This application is related to: (i) U.S. patent application Ser. No. 10/815,251, filed Mar. 30, 2004, now allowed, and entitled “METHOD AND SYSTEM FOR PROVIDING DOCUMENT RETENTION USING CRYPTOGRAPHY,” which is hereby incorporated herein by reference; (ii) U.S. patent application Ser. No. 10/186,203, filed Jun. 26, 2002, and entitled “METHOD AND SYSTEM FOR IMPLEMENTING CHANGES TO SECURITY POLICIES IN A DISTRIBUTED SECURITY SYSTEM,” which is hereby incorporated herein by reference; (iii) U.S. patent application Ser. No. 10/159,537, filed May 5, 2002, now U.S. Pat. No. 7,178,033 that issued Feb. 13, 2007, and entitled “METHOD AND APPARATUS FOR SECURING DIGITAL ASSETS,” which is hereby incorporated herein by reference; and (iv) U.S. patent application Ser. No. 10/127,109, filed Apr. 22, 2002, and entitled “DYNAMIC EVALUATION OF ACCESS RIGHTS,” which is hereby incorporated herein by reference.
1. Field of the Invention
The present invention relates to digests for electronic files and, more particularly, to use of digests in file management systems.
2. Description of Related Art
File management systems can make use of hash or digest values when managing electronic files. The management of electronic files can vary depending on the application. For example, the management may provide document retention for electronic files. As another example, the management may provide file security to restrict access to electronic files.
Hash or digest values are often used to identify electronic files or as a representation (e.g., signature) of their contents. Hash or digest values are also often used to identify or authenticate files. Unfortunately, whenever an electronic file is changed the hash or digest values must again be determined. Computation of hash or digest values can be burdensome when the electronic documents are changed because the computations must be repeated each time. In the case of encrypted documents, the overhead associated with providing hash or digest values can be particularly burdensome. For example, it is inefficient to have to decrypt an entire encrypted file and then subsequently produce the hash or digest values as well as again encrypt the electronic file when only a part of the electronic file has been modified.
Therefore, there is a need for improved approaches to produce hash or digest values for electronic documents.
The invention relates to inventive approaches to efficiently produce a digest (digest value) for an electronic file. According to the invention, a digest is arranged to have multiple levels, i.e., a hierarchy. The hierarchy has a top level and at least one lower level. The digest at the top level can be referred to as a super digest, and the digests at the at least one lower level can be referred to as block digests or intermediate digests. The top level digest represents a single digest for the associated electronic file. The lower level digests represent digests for portions of the associated electronic file. The top level digest is derived from the lower level digests. The top level digest is useful for facilitating rapid comparison to determine whether electronic files are the same.
In one embodiment, electronic files are encrypted with a block encryption scheme. Block encryption schemes are advantageous because they permit encryption of an electronic file on a block-by-block basis so that individual blocks can be selectively read or written without decrypting or encrypting the entire electronic file. Additionally, block encryption can provide greater security for an electronic file because the entire electronic file is typically not ever completely in the clear. Hence, according to one embodiment of the invention, digests are calculated and stored on a block-by-block basis. Advantageously, when modifications to an encrypted electronic file occur, only those modified blocks need to be processed to undergo decryption and re-encryption to determine the appropriate digest. Hence, the overhead associated with the re-calculation of the digest following a modification to the electronic file can be reduced according to one embodiment of the invention. The invention is thus particularly advantageous for electronic files that utilize block encryption. Two encrypted electronic files, or one encrypted file and one non-encrypted file, can be efficiently compared using the top level digests without having to perform any decryption.
The invention can be implemented in numerous ways, including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.
As a method for forming an encrypted electronic file, one embodiment of the invention includes at least the acts of: identifying an electronic file to be encrypted; obtaining a block of data from the identified electronic file; computing a block digest for the block of data; encrypting the block of data; storing the encrypted block and the block digest to an encrypted electronic file; repeating the obtaining, the computing, the encrypting and the storing acts for at least another block of data from the identified electronic file; computing a super digest for the identified electronic file; and storing the super digest to the encrypted data file.
As a method for storing a modification to an encrypted electronic file having encrypted blocks of data, block digests and a super digest, one embodiment of the invention includes at least the acts of: providing a modified block of data of the encrypted electronic file, the modified block of data being unencrypted; computing a block digest for the modified block of data; encrypting the modified block of data; storing the encrypted block and the block digest to the encrypted electronic file; computing a super digest for the electronic file; and storing the super digest to the encrypted data file.
As a method for comparing electronic files, one embodiment of the invention includes at least the acts of: obtaining a first super digest for a first file, the first super digest being previously determined from a plurality of digests corresponding to portions of the first file; obtaining a second super digest for a second file, the second super digest being previously determined from a plurality of digests corresponding to portions of the second file; comparing the first super digest with the second super digest; and concluding that the first file is the same as the second file if the comparing indicates that the first super digest is the same as the second super digest.
As a computer readable medium including at least computer program code for forming an encrypted electronic file, one embodiment of the invention includes at least: computer program code for identifying an electronic file to be encrypted; computer program code for obtaining blocks of data from the identified electronic file; computer program code for computing a block digest for each of the blocks of data; computer program code for encrypting the blocks of data; computer program code for storing the encrypted blocks and the block digests to an encrypted electronic file; computer program code for computing a top level digest of a multi-level digest for the electronic file; and computer program code for storing the top level digest to the encrypted data file.
Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention relates to inventive approaches to efficiently produce a digest (digest value) for an electronic file. According to the invention, a digest is arranged to have multiple levels, i.e., a hierarchy. The hierarchy has a top level and at least one lower level. The digest at the top level can be referred to as a super digest, and the digests at the at least one lower level can be referred to as block digests or intermediate digests. The top level digest represents a single digest for the associated electronic file. The lower level digests represent digests for portions of the associated electronic file. The top level digest is derived from the lower level digests. The top level digest is useful for facilitating rapid comparison to determine whether electronic files are the same.
In one embodiment, electronic files are encrypted with a block encryption scheme. Block encryption schemes are advantageous because they permit encryption of an electronic file on a block-by-block basis so that individual blocks can be selectively read or written without decrypting or encrypting the entire electronic file. Additionally, block encryption can provide greater security for an electronic file because the entire electronic file is typically not ever completely in the clear. Hence, according to one embodiment of the invention, digests are calculated and stored on a block-by-block basis. Advantageously, when modifications to an encrypted electronic file occur, only those modified blocks need to be processed to undergo decryption and re-encryption to determine the appropriate digest. Hence, the overhead associated with the re-calculation of the digest following a modification to the electronic file can be reduced according to one embodiment of the invention. The invention is thus particularly advantageous for electronic files that utilize block encryption. Two encrypted electronic files, or one encrypted file and one non-encrypted file, can be efficiently compared using the top level digests without having to perform any decryption.
The invention is related to processes, systems, architectures and software products for providing hierarchical digests of digital assets (e.g., electronic files). The invention is particularly suitable in an enterprise environment. In one embodiment, the invention can be implemented by a security system that additionally secures digital assets (i.e., secured data) so that only authenticated users with appropriate access rights or privileges can gain access thereto. In another embodiment, the invention can be implemented by a file retention system that manages retention of digital assets in accordance with retention policies. Digital assets may include, but not be limited to, various types of electronic files, documents, data, executable code, images and text.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will become obvious to those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the invention.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order, nor imply any limitations in the invention.
Embodiments of the invention are discussed herein with reference to
Next, the block is encrypted 108. For example, a private key of a public-private key pair can be used to encrypt the block. At this point, the encrypted block and the block digest can be written 110 to an encrypted file. The encrypted file represents the resulting encrypted file that stores the content of the identified file in an encrypted format.
The file encryption process 100 operates on a block-by-block basis. Hence, following the operation 110, a decision 112 determines whether there are more blocks in the identified file that are to be processed. When the decision determines that there is at least one additional block to be processed, the file encryption process 100 returns to repeat the operation 104 so that a next block of data can be read from the identified file and then similarly processed. On the other hand, when the decision 112 determines that there are no more additional blocks of the identified file to be processed, a super digest for the identified file is computed 114. The super digest for the identified file represents a single digest value for the file. The super digest is computed 114 from a plurality of lower level digests as explained in more detail below. The super digest is unique for each different file. In other words, non-identical files will have different super digests, while identical files will have the same super digests.
After the super digest is computed 114, the super digest is written 116 to the encrypted file. Hence, the encrypted file includes not only the encrypted data from the identified file but also the super digest as well as the block digests for each of the blocks. Following the operation 116, the file encryption process 100 is complete and ends.
The digests can have a hierarchy such that there is a top level, or super digest, that represents a single digest for the associated electronic document. The super digest permits efficient comparison of two electronic documents to determine whether they are the same. In particular, two electronic documents with the same super digests are the same electronic document. The super digests can also be used to compare one encrypted file with a non-encrypted file to determine whether they are the same. The super digest can also act as an identifier for the electronic document.
In the embodiment shown in
Still further, electronic files using the file format 400 or 450 can be secured through use of encryption. In such case, the data blocks can be separately encrypted using a block encryption scheme. The electronic files, such as the file header 402 or 452, can further include security information. The security information is information used to unsecure the secure electronic files. For example, the security information might include an encryption key and/or an encryption policy for the electronic file.
In yet other embodiments, the digest data can be stored remotely from the file. For example, the file might not include some or all of the digest data and instead contain a reference or link to the digest data.
The encrypted file modification process 500 begins with a decision 502 that determines whether a block of an encrypted file has been modified. Here, the modification is assumed to be to a single block of an encrypted file. However, it should be understood that the same process can be performed when multiple blocks of the encrypted file have been modified. However, if all of the blocks of the encrypted file have been modified, then the file encryption process 100 can instead be performed given that the entire file needs to be updated.
Once the decision 502 determines that a block of the encrypted file has been modified, a block digest for the modified block is computed 504. The modified block is not encrypted at this point. After the block digest for the modified block is computed 504, the modified block is encrypted 506. The encrypted modified block (encrypted block) and the block digest can then be written 508 to the encrypted file. It should be noted that, in some cases, the encrypted block after the modification is the same size as the encrypted block prior to the modification, such that subsequently stored blocks in the encrypted file are not affected. On the other hand, in the case in which the encrypted block following the modification is larger (or possibly smaller) than the encrypted block prior to the modification, subsequent blocks in the file format may be affected. When other blocks have been modified, the operations 504-508 can repeat for each of the other blocks that have been modified.
In any case, after the encrypted block and the block digest have been written 508, a super digest is computed 510. Here, since at least one block digest has been altered, the previous super digest is no longer useful. Hence, the super digest must be computed 510 any time at least one block has been modified. Thereafter, the super digest is written 512 to the encrypted file. Following the operation 512, the encrypted file modification process 500 is complete and ends.
Secured files are files that require one or more keys, passwords, access privileges, etc. to gain access to their content. The security is often provided through encryption and access rules. The files, for example, can pertain to documents, multimedia files, data, executable code, images and text. In general, a secured file can only be accessed by authenticated users with appropriate access rights or privileges. In one embodiment, each secured file is provided with a header portion and a data portion, where the header portion contains, or points to, security information. The security information is used to determine whether access to associated data portions of secured files is permitted.
As used herein, a user may mean a human user, a software agent, a group of users, a member of the group, a device and/or application. Besides a human user who needs to access a secured document, a software application or agent sometimes needs to access secured files in order to proceed. Accordingly, unless specifically stated, the “user” as used herein does not necessarily pertain to a human being.
The file security system 600 also includes user machines 608 and user file stores 612. The user machines 608 couple to the access server 602 via a network 610. The network 610 can be a private network or a public network. The user machine 608 also has a user file store 612 coupled thereto. The user file store 612 can store electronic files locally for the user of the corresponding user machine 608. On the other hand, the server file store 604 can provide centralized, remote storage of electronic files for any of the users of the user machines 608.
The file security system 600 enables a user at the user machine 608 to secure an electronic file (document) such that access to the secured electronic file is restricted. In one embodiment of the invention, the access restriction is or includes a document retention restriction. As an example, the document retention restriction could permit subsequent access to the secured electronic file only during the retention period. After the retention period, the secured electronic file would be unable to be unsecured and thus subsequent access would be cryptographically prevented. In one embodiment, the retention period is specified or associated with a document retention policy that is assigned to the secured electronic file.
Once an electronic file has been secured, a user at a user machine can attempt to access the secured electronic file. In doing so, the user machine for the user would need to access the access server 602 and retrieve the appropriate one or more cryptographic keys from the key store 606 that are needed to unsecure the secured electronic file. Such requires that the user machine be connected to the network 610 (i.e., on-line). Alternatively, the user machine could have previously acquired the appropriate one or more cryptographic keys needed to unsecure the secured electronic file and, in such case, the user machine can unsecure the secured electronic file without connecting to the network (i.e., off-line). Regardless, after expiration of the retention period for the secured electronic document, the appropriate one or more cryptographic keys needed to unsecure the secured electronic file are expired (e.g., at both the access server 602/key store 606 and the user machines). Consequently, following the expiration of the retention period, the appropriate one or more cryptographic keys are no longer usable, thus access to the secured electronic document is prevented. The access server 602 and/or the user machine normally also require the user to be authorized to access the electronic file prior to delivery or usage of at least certain cryptographic keys from the key store 606. Typically, the cryptographic keys needed to unsecure a secured electronic file are private keys.
Nevertheless, once the restrictions and/or authorizations have been satisfied and the private keys have been supplied, the private keys are usable to unsecure the secured electronic files, provided the private keys have not expired.
Secured files may be stored in any one of the devices 701, 702, 704 and 706. When a user of the client machine 701 attempts to exchange a secured file with a remote destination 712 being used by an external user, the processes discussed above can be utilized to ensure that the requested secure file is delivered without compromising the security imposed on the secured file.
According to one embodiment, a created document is caused to go through an encryption process that is preferably transparent to a user. In other words, the created document is encrypted or decrypted under the authoring application so that the user is not aware of the process. One or more keys, such as a user key and a document retention access key, can be used to retrieve a file key to decrypt an encrypted document. Typically, the user key is associated with an access privilege for the user or a group of users, and the document retention access key is associated with a retention period imposed on the created document. For a given secured document, only a user with proper access privileges can access the secured document and then only after a time restriction, if present, is satisfied.
In one setting, a secured document may be uploaded via the network 710 from the client computer 701 to a computing or storage device 702 that may serve as a central repository. Although not necessary, the network 710 can provide a private link between the computer 701 and the computing or storage device 702. Such link may be provided by an internal network in an enterprise or a secured communication protocol (e.g., VPN and HTTPS) over a public network (e.g., the Internet). Alternatively, such link may simply be provided by a TCP/IP link. As such, secured documents on the computing or storage device 702 may be remotely accessed.
In another setting, the computer 701 and the computing or storage device 702 are inseparable, in which case the computing or storage device 702 may be a local store to retain secured documents or receive secured network resources (e.g., dynamic Web contents, results of a database query, or a live multimedia feed). Regardless of where the secured documents or secured resources are actually located, a user, with proper access privileges and within retention periods, can access the secured documents or resources from the client computer 701 or the computing or storage device 702 using an application (e.g., Microsoft Internet Explorer, Microsoft Word or Adobe Acrobat Reader).
Accordingly, respective local modules in local servers, in coordination with the central server, form a distributed mechanism to provide not only distributed access control enforcement but also file (e.g., document) retention. Such distributed access control enforcement ensures the dependability, reliability and scalability of centralized access control management undertaken by the central server for an entire enterprise or a business location.
The security information 826 can vary depending upon implementation. However, as shown in
The invention is preferably implemented by software, but can also be implemented in hardware or a combination of hardware and software. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include tangible media such as read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, and optical storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in various other settings with respect to different combinations, embodiments, implementations or features as provided in the description herein.
The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that re-calculation of a digest following a modification to an electronic file can be reduced by utilizing the multi-level digest techniques associated with the invention. Another advantage of the invention is that multi-level digests can be used to compare files having a proprietary format. For example, files having an encrypted file format can be compared by using the top level digest, without having to decrypt any portion of the electronic file. As another example, the top level digest can also be used to compare a non-encrypted electronic file with an encrypted electronic file to see if the content of the electronic files is the same.
The foregoing description of embodiments is illustrative of various aspects/embodiments of the present invention. Various modifications to the invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4203166 | Eshram et al. | May 1980 | A |
4734568 | Watanabe | Mar 1988 | A |
4757533 | Allen et al. | Jul 1988 | A |
4796220 | Wolfe | Jan 1989 | A |
4799258 | Davies | Jan 1989 | A |
4827508 | Shear | May 1989 | A |
4888800 | Marshall et al. | Dec 1989 | A |
4972472 | Brown et al. | Nov 1990 | A |
5032979 | Hecht et al. | Jul 1991 | A |
5052040 | Preston et al. | Sep 1991 | A |
5058164 | Elmer et al. | Oct 1991 | A |
5144660 | Rose | Sep 1992 | A |
5204897 | Wyman | Apr 1993 | A |
5220657 | Bly et al. | Jun 1993 | A |
5235641 | Nozawa et al. | Aug 1993 | A |
5247575 | Sprague et al. | Sep 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5301247 | Rasmussen et al. | Apr 1994 | A |
5319705 | Halter et al. | Jun 1994 | A |
5369702 | Shanton | Nov 1994 | A |
5375169 | Seheidt et al. | Dec 1994 | A |
5404404 | Novorita | Apr 1995 | A |
5406628 | Beller et al. | Apr 1995 | A |
5414852 | Kramer et al. | May 1995 | A |
5495533 | Linehan et al. | Feb 1996 | A |
5499297 | Boebert | Mar 1996 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5535375 | Eshel et al. | Jul 1996 | A |
5557765 | Lipner et al. | Sep 1996 | A |
5570108 | McLaughlin et al. | Oct 1996 | A |
5584023 | Hsu | Dec 1996 | A |
5600722 | Yamaguchi et al. | Feb 1997 | A |
5606663 | Kadooka | Feb 1997 | A |
5655119 | Davy | Aug 1997 | A |
5661806 | Nevoux et al. | Aug 1997 | A |
5671412 | Christiano | Sep 1997 | A |
5673316 | Auerbach et al. | Sep 1997 | A |
5677953 | Dolphin | Oct 1997 | A |
5680452 | Shanton | Oct 1997 | A |
5684987 | Mamiya et al. | Nov 1997 | A |
5689718 | Sakurai et al. | Nov 1997 | A |
5699428 | McDonnal et al. | Dec 1997 | A |
5708709 | Rose | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5717755 | Shanton | Feb 1998 | A |
5720033 | Deo | Feb 1998 | A |
5729734 | Parker et al. | Mar 1998 | A |
5732265 | Dewitt et al. | Mar 1998 | A |
5745573 | Lipner et al. | Apr 1998 | A |
5748736 | Mittra | May 1998 | A |
5751287 | Hahn et al. | May 1998 | A |
5757920 | Misra et al. | May 1998 | A |
5765152 | Ericson | Jun 1998 | A |
5778065 | Hauser et al. | Jul 1998 | A |
5787169 | Eldridge et al. | Jul 1998 | A |
5787173 | Seheidt et al. | Jul 1998 | A |
5787175 | Carter | Jul 1998 | A |
5790789 | Suarez | Aug 1998 | A |
5790790 | Smith et al. | Aug 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5821933 | Keller et al. | Oct 1998 | A |
5825876 | Peterson | Oct 1998 | A |
5835592 | Chang et al. | Nov 1998 | A |
5835601 | Shimbo et al. | Nov 1998 | A |
5857189 | Riddle | Jan 1999 | A |
5862325 | Reed et al. | Jan 1999 | A |
5870468 | Harrison | Feb 1999 | A |
5870477 | Sasaki et al. | Feb 1999 | A |
5881287 | Mast | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5893084 | Morgan et al. | Apr 1999 | A |
5898781 | Shanton | Apr 1999 | A |
5922073 | Shimada | Jul 1999 | A |
5923754 | Angelo et al. | Jul 1999 | A |
5933498 | Schnek et al. | Aug 1999 | A |
5944794 | Okamoto et al. | Aug 1999 | A |
5953419 | Lohstroh et al. | Sep 1999 | A |
5968177 | Batten-Carew et al. | Oct 1999 | A |
5970502 | Salkewicz et al. | Oct 1999 | A |
5987440 | O'Neil et al. | Nov 1999 | A |
5991879 | Still | Nov 1999 | A |
5999907 | Donner | Dec 1999 | A |
6014730 | Ohtsu | Jan 2000 | A |
6023506 | Ote et al. | Feb 2000 | A |
6032216 | Schmuck et al. | Feb 2000 | A |
6038322 | Harkins | Mar 2000 | A |
6044155 | Thomlinson et al. | Mar 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6058424 | Dixon et al. | May 2000 | A |
6061790 | Bodnar | May 2000 | A |
6069957 | Richards | May 2000 | A |
6085323 | Shimizu et al. | Jul 2000 | A |
6088717 | Reed et al. | Jul 2000 | A |
6088805 | Davis et al. | Jul 2000 | A |
6098056 | Rusnak et al. | Aug 2000 | A |
6101507 | Cane et al. | Aug 2000 | A |
6105131 | Carroll | Aug 2000 | A |
6122630 | Strickler et al. | Sep 2000 | A |
6134327 | Van Oorschot | Oct 2000 | A |
6134658 | Multerer et al. | Oct 2000 | A |
6134660 | Boneh et al. | Oct 2000 | A |
6134664 | Walker | Oct 2000 | A |
6141754 | Choy | Oct 2000 | A |
6145084 | Zuili | Nov 2000 | A |
6158010 | Moriconi et al. | Dec 2000 | A |
6161139 | Win et al. | Dec 2000 | A |
6182142 | Win et al. | Jan 2001 | B1 |
6185684 | Pravetz et al. | Feb 2001 | B1 |
6192408 | Vahalia et al. | Feb 2001 | B1 |
6205549 | Pravetz et al. | Mar 2001 | B1 |
6212561 | Sitaraman et al. | Apr 2001 | B1 |
6223285 | Komuro et al. | Apr 2001 | B1 |
6226618 | Downs et al. | May 2001 | B1 |
6226745 | Wiederhold et al. | May 2001 | B1 |
6240188 | Dondeti et al. | May 2001 | B1 |
6249873 | Richard et al. | Jun 2001 | B1 |
6253193 | Ginter et al. | Jun 2001 | B1 |
6260040 | Kauffman et al. | Jul 2001 | B1 |
6260141 | Park | Jul 2001 | B1 |
6263348 | Kathrow et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6272632 | Carman et al. | Aug 2001 | B1 |
6282649 | Lambert et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292895 | Baltzley | Sep 2001 | B1 |
6292899 | McBride | Sep 2001 | B1 |
6295361 | Kadansky et al. | Sep 2001 | B1 |
6301614 | Najork et al. | Oct 2001 | B1 |
6308256 | Folmsbee | Oct 2001 | B1 |
6308273 | Goertzel et al. | Oct 2001 | B1 |
6314409 | Schnek et al. | Nov 2001 | B2 |
6317777 | Skarbo et al. | Nov 2001 | B1 |
6332025 | Takahashi et al. | Dec 2001 | B2 |
6336114 | Garrison | Jan 2002 | B1 |
6339423 | Sampson et al. | Jan 2002 | B1 |
6339825 | Pensak et al. | Jan 2002 | B2 |
6341164 | Dilkie et al. | Jan 2002 | B1 |
6343316 | Sakata | Jan 2002 | B1 |
6347374 | Drake et al. | Feb 2002 | B1 |
6349337 | Parsons et al. | Feb 2002 | B1 |
6351813 | Mooney et al. | Feb 2002 | B1 |
6356903 | Baxter et al. | Mar 2002 | B1 |
6356941 | Cohen | Mar 2002 | B1 |
6357010 | Viets et al. | Mar 2002 | B1 |
6363480 | Perlman | Mar 2002 | B1 |
6370249 | Van Oorschot | Apr 2002 | B1 |
6381698 | Devanbu et al. | Apr 2002 | B1 |
6389433 | Bolosky et al. | May 2002 | B1 |
6389538 | Gruse et al. | May 2002 | B1 |
6393420 | Peters | May 2002 | B1 |
6405315 | Burns et al. | Jun 2002 | B1 |
6421714 | Rai et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6442695 | Dutcher et al. | Aug 2002 | B1 |
6446090 | Hart | Sep 2002 | B1 |
6449721 | Pensak et al. | Sep 2002 | B1 |
6453353 | Win et al. | Sep 2002 | B1 |
6466932 | Dennis et al. | Oct 2002 | B1 |
6477544 | Bolosky et al. | Nov 2002 | B1 |
6490680 | Scheidt et al. | Dec 2002 | B1 |
6505300 | Chan et al. | Jan 2003 | B2 |
6510349 | Schnek et al. | Jan 2003 | B1 |
6519700 | Ram et al. | Feb 2003 | B1 |
6529956 | Smith et al. | Mar 2003 | B1 |
6530020 | Aoki | Mar 2003 | B1 |
6530024 | Proctor | Mar 2003 | B1 |
6542608 | Scheidt et al. | Apr 2003 | B2 |
6549623 | Scheidt et al. | Apr 2003 | B1 |
6550011 | Sims | Apr 2003 | B1 |
6557039 | Leong et al. | Apr 2003 | B1 |
6567914 | Just et al. | May 2003 | B1 |
6571291 | Chow | May 2003 | B1 |
6584466 | Serbinis et al. | Jun 2003 | B1 |
6587946 | Jakobsson | Jul 2003 | B1 |
6588673 | Chan et al. | Jul 2003 | B1 |
6594662 | Sieffert et al. | Jul 2003 | B1 |
6598161 | Kluttz et al. | Jul 2003 | B1 |
6603857 | Batten-Carew et al. | Aug 2003 | B1 |
6608636 | Roseman | Aug 2003 | B1 |
6611599 | Natarajan | Aug 2003 | B2 |
6611846 | Stoodley | Aug 2003 | B1 |
6615349 | Hair | Sep 2003 | B1 |
6615350 | Schell et al. | Sep 2003 | B1 |
6625650 | Stelliga | Sep 2003 | B2 |
6629243 | Kleinman et al. | Sep 2003 | B1 |
6633311 | Douvikas et al. | Oct 2003 | B1 |
6640307 | Viets et al. | Oct 2003 | B2 |
6646515 | Jun et al. | Nov 2003 | B2 |
6647388 | Numao et al. | Nov 2003 | B2 |
6678835 | Shah et al. | Jan 2004 | B1 |
6687822 | Jakobsson | Feb 2004 | B1 |
6711683 | Laczko et al. | Mar 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6735701 | Jacobson | May 2004 | B1 |
6738908 | Bonn et al. | May 2004 | B1 |
6775779 | England et al. | Aug 2004 | B1 |
6782403 | Kino et al. | Aug 2004 | B1 |
6801999 | Venkatesan et al. | Oct 2004 | B1 |
6807534 | Erickson | Oct 2004 | B1 |
6807636 | Hartman et al. | Oct 2004 | B2 |
6810389 | Meyer | Oct 2004 | B1 |
6810479 | Barlow et al. | Oct 2004 | B1 |
6816871 | Lee | Nov 2004 | B2 |
6826698 | Minkin et al. | Nov 2004 | B1 |
6834333 | Yoshino et al. | Dec 2004 | B2 |
6834341 | Bahl et al. | Dec 2004 | B1 |
6845452 | Roddy et al. | Jan 2005 | B1 |
6851050 | Singhal et al. | Feb 2005 | B2 |
6865555 | Novak | Mar 2005 | B2 |
6874139 | Krueger et al. | Mar 2005 | B2 |
6877136 | Bess et al. | Apr 2005 | B2 |
6889210 | Vainstein | May 2005 | B1 |
6891953 | DeMello et al. | May 2005 | B1 |
6892201 | Brown et al. | May 2005 | B2 |
6892306 | En-Seung et al. | May 2005 | B1 |
6907034 | Begis | Jun 2005 | B1 |
6909708 | Krishnaswamy et al. | Jun 2005 | B1 |
6915434 | Kuroda et al. | Jul 2005 | B1 |
6920558 | Sames et al. | Jul 2005 | B2 |
6931450 | Howard et al. | Aug 2005 | B2 |
6931530 | Pham et al. | Aug 2005 | B2 |
6931597 | Prakash | Aug 2005 | B1 |
6938042 | Aboulhosn et al. | Aug 2005 | B2 |
6941355 | Donaghey et al. | Sep 2005 | B1 |
6941456 | Wilson | Sep 2005 | B2 |
6941472 | Moriconi et al. | Sep 2005 | B2 |
6944183 | Iyer et al. | Sep 2005 | B1 |
6947556 | Matyas, Jr. et al. | Sep 2005 | B1 |
6950818 | Dennis et al. | Sep 2005 | B2 |
6950936 | Subramaniam et al. | Sep 2005 | B2 |
6950941 | Lee et al. | Sep 2005 | B1 |
6950943 | Bacha et al. | Sep 2005 | B1 |
6952780 | Olsen et al. | Oct 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6959308 | Gramsamer et al. | Oct 2005 | B2 |
6961849 | Davis et al. | Nov 2005 | B1 |
6968060 | Pinkas | Nov 2005 | B1 |
6971018 | Witt et al. | Nov 2005 | B1 |
6978376 | Giroux et al. | Dec 2005 | B2 |
6978377 | Asano et al. | Dec 2005 | B1 |
6988133 | Zavalkovsky et al. | Jan 2006 | B1 |
6988199 | Toh et al. | Jan 2006 | B2 |
6993135 | Ishibashi | Jan 2006 | B2 |
6996718 | Henry et al. | Feb 2006 | B1 |
7003117 | Kacker et al. | Feb 2006 | B2 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003661 | Beattie et al. | Feb 2006 | B2 |
7013332 | Friedel et al. | Mar 2006 | B2 |
7013485 | Brown et al. | Mar 2006 | B2 |
7020645 | Bisbee et al. | Mar 2006 | B2 |
7024427 | Bobbitt et al. | Apr 2006 | B2 |
7035854 | Hsiao et al. | Apr 2006 | B2 |
7035910 | Dutta et al. | Apr 2006 | B1 |
7046807 | Hirano et al. | May 2006 | B2 |
7051213 | Kobayashi et al. | May 2006 | B1 |
7058696 | Phillips et al. | Jun 2006 | B1 |
7058978 | Feuerstein et al. | Jun 2006 | B2 |
7073063 | Peinado | Jul 2006 | B2 |
7073073 | Nonaka et al. | Jul 2006 | B1 |
7076067 | Raike et al. | Jul 2006 | B2 |
7076312 | Law et al. | Jul 2006 | B2 |
7076469 | Schreiber et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7080077 | Ramamurthy et al. | Jul 2006 | B2 |
7095853 | Morishita | Aug 2006 | B2 |
7096266 | Lewin et al. | Aug 2006 | B2 |
7099926 | Ims et al. | Aug 2006 | B1 |
7107269 | Arlein et al. | Sep 2006 | B2 |
7107416 | Stuart et al. | Sep 2006 | B2 |
7117322 | Hochberg et al. | Oct 2006 | B2 |
7120635 | Bhide et al. | Oct 2006 | B2 |
7120757 | Tsuge | Oct 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7130964 | Ims et al. | Oct 2006 | B2 |
7131071 | Gune et al. | Oct 2006 | B2 |
7134041 | Murray et al. | Nov 2006 | B2 |
7136903 | Phillips et al. | Nov 2006 | B1 |
7145898 | Elliott | Dec 2006 | B1 |
7146388 | Stakutis et al. | Dec 2006 | B2 |
7146498 | Takechi et al. | Dec 2006 | B1 |
7159036 | Hinchliffe et al. | Jan 2007 | B2 |
7171557 | Kallahalla et al. | Jan 2007 | B2 |
7174563 | Brownlie et al. | Feb 2007 | B1 |
7177427 | Komuro et al. | Feb 2007 | B1 |
7178033 | Garcia | Feb 2007 | B1 |
7181017 | Nagel et al. | Feb 2007 | B1 |
7185364 | Knouse et al. | Feb 2007 | B2 |
7187033 | Pendharkar | Mar 2007 | B2 |
7188181 | Squier et al. | Mar 2007 | B1 |
7194764 | Martherus et al. | Mar 2007 | B2 |
7200747 | Riedel et al. | Apr 2007 | B2 |
7203317 | Kallahalla et al. | Apr 2007 | B2 |
7203968 | Asano et al. | Apr 2007 | B2 |
7219230 | Riedel et al. | May 2007 | B2 |
7224795 | Takada et al. | May 2007 | B2 |
7225256 | Villavicencio | May 2007 | B2 |
7227953 | Shida | Jun 2007 | B2 |
7233948 | Shamoon et al. | Jun 2007 | B1 |
7237002 | Estrada et al. | Jun 2007 | B1 |
7249044 | Kumar et al. | Jul 2007 | B2 |
7260555 | Rossmann et al. | Aug 2007 | B2 |
7265764 | Alben et al. | Sep 2007 | B2 |
7266684 | Jancula | Sep 2007 | B2 |
7280658 | Amini et al. | Oct 2007 | B2 |
7287055 | Smith et al. | Oct 2007 | B2 |
7290148 | Tozawa et al. | Oct 2007 | B2 |
7308702 | Thomsen et al. | Dec 2007 | B1 |
7313824 | Bala et al. | Dec 2007 | B1 |
7319752 | Asano et al. | Jan 2008 | B2 |
7340600 | Corella | Mar 2008 | B1 |
7380120 | Garcia | May 2008 | B1 |
7383586 | Cross et al. | Jun 2008 | B2 |
7386529 | Kiessig et al. | Jun 2008 | B2 |
20010011254 | Clark | Aug 2001 | A1 |
20010021926 | Schnek et al. | Sep 2001 | A1 |
20010032181 | Jakstadt et al. | Oct 2001 | A1 |
20010034839 | Karjoth et al. | Oct 2001 | A1 |
20010044903 | Yamamoto et al. | Nov 2001 | A1 |
20010056550 | Lee | Dec 2001 | A1 |
20020010679 | Felsher | Jan 2002 | A1 |
20020016922 | Richards et al. | Feb 2002 | A1 |
20020031230 | Sweet et al. | Mar 2002 | A1 |
20020035624 | Kim | Mar 2002 | A1 |
20020046350 | Lordemann et al. | Apr 2002 | A1 |
20020050098 | Chan | May 2002 | A1 |
20020056042 | Van Der Kaay et al. | May 2002 | A1 |
20020062240 | Morinville | May 2002 | A1 |
20020062245 | Niu et al. | May 2002 | A1 |
20020069077 | Brophy et al. | Jun 2002 | A1 |
20020069272 | Kim et al. | Jun 2002 | A1 |
20020069363 | Winburn | Jun 2002 | A1 |
20020073320 | Rinkevich et al. | Jun 2002 | A1 |
20020077986 | Kobata et al. | Jun 2002 | A1 |
20020077988 | Sasaki et al. | Jun 2002 | A1 |
20020087479 | Malcolm | Jul 2002 | A1 |
20020091928 | Bouchard et al. | Jul 2002 | A1 |
20020099947 | Evans | Jul 2002 | A1 |
20020124180 | Hagman | Sep 2002 | A1 |
20020129235 | Okamoto et al. | Sep 2002 | A1 |
20020133699 | Pueschel | Sep 2002 | A1 |
20020138762 | Horne | Sep 2002 | A1 |
20020143710 | Liu | Oct 2002 | A1 |
20020143906 | Tormasov et al. | Oct 2002 | A1 |
20020150239 | Carny et al. | Oct 2002 | A1 |
20020156726 | Kleckner et al. | Oct 2002 | A1 |
20020157016 | Russell et al. | Oct 2002 | A1 |
20020169963 | Seder et al. | Nov 2002 | A1 |
20020169965 | Hale et al. | Nov 2002 | A1 |
20020172367 | Mulder et al. | Nov 2002 | A1 |
20020174109 | Chandy et al. | Nov 2002 | A1 |
20020176572 | Ananth | Nov 2002 | A1 |
20020178271 | Graham et al. | Nov 2002 | A1 |
20020194484 | Bolosky et al. | Dec 2002 | A1 |
20020198798 | Ludwig et al. | Dec 2002 | A1 |
20030009685 | Choo et al. | Jan 2003 | A1 |
20030014391 | Evans et al. | Jan 2003 | A1 |
20030023559 | Choi et al. | Jan 2003 | A1 |
20030028610 | Pearson | Feb 2003 | A1 |
20030033528 | Ozog et al. | Feb 2003 | A1 |
20030037133 | Owens | Feb 2003 | A1 |
20030037237 | Abgrall et al. | Feb 2003 | A1 |
20030037253 | Blank et al. | Feb 2003 | A1 |
20030046238 | Nonaka et al. | Mar 2003 | A1 |
20030051039 | Brown et al. | Mar 2003 | A1 |
20030056139 | Murray et al. | Mar 2003 | A1 |
20030074580 | Knouse et al. | Apr 2003 | A1 |
20030078959 | Yeung et al. | Apr 2003 | A1 |
20030079175 | Limantsev | Apr 2003 | A1 |
20030081784 | Kallahalla et al. | May 2003 | A1 |
20030081787 | Kallahalla et al. | May 2003 | A1 |
20030088517 | Medoff | May 2003 | A1 |
20030088783 | DiPierro | May 2003 | A1 |
20030101072 | Dick et al. | May 2003 | A1 |
20030110169 | Zuili | Jun 2003 | A1 |
20030110266 | Rollins et al. | Jun 2003 | A1 |
20030110397 | Supramaniam | Jun 2003 | A1 |
20030115146 | Lee et al. | Jun 2003 | A1 |
20030115570 | Bisceglia | Jun 2003 | A1 |
20030120601 | Ouye | Jun 2003 | A1 |
20030120684 | Zuili et al. | Jun 2003 | A1 |
20030126434 | Lim et al. | Jul 2003 | A1 |
20030154381 | Ouye | Aug 2003 | A1 |
20030159066 | Staw et al. | Aug 2003 | A1 |
20030172280 | Scheidt et al. | Sep 2003 | A1 |
20030177070 | Viswanath et al. | Sep 2003 | A1 |
20030177378 | Wittkotter | Sep 2003 | A1 |
20030182579 | Leporini et al. | Sep 2003 | A1 |
20030196096 | Sutton | Oct 2003 | A1 |
20030197729 | Denoue et al. | Oct 2003 | A1 |
20030200202 | Hsiao et al. | Oct 2003 | A1 |
20030217264 | Martin et al. | Nov 2003 | A1 |
20030217281 | Ryan | Nov 2003 | A1 |
20030217333 | Smith et al. | Nov 2003 | A1 |
20030226013 | Dutertre | Dec 2003 | A1 |
20030233650 | Zaner et al. | Dec 2003 | A1 |
20040022390 | McDonald et al. | Feb 2004 | A1 |
20040025037 | Hair | Feb 2004 | A1 |
20040039781 | LaVallee et al. | Feb 2004 | A1 |
20040064710 | Vainstein | Apr 2004 | A1 |
20040068524 | Aboulhosn et al. | Apr 2004 | A1 |
20040068664 | Nachenberg et al. | Apr 2004 | A1 |
20040073660 | Toomey | Apr 2004 | A1 |
20040073718 | Johannessen et al. | Apr 2004 | A1 |
20040088548 | Smetters et al. | May 2004 | A1 |
20040098580 | DeTreville | May 2004 | A1 |
20040103202 | Hildebrand et al. | May 2004 | A1 |
20040103280 | Balfanz et al. | May 2004 | A1 |
20040133544 | Kiessig et al. | Jul 2004 | A1 |
20040158586 | Tsai | Aug 2004 | A1 |
20040193602 | Liu et al. | Sep 2004 | A1 |
20040193905 | Lirov et al. | Sep 2004 | A1 |
20040193912 | Li et al. | Sep 2004 | A1 |
20040199514 | Rosenblatt et al. | Oct 2004 | A1 |
20040215956 | Venkatachary et al. | Oct 2004 | A1 |
20040215962 | Douceur et al. | Oct 2004 | A1 |
20040243853 | Swander et al. | Dec 2004 | A1 |
20050021467 | Franzdonk | Jan 2005 | A1 |
20050021629 | Cannata et al. | Jan 2005 | A1 |
20050028006 | Leser et al. | Feb 2005 | A1 |
20050039034 | Doyle et al. | Feb 2005 | A1 |
20050071275 | Vainstein et al. | Mar 2005 | A1 |
20050071657 | Ryan | Mar 2005 | A1 |
20050071658 | Nath et al. | Mar 2005 | A1 |
20050081029 | Thornton et al. | Apr 2005 | A1 |
20050086531 | Kenrich | Apr 2005 | A1 |
20050091484 | Thornton et al. | Apr 2005 | A1 |
20050120199 | Carter | Jun 2005 | A1 |
20050138371 | Supramaniam | Jun 2005 | A1 |
20050138383 | Vainstein | Jun 2005 | A1 |
20050177716 | Ginter et al. | Aug 2005 | A1 |
20050177858 | Ueda | Aug 2005 | A1 |
20050198326 | Schlimmer et al. | Sep 2005 | A1 |
20050223242 | Nath | Oct 2005 | A1 |
20050223414 | Kenrich et al. | Oct 2005 | A1 |
20050235154 | Serret-Avila | Oct 2005 | A1 |
20050256909 | Aboulhosn et al. | Nov 2005 | A1 |
20050273600 | Seeman | Dec 2005 | A1 |
20050283610 | Serret-Avila et al. | Dec 2005 | A1 |
20050288961 | Tabrizi | Dec 2005 | A1 |
20060005021 | Torrubia-Saez | Jan 2006 | A1 |
20060075465 | Ramanathan et al. | Apr 2006 | A1 |
20060093150 | Reddy et al. | May 2006 | A1 |
20060168147 | Inoue et al. | Jul 2006 | A1 |
20060230437 | Boyer et al. | Oct 2006 | A1 |
20070006214 | Dubal et al. | Jan 2007 | A1 |
20070067837 | Schuster | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
0 672 991 | Sep 1995 | EP |
0 674 253 | Sep 1995 | EP |
0 809 170 | Nov 1997 | EP |
0 913 966 | May 1999 | EP |
0 913 967 | May 1999 | EP |
0 950 941 | Oct 1999 | EP |
0 950 941 | Oct 1999 | EP |
1 107 504 | Jun 2001 | EP |
1 107504 | Jun 2001 | EP |
1 130 492 | Sep 2001 | EP |
1 154 348 | Nov 2001 | EP |
1324565 | Jul 2003 | EP |
2 328 047 | Feb 1999 | GB |
2001-036517 | Feb 2001 | JP |
WO 9641288 | Dec 1996 | WO |
WO 0056028 | Sep 2000 | WO |
WO 0161438 | Aug 2001 | WO |
WO 0163387 | Aug 2001 | WO |
WO 0163387 | Aug 2001 | WO |
WO 0177783 | Oct 2001 | WO |
WO 0178285 | Oct 2001 | WO |
WO 0184271 | Nov 2001 | WO |