and water must be accomplished in order to produce the methane gas. The production of methane hydrate means dissociating methane hydrate in the layers and collecting the resultant methane gas through wells and production systems. To dissociate methane hydrate that is stable at low temperature and under high pressure, there must be an (1) increase the temperature, (2) decrease the pressure, (3) or both. The optimum methane hydrate production method is one based on the “depressurization method.” However, since methane hydrate layers are unconsolidated sediments, sand production occurs with the methane gas and water. Because removal of the methane, water, and sand, wellbore stability becomes an issue that cannot be overcome with conventional sand control methodologies. Economical and effective measures for preventing sand production and solving borehole stability issues require a novel approach to completion methodology.
The proposed method to control sand production and provide better borehole stability comprises providing a shape memory polymer foam filter that does not depend on the borehole for containment for sand management. The shape memory polymer will be utilized such that a flow path would not be exposed that would permit the production of sand from the borehole. One other issue related to the depressurization method of methane hydrate production is the uniform application of a differential pressure across the reservoir interface. The method further comprises a porous media under the shaped memory polymer foam filter that can be varied in number and permeability to balance the differential pressure applied to the reservoir being produced. This improves borehole stability via uniform drawdown and flow from the exposed reservoir. While these techniques could be used in a conventional open hole or cased hole completion, it is desirable to under ream or expand the borehole size to help increase wellbore radius and decrease flow velocities at the sand management/reservoir interface. Additionally, consolidated proppant or sand could be deposited adjacent the shape memory foam as it is not the objective to fully occupy the borehole with the foam after it crosses its critical temperature. Instead, in recognition that the hole can be enlarged with initial reaming to reduce fluid velocities or alternatively additional methane production destabilizes the formation and can enlarge the borehole, the consolidated proppant or sand can be an outer protective layer to the foam. Its ability to self-adhere contains the foam and protects the foam from erosive velocity effects of the produced methane.
Several references that employ memory foam in sand control applications are as follows:
Flow balancing devices are generally discussed in the following references:
A need exists for an assembly and method of producing methane from an unconsolidated formation surrounding a borehole having methane hydrate, sand or other sediments. Once positioned and set near the formation, the filtration assembly should be able to manage sand and other sediments without having to rely on the geometric configuration of the borehole for containment, such that should the surrounding borehole subsequently enlarge or the space between the formation and the assembly increase due to changing reservoir conditions the geometric configuration of the assembly will not substantially change.
Those skilled in the art will better appreciate additional aspects of the invention from a review of the detailed description of the preferred embodiment and the associated drawings while appreciating that the full scope of the invention is to be determined by the appended claims.
In a completion for producing methane the bottom hole assembly has a base pipe with porous media within it for equalizing flow along the base pipe. A shape memory polymer foam surrounds the base pipe with porous media. The borehole can be reamed to reduce produced methane velocities. Surrounding the shape memory polymer is an exterior layer of consolidated proppant or sand that can self-adhere and/or stick to the polymer foam. The proppant or sand can be circulated or squeezed into position although, circulation is preferred. The borehole may enlarge due to shifting sands in an unconsolidated formation as the methane is produced. The bottom hole assembly helps in fluid flow equalization and protects the foam and layers below from high fluid velocities during production.
In broad terms the preferred embodiment can be described as a filtration assembly and method of producing methane from methane hydrate in an unconsolidated formation containing sand and other sediments. The filtration assembly comprises a bottom hole assembly comprising a sand control assembly and a base pipe. The sand control assembly comprises a shape memory porous material, which is adapted to surround the base pipe and form a first discrete filtration layer. In one embodiment, to assist in filtering sand and other sediments from the methane a second discrete filtration layer is placed over the first discrete filtration layer comprising consolidated proppant, gravel or sand, or any combination thereof, that can adhere either to each other, the first discrete filtration layer, or both, and remain adhered should reservoir conditions change. The second discrete filtration layer may be circulated or squeezed into position after the bottom hole assembly has been positioned near the formation, or run in as part of the bottom hole assembly, although circulation is preferred. In an alternative embodiment, the third discrete filtration layer is located under the first discrete filtration layer and comprises one or more filtration assurance devices adapted to support the first discrete filtration layer, assist in filtering sediment from the methane, or aid in depressurization of the formation, or any combination thereof, such as wire mesh, prepack screen or beadpack.
In a preferred embodiment, the shape memory porous material is an open-cell shape memory foam, such as the foam described in the list of memory foam patents and patent applications referenced above, and the memory foam marketed by Baker Hughes Incorporated under the trademark GEOFORM™. The memory foam is adapted to help manage sand production by inhibiting the formation of a flow path through the filtration layer in which sand may be produced and by providing borehole stability without having to depend on containment by the surrounding borehole.
To dissociate methane from methane hydrate, a depressurization method is employed by applying a differential pressure across the reservoir interface between the bottom hole assembly and the formation, using, for example, an electric submersible pump. As the methane dissociates from methane hydrate it passes through the filtration assembly, which filters sand and other sediments from the methane and allows the methane to enter the base pipe. In one embodiment, the base pipe comprises a depressurization device designed to help equalize flow along at least one interval of the base pipe and protect the filtration layers from high fluid velocities during production. As previously mentioned, however, the third discrete filtration layer when located under the first discrete filtration layer may also serve as a means of assisting in the depressurization of the formation. The borehole may also be reamed to reduce methane production velocities.
When the borehole subsequently enlarges or the space between the formation and the bottom hole assembly increases due to changing reservoir conditions (e.g., shifting of sands or other sediments in an unconsolidated formation as the methane is produced) the geometric configuration of the bottom hole assembly will not substantially change.
Referring to
In one embodiment, the base pipe comprises a depressurization device for balancing flow along at least one interval of the base pipe, or a selectively or automatically adjustable inflow control member (e.g., an adjustable valve or tubular housing having one or more inflow passages, preferably with a tortuous pathway). See for example, U.S. Pat. Pub. No. 2013/0180724 and flow control products marketed by Baker Hughes Incorporated (United States of America) under the trademark EQUALIZER™.
In
The combination of flow balancing with the self-adhering proppant or sand 9 covering the memory polymer foam 3 and to some extent adhering to the foam allows for a longer service life as the layers of filtration remain serviceable longer in adverse conditions such as borehole collapse and potential for erosion caused at least in part by flow imbalance induced high gas velocities.
The proppant/sand 9 can be a commercially available product such as Sandtrol®. The foam is available as GeoFORM®. Alternatives can be alloy memory foam or screens of various designs that do not change dimension with thermal stimulus. The screens can be constructed so that they can be radially expanded for borehole support or to reduce the volume needed for the proppant/sand 9. The flow balancing feature can be a porous annular shape or insert plugs in the base pipe or screen materials that vary in mesh size at different opening locations.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
This application is a continuation-in-part of U.S. Pat. No. 9,097,108 B2, for “Wellbore Completion for Methane Hydrate Production”, filed on Sep. 11, 2013, and claims the benefit of priority from the aforementioned application.
Number | Name | Date | Kind |
---|---|---|---|
6148911 | Gipson et al. | Nov 2000 | A |
7413022 | Broome et al. | Aug 2008 | B2 |
7578343 | Augustine | Aug 2009 | B2 |
7743835 | Willauer | Jun 2010 | B2 |
7832490 | Willauer | Nov 2010 | B2 |
7921915 | Richard et al. | Apr 2011 | B2 |
7926565 | Duan et al. | Apr 2011 | B2 |
7954546 | Kim et al. | Jun 2011 | B2 |
8048348 | Duan et al. | Nov 2011 | B2 |
8225863 | Hammer et al. | Jul 2012 | B2 |
8353346 | Johnson | Jan 2013 | B2 |
20030075333 | Vercaemer et al. | Apr 2003 | A1 |
20040104052 | Livingstone | Jun 2004 | A1 |
20040177961 | Nguyen | Sep 2004 | A1 |
20040261994 | Nguyen et al. | Dec 2004 | A1 |
20070144741 | Cho et al. | Jun 2007 | A1 |
20070227731 | Contant | Oct 2007 | A1 |
20080072495 | Waycuilis | Mar 2008 | A1 |
20080296020 | Willauer | Dec 2008 | A1 |
20080296023 | Willauer | Dec 2008 | A1 |
20090032244 | Zupanick | Feb 2009 | A1 |
20090078419 | Dusterhoft | Mar 2009 | A1 |
20090101353 | Crow et al. | Apr 2009 | A1 |
20090178805 | Yemington | Jul 2009 | A1 |
20100077594 | Richard | Apr 2010 | A1 |
20100089565 | Duan et al. | Apr 2010 | A1 |
20100294513 | Van Nieuwkoop | Nov 2010 | A1 |
20110067872 | Agrawal | Mar 2011 | A1 |
20110073296 | Richard et al. | Mar 2011 | A1 |
20110162780 | Duan et al. | Jul 2011 | A1 |
20110232901 | Carrejo et al. | Sep 2011 | A1 |
20110252781 | Johnson | Oct 2011 | A1 |
20110259587 | Joseph et al. | Oct 2011 | A1 |
20120145389 | Fitzpatrick, Jr. | Jun 2012 | A1 |
20120181017 | Hart et al. | Jul 2012 | A1 |
20120247761 | O'Malley | Oct 2012 | A1 |
20130062067 | Guest et al. | Mar 2013 | A1 |
20130068481 | Zhou | Mar 2013 | A1 |
20130090854 | Rasmus et al. | Apr 2013 | A1 |
20130126170 | Johnson et al. | May 2013 | A1 |
20130206406 | Kuo et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2008151311 | Dec 2008 | WO |
2010045077 | Apr 2010 | WO |
2011037950 | Mar 2011 | WO |
2011133319 | Oct 2011 | WO |
2011162895 | Dec 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150068760 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14023982 | Sep 2013 | US |
Child | 14447009 | US |