Embodiments of the invention relate generally to memory systems.
A simple linked list descriptor typically provides an indication of a number of data pointers contained in a subsequent descriptor. The number of data pointers contained in the subsequent descriptor is typically contained in the memory address of the subsequent descriptor. For example, the number of data pointers is used by a Direct Memory Access (DMA) controller or an Input Output (IO) controller and controls how many read cycles are performed when processing the subsequent descriptor. Therefore, the process of reading linked list descriptors from memory has been used to control DMA engines. The usual implementation of the linked list descriptors includes only one level of descriptors and their corresponding data/payload buffers. From the nature of the linked list, the processing of the descriptors is usually done sequentially. Failed DMA operations result in interrupt generation for firmware error handling.
In one embodiment of the invention, a method and system for controlling control and data information in memory and IO controllers is presented here. The method and system uses a linked descriptor mechanism to pass the information. The minimal overhead allows subsequent linking of data, and at the same time allows much flexibility on the content of the payload. The simple linking mechanism reduces the CPU processing overhead requirement during data transfer and allows varying data length. The flexible payload content of the method allows it to support a wide range of IO protocols. This method also reduces design over head cost and complexity, by allowing a single module design to pass control and data information among flash, memory, and IO controller modules. This mechanism has provision for error recovery and retry in hardware. Message Passing Descriptors employ indexing and linked lists, with a link pointing to a link. Through the descriptors, elements may be added, read, or retried easily in hardware. Each descriptor indicates the address to the next descriptor. By generating interrupts and/or monitoring the changes in the head and tail of the descriptor list, modules pass messages to the Central Processing Unit (CPU) firmware (FW) and vice versa.
An embodiment of the present invention achieves minimum CPU FW intervention during DMA transfers. It is also an objective of the present invention to achieve hardware (HW) rewind capability in the descriptor structure. It is further an objective of the present invention to achieve addition of another link with pausing. It is further an objective of the present invention to achieve flexible, FW controlled IO to IO translation via buffer management and manipulation.
These and other implementations, their variations, applications, and associated advantages and benefits are described in greater detail in the attached drawings, the detailed description, and the claims. This summary does not purport to define the invention. The invention is defined by the claims.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the present invention may admit to other equally effective embodiments.
In the following detailed description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of the various embodiments of the present invention. Those of ordinary skill in the art will realize that these various embodiments of the present invention are illustrative only and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
In addition, for clarity purposes, not all of the routine features of the embodiments described herein are shown or described. One of ordinary skill in the art would readily appreciate that in the development of any such actual implementation, numerous implementation-specific decisions may be required to achieve specific design objectives. These design objectives will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort would be a routine engineering undertaking for those of ordinary skill in the art having the benefit of this disclosure. The various embodiments disclosed herein are not intended to limit the scope and spirit of the herein disclosure.
Preferred embodiments for carrying out the principles of the present invention are described herein with reference to the drawings. However, the present invention is not limited to the specifically described and illustrated embodiments. A person skilled in the art will appreciate that many other embodiments are possible without deviating from the basic concept of the invention. Therefore, the principles of the present invention extend to any work that falls within the scope of the appended claims.
As used herein, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
(1) Data sizes are native to a DMA module and needs translation to the data sizes for another DMA module, requiring different sets of first level of descriptors [106] for the other DMA module. Descriptors cannot be re-used because the descriptors for a DMA module cannot be used again by another DMA module with a different native data size transfer. Another set of descriptors is needed by the other DMA module.
(2) No rewind or retry capability in hardware, which can speed things up in Input Output Controller (IOC) DMA during error handling. IOCs (especially for the serial-based protocols like SAS or SATA) have a need for the capability to resend frames or packets that were not transferred error free. Frequently, a frame or multiple frames exceed the buffer size in the IOC module. This means that the IOC needs to re-fetch data from memory. With only one level of linked list descriptors, if an error occurs, the IOC needs to interrupt the firmware indicating that there is a need to resend the data. The interrupt handler of the firmware then determines the retry point of the data, and re-assembles the descriptor linked list for the IOC DMA. The IOC DMA then receives the new sets of descriptors, and can now proceed to resending the data. Going through the interrupt handler in firmware takes a significant amount of time from the hardware's perspective. To speed up the process, a hardware-assisted solution is needed. One embodiment of the invention includes keeping the tracking information (retry points) in a set of hardware registers, but this approach is limited to accessing one sequential, first level descriptor-based linked list only. Multiple random linked list structures need multiple sets of tracking information registers in hardware which are usually expensive.
To address limitation (1), one embodiment of the invention uses second level descriptors [105]. The second level descriptors [105] allow the first level descriptors to be shared between two DMA modules that have different native data sizes. The offset information in the second level descriptors [105] allows adjustment of the data for the other DMA module.
To address limitation (2), each second level descriptor [Ψ] has a pointer [108] to the tracking information [101] which can be used to search for the rewind info [104]. The tracking information has 3 main components: the start info [102], the running info [103], and the rewind info [104].
The start info [102] is controlled by firmware and is a static value. Hardware uses this only as a reference to where the data DMA (controlled by the tracking information) starts.
The running info [103] is controlled by the hardware. It is initially equal to the start info [102]. As the DMA progresses, this info is updated by the hardware. This allows the hardware to track the data that it has already transferred, so it knows where to continue the DMA, if the tracking info is accessed again.
The rewind info [104] is controlled by the hardware. It is initially equal to the start info [102]. This is updated by the hardware after the partial data transfer was transferred error free. This tells the hardware where the last error-free data transfer was completed, so it can return back to this point (rewind) if an error occurred in the data that followed.
As an option, in one embodiment the tracking information [101] is located by the use of a tracking index [100]. This allows the DMA engine to traverse the descriptor system by either sequentially following the next address entry of the second level descriptors [105] or by jumping to the desired tracking information by using the tracking index [100]. Traversal using the tracking index is particularly useful for IOC DMA if the data for one IOC command is located in a linked list structure controlled by tracking information [101]. The tracking index [100] is the index in a tracking info address table in memory that contains the address to the desired tracking information [101]. By using the tracking index [100], the IOC DMA can look up the tracking info address table to get the corresponding address of the tracking info.
For this example, the memory read data the IOC DMA needs is in the darkened areas in the data buffers [204 to 207], since IOC commands may be Logical Block Address (LBA) based and can access any data in the LBA space. As seen here the end part of the first data buffer [204], all of the middle buffers [205 & 206], and the begin part of the last buffer [207] are needed by the IOC DMA engine.
For the Flash DMA Engine side, the memory write data required for transfer is the complete buffer size for all four data buffers [204 to 207]. This is due to the native data access of the Flash chip (or even the rotating media) which has a certain limit to the minimum addressable data size.
The native data access of a physical device like a flash chip or rotating media is tied to the minimum block size access of the media. For example, for rotating drives the minimum block size (1 sector) is 512 bytes, and the start addresses of their data buffers in memory are multiples of 512 bytes. IOC commands on the other hand can access any random data in the LBA space, and the start addresses of their data buffers can be anywhere in the memory space and are not constrained. This difference leads to different start addresses (and even buffer sizes) for the Flash DMA engine and IOC DMA engine.
For this setup, the firmware needs to construct two sets of first level linked list descriptors [200 to 203] and [208 to 211]. The first set of descriptors [200 to 203] is used by the Flash DMA engine, and the second set of descriptors [208 to 211] is used by the IOC DMA engine.
For the Flash DMA engine side, the memory write data required for transfer is the complete buffer size for all four data buffers [305 to 308]. This is due to the native data access of the Flash chip (or even the rotating media) which has a certain limit to the minimum addressable data size.
For this setup, the firmware needs to construct only one set of first level linked list descriptors [301 to 304] which is used by both the Flash DMA Engine and the IOC DMA engine. The IOC DMA engine has an additional second level descriptor [300]. The second level descriptor [300] has a first level descriptor address [311] which has the address of the starting first level descriptor [301]. The second level descriptor [300] also has offset [309] info and data group count [310] info. The offset [309] info allows the IOC DMA engine to select the proper data offset in the first buffer [305] for the start the IOC DMA. The data offset is the address offset counted from the start address of the data buffer. If the first level descriptors [301 to 304] have multiple data buffer entries, the offset [309] also contains the data buffer address entry number. The data group count [310] info provides the IOC DMA engine with the data end limit in the last buffer [308] for the end of the IOC DMA. The data group count [310] specifies the total data transfer count needed by the second level descriptor, so that once the data group count [310] is done, the IOC DMA engine then proceeds to the next second level descriptor, as also similarly described below when the data group count [401] is done.
For case 1, the hardware fetched descriptor D [1611] before time t2 [1602]. This means the hardware was not able to catch the updated descriptor D [1611] at time t2 [1602]. When this happens, the hardware register LastFetchPointer [1617] points to the address of descriptor D [1619], (in other words, descriptor D [1619] was the latest descriptor that the hardware read from memory). And the NextFetchPointer [1618] points to null, (in other words, from the hardware's point of view, it has no next descriptor to read from memory). This creates an interrupt condition. Upon receiving this interrupt condition, the firmware reads the hardware register NextFetchPointer [1621], to verify that it is indeed null. Firmware also checks to see that if the firmware variable LastLinkPointer [1622] is equal to the hardware register LastFetchPointer [1620]. This tells the firmware that the hardware was not able to catch the latest addition to the linked list. To remedy this, the firmware writes the address of descriptor E [1614] to the hardware register NextFetchPointer [1624]. This tells the hardware that it has now another descriptor to process. For case 2, the hardware fetched descriptor D [1611] after time t2 [1602], and hardware was able to catch the updated descriptor D [1611]. This can be confirmed by firmware by reading the hardware NextFetchPointer [1626] which correctly points to DescriptorE Address.
IOC DMA engine updates the rewind info [1804]. Current Group Pointer [1805] now points to the next second level descriptor [1808]. Current Data Descriptor Pointer [1806] now points to the first level descriptor [1809]. Current Offset [1807] now points to the data in the data buffer [1810]. IOC DMA engine continues traversing the descriptors until the Running Info [1812] Total Count Left [1813] reaches 0. IOC DMA engine generates an interrupt to Firmware to indicate command completion.
IOC DMA engine loads the rewind info [1804] to the Running Information [1812] to setup the DMA engine to the rewind point.
IOC DMA engine loads the Error Code to the tracking info [1814] Status Word [1815] and interrupts the Firmware.
In one embodiment, the second level descriptors allow the first level descriptors to be shared between two DMA engines that have different native data sizes. The offset information in the second level descriptors allows adjustment of the data for the other DMA engine. In one embodiment, each second level descriptor has a pointer to the tracking information, which has three main components: the start info, the running info, and the rewind info.
In one embodiment, the start info is controlled by firmware and is a static value. Hardware uses this as a reference to where the data DMA (controlled by the tracking information) starts.
In one embodiment, the running info is controlled by the hardware. It is initially equal to the start info. As the DMA progresses, this info is updated by the hardware. This allows the hardware to track the data that it has already transferred, so it knows where to continue the DMA, if the tracking info in accessed again.
In one embodiment, each second level descriptor has a pointer to the tracking information which can be used to search for the rewind info. In one embodiment, the rewind info is controlled by the hardware. It is initially equal to the start info. This is updated by the hardware after the partial data transfer was transferred error free, so the hardware knows where the last error-free data transfer was completed, so it can return back to this point (rewind) if an error occurred in the data that followed.
In one embodiment, locating the tracking information includes using a tracking index. This allows a DMA engine to traverse the descriptor system by either sequentially following the next address entry of the second level descriptors, or by jumping to the desired tracking information by using the tracking index. Traversal using the tracking index is particularly useful for an IOC DMA engine if the data for one IOC command is located in a linked list structure controlled by tracking information. The tracking index is the index in a tracking info address table in memory that contains the address to the desired tracking information. By using the tracking index, the IOC DMA engine can look up the tracking info address table to get the corresponding address of the tracking info.
Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks, and that networks may be wired, wireless, or a combination of wired and wireless.
It is also within the scope of the present invention to implement a program or code that can be stored in a machine-readable or computer-readable medium to permit a computer to perform any of the inventive techniques described above, or a program or code that can be stored in an article of manufacture that includes a computer readable medium on which computer-readable instructions for carrying out embodiments of the inventive techniques are stored. Other variations and modifications of the above-described embodiments and methods are possible in light of the teaching discussed herein.
The above description of illustrated embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
This application is a continuation of U.S. patent application Ser. No. 14/217,041, filed on 17 Mar. 2014, which claims the benefit of and priority to U.S. Provisional Application No. 61/800,395, filed 15 Mar. 2013. This U.S. Provisional Application No. 61/800,395 is hereby fully incorporated herein by reference. This U.S. patent application Ser. No. 14/217,041 is hereby fully incorporated herein by reference. This application relates to U.S. Utility application Ser. No. 14/217,334, “Flash Electronic Disk With RAID Controller” which is hereby fully incorporated herein by reference and U.S. Utility application Ser. No. 14/217,316, “Flash Array RAID In Flash Electronic Disks” which is hereby fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4402040 | Evett | Aug 1983 | A |
4403283 | Myntti et al. | Sep 1983 | A |
4752871 | Sparks | Jun 1988 | A |
4967344 | Scavezze et al. | Oct 1990 | A |
5111058 | Martin | May 1992 | A |
RE34100 | Hartness | Oct 1992 | E |
5222046 | Kreifels et al. | Jun 1993 | A |
5297148 | Harari et al. | Mar 1994 | A |
5339404 | Vandling, III | Aug 1994 | A |
5341339 | Wells | Aug 1994 | A |
5371709 | Fisher et al. | Dec 1994 | A |
5379401 | Robinson et al. | Jan 1995 | A |
5388083 | Assar et al. | Feb 1995 | A |
5396468 | Harari et al. | Mar 1995 | A |
5406529 | Asano | Apr 1995 | A |
5432748 | Hsu et al. | Jul 1995 | A |
5448577 | Wells et al. | Sep 1995 | A |
5459850 | Clay et al. | Oct 1995 | A |
5479638 | Assar et al. | Dec 1995 | A |
5485595 | Assar et al. | Jan 1996 | A |
5488711 | Hewitt et al. | Jan 1996 | A |
5500826 | Hsu et al. | Mar 1996 | A |
5509134 | Fandrich et al. | Apr 1996 | A |
5513138 | Manabe et al. | Apr 1996 | A |
5522065 | Neufeld | May 1996 | A |
5524231 | Brown | Jun 1996 | A |
5530828 | Kaki et al. | Jun 1996 | A |
5535328 | Harari et al. | Jul 1996 | A |
5535356 | Kim et al. | Jul 1996 | A |
5542042 | Manson | Jul 1996 | A |
5542082 | Solhjell | Jul 1996 | A |
5548741 | Watanabe | Aug 1996 | A |
5559956 | Sukegawa | Sep 1996 | A |
5568423 | Jou et al. | Oct 1996 | A |
5568439 | Harari | Oct 1996 | A |
5572466 | Sukegawa | Nov 1996 | A |
5594883 | Pricer | Jan 1997 | A |
5602987 | Harari et al. | Feb 1997 | A |
5603001 | Sukegawa et al. | Feb 1997 | A |
5606529 | Honma et al. | Feb 1997 | A |
5606532 | Lambrache et al. | Feb 1997 | A |
5619470 | Fukumoto | Apr 1997 | A |
5627783 | Miyauchi | May 1997 | A |
5640349 | Kakinuma et al. | Jun 1997 | A |
5644784 | Peek | Jul 1997 | A |
5682509 | Kabenjian | Oct 1997 | A |
5737742 | Achiwa et al. | Apr 1998 | A |
5765023 | Leger et al. | Jun 1998 | A |
5787466 | Berliner | Jul 1998 | A |
5796182 | Martin | Aug 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5802554 | Caceres et al. | Sep 1998 | A |
5818029 | Thomson | Oct 1998 | A |
5819307 | Iwamoto et al. | Oct 1998 | A |
5822251 | Bruce et al. | Oct 1998 | A |
5864653 | Tavallaei et al. | Jan 1999 | A |
5870627 | O'Toole et al. | Feb 1999 | A |
5875351 | Riley | Feb 1999 | A |
5881264 | Kurosawa | Mar 1999 | A |
5913215 | Rubinstein et al. | Jun 1999 | A |
5918033 | Heeb et al. | Jun 1999 | A |
5930481 | Benhase | Jul 1999 | A |
5933849 | Srbljic et al. | Aug 1999 | A |
5943421 | Grabon | Aug 1999 | A |
5956743 | Bruce et al. | Sep 1999 | A |
5978866 | Nain | Nov 1999 | A |
5987621 | Duso | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6014709 | Gulick et al. | Jan 2000 | A |
6070182 | Rao et al. | May 2000 | A |
6076137 | Asnaashari | Jun 2000 | A |
6098119 | Surugucchi et al. | Aug 2000 | A |
6128303 | Bergantino | Oct 2000 | A |
6138200 | Ogilvie | Oct 2000 | A |
6138247 | McKay et al. | Oct 2000 | A |
6151641 | Herbert | Nov 2000 | A |
6215875 | Nohda | Apr 2001 | B1 |
6230269 | Spies et al. | May 2001 | B1 |
6298071 | Taylor et al. | Oct 2001 | B1 |
6341342 | Thompson et al. | Jan 2002 | B1 |
6363441 | Beniz et al. | Mar 2002 | B1 |
6363444 | Platko et al. | Mar 2002 | B1 |
6397267 | Chong, Jr. | May 2002 | B1 |
6404772 | Beach et al. | Jun 2002 | B1 |
6452602 | Morein | Sep 2002 | B1 |
6496939 | Portman et al. | Dec 2002 | B2 |
6526506 | Lewis | Feb 2003 | B1 |
6529416 | Bruce et al. | Mar 2003 | B2 |
6557095 | Henstrom | Apr 2003 | B1 |
6574142 | Gelke | Jun 2003 | B2 |
6601126 | Zaidi et al. | Jul 2003 | B1 |
6678754 | Soulier | Jan 2004 | B1 |
6728840 | Shatil et al. | Apr 2004 | B1 |
6744635 | Portman et al. | Jun 2004 | B2 |
6785746 | Mahmoud et al. | Aug 2004 | B1 |
6757845 | Bruce | Dec 2004 | B2 |
6857076 | Klein | Feb 2005 | B1 |
6901499 | Aasheim et al. | May 2005 | B2 |
6922391 | King et al. | Jul 2005 | B1 |
6961805 | Lakhani et al. | Nov 2005 | B2 |
6970446 | Krischer et al. | Nov 2005 | B2 |
6970890 | Bruce et al. | Nov 2005 | B1 |
6973546 | Johnson | Dec 2005 | B2 |
6980795 | Hermann et al. | Dec 2005 | B1 |
7103684 | Chen et al. | Sep 2006 | B2 |
7174438 | Homma et al. | Feb 2007 | B2 |
7194766 | Noehring et al. | Mar 2007 | B2 |
7263006 | Aritome | Aug 2007 | B2 |
7283629 | Kaler et al. | Oct 2007 | B2 |
7305548 | Pierce et al. | Dec 2007 | B2 |
7330954 | Nangle | Feb 2008 | B2 |
7372962 | Fujimoto et al. | May 2008 | B2 |
7386662 | Kekre et al. | Jun 2008 | B1 |
7412631 | Uddenberg et al. | Aug 2008 | B2 |
7415549 | Vemula | Aug 2008 | B2 |
7424553 | Borrelli | Sep 2008 | B1 |
7430650 | Ross | Sep 2008 | B1 |
7474926 | Carr et al. | Jan 2009 | B1 |
7478186 | Onufryk et al. | Jan 2009 | B1 |
7490177 | Kao | Feb 2009 | B2 |
7496699 | Pope et al. | Feb 2009 | B2 |
7500063 | Zohar et al. | Mar 2009 | B2 |
7506098 | Arcedera et al. | Mar 2009 | B2 |
7613876 | Bruce et al. | Nov 2009 | B2 |
7620748 | Bruce et al. | Nov 2009 | B1 |
7620749 | Biran et al. | Nov 2009 | B2 |
7624239 | Bennett et al. | Nov 2009 | B2 |
7636801 | Kekre et al. | Dec 2009 | B1 |
7660941 | Lee et al. | Feb 2010 | B2 |
7668925 | Liao et al. | Feb 2010 | B1 |
7676640 | Chow | Mar 2010 | B2 |
7681188 | Tirumalai et al. | Mar 2010 | B1 |
7716389 | Bruce et al. | May 2010 | B1 |
7719287 | Marks et al. | May 2010 | B2 |
7729370 | Orcine et al. | Jun 2010 | B1 |
7743202 | Tsai et al. | Jun 2010 | B2 |
7765359 | Kang et al. | Jul 2010 | B2 |
7877639 | Hoang | Jan 2011 | B2 |
7913073 | Choi | Mar 2011 | B2 |
7921237 | Holland et al. | Apr 2011 | B1 |
7934052 | Prins et al. | Apr 2011 | B2 |
7958295 | Liao et al. | Jun 2011 | B1 |
7979614 | Yang | Jul 2011 | B1 |
7996581 | Bond et al. | Aug 2011 | B2 |
8010740 | Arcedera et al. | Oct 2011 | B2 |
8032700 | Bruce et al. | Oct 2011 | B2 |
8156279 | Tanaka et al. | Apr 2012 | B2 |
8156320 | Borras | Apr 2012 | B2 |
8161223 | Chamseddine et al. | Apr 2012 | B1 |
8165301 | Bruce et al. | Apr 2012 | B1 |
8200879 | Falik et al. | Jun 2012 | B1 |
8219719 | Parry et al. | Jul 2012 | B1 |
8225022 | Caulkins | Jul 2012 | B2 |
8266342 | Takada et al. | Sep 2012 | B1 |
8341300 | Karamcheti | Dec 2012 | B1 |
8341311 | Szewerenko et al. | Dec 2012 | B1 |
8375257 | Hong et al. | Feb 2013 | B2 |
8447908 | Bruce et al. | Apr 2013 | B2 |
8489914 | Cagno | Jul 2013 | B2 |
8510631 | Wu et al. | Aug 2013 | B2 |
8560804 | Bruce et al. | Oct 2013 | B2 |
8583868 | Belluomini et al. | Nov 2013 | B2 |
8677042 | Gupta et al. | Mar 2014 | B2 |
8707134 | Takahashi et al. | Apr 2014 | B2 |
8713417 | Jo | Apr 2014 | B2 |
8762609 | Lam et al. | Jun 2014 | B1 |
8788725 | Bruce et al. | Jul 2014 | B2 |
8832371 | Uehara et al. | Sep 2014 | B2 |
8856392 | Myrah et al. | Oct 2014 | B2 |
8959307 | Bruce et al. | Feb 2015 | B1 |
9043669 | Bruce et al. | May 2015 | B1 |
9099187 | Bruce et al. | Aug 2015 | B2 |
9135190 | Bruce et al. | Sep 2015 | B1 |
9147500 | Kim et al. | Sep 2015 | B2 |
9158661 | Blaine et al. | Oct 2015 | B2 |
9201790 | Keeler | Dec 2015 | B2 |
9400617 | Ponce et al. | Jul 2016 | B2 |
20010010066 | Chin et al. | Jul 2001 | A1 |
20020011607 | Gelke et al. | Jan 2002 | A1 |
20020013880 | Gappisch et al. | Jan 2002 | A1 |
20020044486 | Chan et al. | Apr 2002 | A1 |
20020073324 | Hsu et al. | Jun 2002 | A1 |
20020083262 | Fukuzumi | Jun 2002 | A1 |
20020083264 | Coulson | Jun 2002 | A1 |
20020141244 | Bruce et al. | Oct 2002 | A1 |
20030023817 | Rowlands et al. | Jan 2003 | A1 |
20030065836 | Pecone | Apr 2003 | A1 |
20030097248 | Terashima et al. | May 2003 | A1 |
20030120864 | Lee et al. | Jun 2003 | A1 |
20030126451 | Gorobets | Jul 2003 | A1 |
20030131201 | Khare et al. | Jul 2003 | A1 |
20030161355 | Falcomato et al. | Aug 2003 | A1 |
20030163624 | Matsui et al. | Aug 2003 | A1 |
20030163647 | Cameron et al. | Aug 2003 | A1 |
20030163649 | Kapur et al. | Aug 2003 | A1 |
20030182576 | Morlang et al. | Sep 2003 | A1 |
20030188100 | Solomon et al. | Oct 2003 | A1 |
20030204675 | Dover et al. | Oct 2003 | A1 |
20030217202 | Zilberman et al. | Nov 2003 | A1 |
20030223585 | Tardo et al. | Dec 2003 | A1 |
20040073721 | Goff et al. | Apr 2004 | A1 |
20040078632 | Infante et al. | Apr 2004 | A1 |
20040128553 | Buer et al. | Jul 2004 | A1 |
20040186931 | Maine | Sep 2004 | A1 |
20040215868 | Solomon et al. | Oct 2004 | A1 |
20050050245 | Miller et al. | Mar 2005 | A1 |
20050055481 | Chou et al. | Mar 2005 | A1 |
20050078016 | Neff | Apr 2005 | A1 |
20050097263 | Wurzburg | May 2005 | A1 |
20050097368 | Peinado et al. | May 2005 | A1 |
20050120146 | Chen et al. | Jun 2005 | A1 |
20050210149 | Kimball | Sep 2005 | A1 |
20050210159 | Voorhees et al. | Sep 2005 | A1 |
20050226407 | Kasuya et al. | Oct 2005 | A1 |
20050240707 | Hayashi et al. | Oct 2005 | A1 |
20050243610 | Guha et al. | Nov 2005 | A1 |
20050289361 | Sutardja | Dec 2005 | A1 |
20060004957 | Hand III, et al. | Jan 2006 | A1 |
20060026329 | Yu | Feb 2006 | A1 |
20060031450 | Unrau et al. | Feb 2006 | A1 |
20060039406 | Day et al. | Feb 2006 | A1 |
20060064520 | Anand et al. | Mar 2006 | A1 |
20060095709 | Achiwa | May 2006 | A1 |
20060112251 | Karr et al. | May 2006 | A1 |
20060129876 | Uemura | Jun 2006 | A1 |
20060173970 | Pope et al. | Aug 2006 | A1 |
20060184723 | Sinclair et al. | Aug 2006 | A1 |
20070019573 | Nishimura | Jan 2007 | A1 |
20070028040 | Sinclair | Feb 2007 | A1 |
20070058478 | Murayama | Mar 2007 | A1 |
20070073922 | Go et al. | Mar 2007 | A1 |
20070079017 | Brink et al. | Apr 2007 | A1 |
20070083680 | King et al. | Apr 2007 | A1 |
20070088864 | Foster | Apr 2007 | A1 |
20070093124 | Varney et al. | Apr 2007 | A1 |
20070094450 | VanderWiel | Apr 2007 | A1 |
20070096785 | Maeda | May 2007 | A1 |
20070121499 | Pal et al. | May 2007 | A1 |
20070130439 | Andersson et al. | Jun 2007 | A1 |
20070159885 | Gorobets | Jul 2007 | A1 |
20070168754 | Zohar et al. | Jul 2007 | A1 |
20070174493 | Irish et al. | Jul 2007 | A1 |
20070174506 | Tsuruta | Jul 2007 | A1 |
20070195957 | Arulambalam et al. | Aug 2007 | A1 |
20070288686 | Arcedera et al. | Dec 2007 | A1 |
20070288692 | Bruce et al. | Dec 2007 | A1 |
20070294572 | Kalwitz et al. | Dec 2007 | A1 |
20070299996 | Guy et al. | Dec 2007 | A1 |
20080005481 | Walker | Jan 2008 | A1 |
20080052456 | Ash et al. | Feb 2008 | A1 |
20080052585 | LaBerge et al. | Feb 2008 | A1 |
20080072031 | Choi | Mar 2008 | A1 |
20080104264 | Duerk et al. | May 2008 | A1 |
20080140724 | Flynn et al. | Jun 2008 | A1 |
20080147963 | Tsai et al. | Jun 2008 | A1 |
20080189466 | Hemmi | Aug 2008 | A1 |
20080195800 | Lee et al. | Aug 2008 | A1 |
20080218230 | Shim | Sep 2008 | A1 |
20080228959 | Wang | Sep 2008 | A1 |
20080276037 | Chang et al. | Nov 2008 | A1 |
20080301256 | McWilliams et al. | Dec 2008 | A1 |
20090028229 | Cagno et al. | Jan 2009 | A1 |
20090037565 | Andresen et al. | Feb 2009 | A1 |
20090055573 | Ito | Feb 2009 | A1 |
20090077306 | Arcedera et al. | Mar 2009 | A1 |
20090083022 | Bin Mohd Nordin et al. | Mar 2009 | A1 |
20090094411 | Que | Apr 2009 | A1 |
20090132620 | Arakawa | May 2009 | A1 |
20090132752 | Poo et al. | May 2009 | A1 |
20090150643 | Jones et al. | Jun 2009 | A1 |
20090158085 | Kern et al. | Jun 2009 | A1 |
20090172250 | Allen et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172466 | Royer et al. | Jul 2009 | A1 |
20090240873 | Yu et al. | Sep 2009 | A1 |
20100058045 | Borras et al. | Mar 2010 | A1 |
20100095053 | Bruce et al. | Apr 2010 | A1 |
20100125695 | Wu et al. | May 2010 | A1 |
20100250806 | Devilla et al. | Sep 2010 | A1 |
20100268904 | Sheffield et al. | Oct 2010 | A1 |
20100299538 | Miller | Nov 2010 | A1 |
20100318706 | Kobayashi | Dec 2010 | A1 |
20110022778 | Schibilla et al. | Jan 2011 | A1 |
20110022783 | Moshayedi | Jan 2011 | A1 |
20110022801 | Flynn | Jan 2011 | A1 |
20110087833 | Jones | Apr 2011 | A1 |
20110093648 | Belluomini et al. | Apr 2011 | A1 |
20110113186 | Bruce et al. | May 2011 | A1 |
20110133826 | Jones et al. | Jun 2011 | A1 |
20110145479 | Talagala et al. | Jun 2011 | A1 |
20110161568 | Bruce et al. | Jun 2011 | A1 |
20110167204 | Estakhri et al. | Jul 2011 | A1 |
20110173383 | Gorobets | Jul 2011 | A1 |
20110197011 | Suzuki et al. | Aug 2011 | A1 |
20110202709 | Rychlik | Aug 2011 | A1 |
20110208901 | Kim et al. | Aug 2011 | A1 |
20110208914 | Winokur et al. | Aug 2011 | A1 |
20110219150 | Piccirillo et al. | Sep 2011 | A1 |
20110258405 | Asaki et al. | Oct 2011 | A1 |
20110264884 | Kim | Oct 2011 | A1 |
20110264949 | Ikeuchi et al. | Oct 2011 | A1 |
20110270979 | Schlansker et al. | Nov 2011 | A1 |
20120005405 | Wu et al. | Jan 2012 | A1 |
20120005410 | Ikeuchi | Jan 2012 | A1 |
20120017037 | Riddle et al. | Jan 2012 | A1 |
20120079352 | Frost et al. | Mar 2012 | A1 |
20120102263 | Aswadhati | Apr 2012 | A1 |
20120102268 | Smith et al. | Apr 2012 | A1 |
20120137050 | Wang et al. | May 2012 | A1 |
20120159029 | Krishnan et al. | Jun 2012 | A1 |
20120161568 | Umemoto et al. | Jun 2012 | A1 |
20120173795 | Schuette et al. | Jul 2012 | A1 |
20120215973 | Cagno et al. | Aug 2012 | A1 |
20120249302 | Szu | Oct 2012 | A1 |
20120260102 | Zaks et al. | Oct 2012 | A1 |
20120271967 | Hirschman | Oct 2012 | A1 |
20120303924 | Ross | Nov 2012 | A1 |
20120311197 | Larson et al. | Dec 2012 | A1 |
20120324277 | Weston-Lewis et al. | Dec 2012 | A1 |
20130010058 | Pomeroy | Jan 2013 | A1 |
20130019053 | Somanache et al. | Jan 2013 | A1 |
20130073821 | Flynn et al. | Mar 2013 | A1 |
20130094312 | Jang et al. | Apr 2013 | A1 |
20130099838 | Kim et al. | Apr 2013 | A1 |
20130111135 | Bell, Jr. et al. | May 2013 | A1 |
20130206837 | Szu | Aug 2013 | A1 |
20130208546 | Kim et al. | Aug 2013 | A1 |
20130212337 | Maruyama | Aug 2013 | A1 |
20130212349 | Maruyama | Aug 2013 | A1 |
20130212425 | Blaine et al. | Aug 2013 | A1 |
20130246694 | Bruce et al. | Sep 2013 | A1 |
20130254435 | Shapiro et al. | Sep 2013 | A1 |
20130262750 | Yamasaki et al. | Oct 2013 | A1 |
20130282933 | Jokinen et al. | Oct 2013 | A1 |
20130304775 | Davis et al. | Nov 2013 | A1 |
20130339578 | Ohya et al. | Dec 2013 | A1 |
20130339582 | Olbrich et al. | Dec 2013 | A1 |
20130346672 | Sengupta et al. | Dec 2013 | A1 |
20140068177 | Raghavan | Mar 2014 | A1 |
20140095803 | Kim et al. | Apr 2014 | A1 |
20140104949 | Bruce et al. | Apr 2014 | A1 |
20140108869 | Brewerton | Apr 2014 | A1 |
20140189203 | Suzuki et al. | Jul 2014 | A1 |
20140258788 | Maruyama | Sep 2014 | A1 |
20140285211 | Raffinan | Sep 2014 | A1 |
20140331034 | Ponce et al. | Nov 2014 | A1 |
20150006766 | Ponce et al. | Jan 2015 | A1 |
20150012690 | Bruce et al. | Jan 2015 | A1 |
20150032937 | Salessi | Jan 2015 | A1 |
20150032938 | Salessi | Jan 2015 | A1 |
20150067243 | Salessi et al. | Mar 2015 | A1 |
20150149697 | Salessi et al. | May 2015 | A1 |
20150149706 | Salessi et al. | May 2015 | A1 |
20150153962 | Salessi et al. | Jun 2015 | A1 |
20150169021 | Salessi et al. | Jun 2015 | A1 |
20150261456 | Alcantara et al. | Sep 2015 | A1 |
20150261475 | Alcantara et al. | Sep 2015 | A1 |
20150261797 | Alcantara et al. | Sep 2015 | A1 |
20150370670 | Lu | Dec 2015 | A1 |
20150371684 | Mataya | Dec 2015 | A1 |
20150378932 | Souri et al. | Dec 2015 | A1 |
20160026402 | Alcantara et al. | Jan 2016 | A1 |
20160027521 | Lu | Jan 2016 | A1 |
20160041596 | Alcantara et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
2005142859 | Jun 2005 | JP |
2005-309847 | Nov 2005 | JP |
489308 | Jun 2002 | TW |
200428219 | Dec 2004 | TW |
436689 | Dec 2005 | TW |
I420316 | Dec 2013 | TW |
WO 9406210 | Mar 1994 | WO |
WO 9838568 | Sep 1998 | WO |
Entry |
---|
Office Action dated Oct. 5, 2015 for Taiwanese Application No. 103105076. |
Office Action dated Nov. 19, 2015 for U.S. Appl. No. 14/217,249. |
Office Action dated Nov. 18, 2015 for U.S. Appl. No. 14/217,467. |
Office Action dated Dec. 4, 2015 for U.S. Appl. No. 14/616,700. |
Office Action dated Jun. 4, 2015 for U.S. Appl. No. 14/215,414. |
Office Action for U.S. Appl. No. 14/855,245 dated Oct. 26, 2016. |
Office Action for U.S. Appl. No. 14/217,249 dated Oct. 28, 2016. |
Office Action for U.S. Appl. No. 14/217,399 dated Nov. 1, 2016. |
Office Action for U.S. Appl. No. 14/217,291 dated Nov. 3, 2016. |
Office Action for U.S. Appl. No. 14/217,947 dated Nov. 4, 2016. |
Office Action for U.S. Appl. No. 14/216,627 dated Nov. 7, 2016. |
Office Action for U.S. Appl. No. 14/689,019 dated Nov. 18, 2016. |
Office Action for U.S. Appl. No. 14/684,399 dated Nov. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 14/689,045 dated Nov. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 14/217,334 dated Nov. 23, 2016. |
Office Action dated Dec. 5, 2014 for U.S. Appl. No. 14/038,684. |
Office Action dated Oct. 8, 2015 for U.S. Appl. No. 14/217,291. |
Notice of allowance/allowability for U.S. Appl. No. 13/253,912 dated Mar. 21, 2016. |
Notice of allowance/allowability for U.S. Appl. No. 14/803,107 dated Mar. 28, 2016. |
Office Action for U.S. Appl. No. 14/217,334 dated Apr. 4, 2016. |
Robert Cooksey et al., A Stateless, Content-Directed Data Prefetching Mechanism, Copyright 2002 ACM. |
Office Action for U.S. Appl. No. 14/866,946 dated Jul. 27 2017. |
Office Action for U.S. Appl. No. 14/616,700 dated Jun. 2, 2017. |
Office Action for U.S. Appl. No. 15/268,533 dated Jun. 2, 2017 (issued by Examiner in this application). |
Office Action for U.S. Appl. No. 15/268,536 dated Apr. 27, 2017. |
Office Action for U.S. Appl. No. 15/368,598 dated May 19, 2017. |
Advisory Action for U.S. Appl. No. 14/690,305 dated Nov. 25, 2016. |
Office Action for U.S. Appl. No. 14/216,937 dated Aug. 15, 2016. |
Notice of Allowance for U.S. Appl. No. 14/217,096 dated Dec. 5, 2016. |
Notice of Allowance for U.S. Appl. No. 14/217,161 dated Dec. 30, 2016. |
Office Action for U.S. Appl. No. 14/866,946 dated Jan. 5, 2017. |
Office Action for U.S. Appl. No. 14/688,209 dated Jan. 11, 2017. |
Amazon Route 53 Developer Guide API Version Apr. 1, 2013, copyright 2017 by Amazon Web Services. |
Host Bus Adapters (HBAs): What you need to know about networking workhorse by Alan Earls, Feb. 2003. |
Office Action for U.S. Appl. No. 14/690,243 dated Jan. 13, 2017. |
Office Action for U.S. Appl. No. 14/232,801 dated Jan. 19, 2017. |
Notice of allowance/allowability for U.S. Appl. No. 14/217,365 dated Oct. 18, 2016. |
Office Action for U.S. Appl. No. 14/217,291 dated Jun. 15, 2016. |
Office Action for U.S. Appl. No. 14/217,316 dated Aug. 10, 2017. |
Advisory Action for U.S. Appl. No. 14/690,305 dated Nov. 3, 2017. |
Office Action for U.S. Appl. No. 14/690,305 dated Aug. 10, 2017. |
Office Action for U.S. Appl. No. 14/217,291 dated Nov. 3, 2017. |
Notice of Allowance/Allowability for U.S. Appl. No. 14/217,334 dated Aug. 4, 2017. |
Advisory Action for U.S. Appl. No. 14/217,291 dated Aug. 9, 2017. |
Office Action for U.S. Appl. No. 14/217,291 dated May 17, 2017. |
Notice of Allowance for U.S. Appl. No. 14/215,414 dated Jan. 20, 2017. |
Advisory Action for U.S. Appl. No. 14/217,249 dated Jan. 26, 2017. |
Notice of Allowance for U.S. Appl. No. 14/687,700 dated Jan. 27, 2016. |
Office Action for U.S. Appl. No. 14/690,339 dated Feb. 3, 2017. |
Office Action for U.S. Appl. No. 14/616,700 dated Feb. 9, 2017. |
Notice of Allowance for U.S. Appl. No. 14/217,365 dated Feb. 10, 2017. |
Office Action for U.S. Appl. No. 14/690,349 dated Feb. 8, 2017. |
Advisory Action for U.S. Appl. No. 14/689,019 dated Feb. 17, 2017. |
Office Action for U.S. Appl. No. 14/690,349 dated Feb. 27, 2017. |
Notice of allowance/allowability for U.S. Appl. No. 14/214,216 dated Apr. 27, 2016. |
Notice of allowance/allowability for U.S. Appl. No. 14/217,436 dated May 6, 2016. |
National Science Fountation,Award Abstract #1548968, SBIR Phase I: SSD In-Situ Processing, http://www.nsf.gov/awardsearch/showAward?AWD_ID=1548968 printed on Feb. 13, 2016. |
Design-Reuse, NxGn Data Emerges from Stealth Mode to provide a paradigm shift in enterprise storage solution. |
Office Action dated Dec. 15, 2015 for U.S. Appl. No. 13/253,912. |
Office Action dated Dec. 17, 2015 for U.S. Appl. No. 14/214,216. |
Office Action dated Dec. 17, 2015 for U.S. Appl. No. 14/215,414. |
Office Action dated Dec. 17, 2015 for U.S. Appl. No. 14/803,107. |
Office Action dated Jan. 17, 2016 for U.S. Appl. No. 14/866,946. |
Office Action dated Jan. 11, 2016 for U.S. Appl. No. 14/217,399. |
Office Action dated Jan. 15, 2016 for U.S. Appl. No. 14/216,937. |
Notice of Allowance and Examiner-Initiated Interview Summary, dated Jan. 29, 2016 for U.S. Appl. No. 14/297,628. |
Advisory Action for U.S. Appl. No. 14/217,334 dated Jun. 13, 2016. |
Office Action for U.S. Appl. No. 12/876,113 dated Mar. 13, 2014. |
Advisory Action for U.S. Appl. No. 12/876,113 dated Sep. 6, 2013. |
Office Action for U.S. Appl. No. 12/876,113 dated May 14, 2013. |
Office Action for U.S. Appl. No. 12/876,113 dated Dec. 21, 2012. |
Notice of Allowability for U.S. Appl. No. 12/882,059 dated May 30, 2013. |
Notice of Allowability for U.S. Appl. No. 12/882,059 dated Feb. 14, 2013. |
Office Action for U.S. Appl. No. 12/882,059 dated May 11, 2012. |
Notice of Allowability for U.S. Appl. No. 14/038,684 dated Aug. 1, 2014. |
Office Action for U.S. Appl. No. 14/038,684 dated Mar. 17, 2014. |
Notice of Allowance/Allowability for U.S. Appl. No. 13/890,229 dated Feb. 20, 2014. |
Office Action for U.S. Appl. No. 13/890,229 dated Oct. 8, 2013. |
Office Action for U.S. Appl. No. 12/876,113 dated Dec. 5, 2014. |
Notice of Allowance/Allowabilty for U.S. Appl. No. 12/876,113 dated Jun. 22, 2015. |
Office Action for U.S. Appl. No. 14/217,249 dated Apr. 23, 2015. |
Office Action for U.S. Appl. No. 14/217,467 dated Apr. 27, 2015. |
Office Action for U.S. Appl. No. 14/616,700 dated Apr. 30, 2015. |
Office Action for U.S. Appl. No. 14/217,436 dated Sep. 11, 2015. |
Office Action for U.S. Appl. No. 14/217,096 dated Jul. 12, 2016. |
Notice of Allowance for U.S. Appl. No. 14/217,399 dated Jul. 20, 2016 (Mailed in this current application). |
Office Action for U.S. Appl. No. 14/866,946 dated Jul. 29, 2016. |
Notice of Allowance for U.S. Appl. No. 14/217,334 dated Jul. 29, 2016. |
Office Action for U.S. Appl. No. 14/690,243 dated Aug. 11, 2016. |
Office Action for U.S. Appl. No. 14/690,370 dated Aug. 12, 2016. |
Working Draft American National Standard Project T10/1601-D Information Technology Serial Attached SCSI—1.1 (SAS—1.1), Mar. 13, 2004 Revision 4. |
Final Office Action dated Nov. 19, 2015 for U.S. Appl. No. 14/217,249. |
Final Office Action dated Nov. 18, 2015 for U.S. Appl. No. 14/217,467. |
Office Action dated Nov. 25, 2015 for U.S. Appl. No. 14/217,041. |
Office Action for U.S. Appl. No. 14/217,249 dated Apr. 21, 2016. |
Notice of allowance/allowability for U.S. Appl. No. 14/217,467 dated Apr. 20, 2016. |
Office Action for U.S. Appl. No. 14/215,414 dated May 20, 2016. |
Office Action for U.S. Appl. No. 14/616,700 dated May 20, 2016. |
Office Action for U.S. Appl. No. 14/689,019 dated May 20, 2016. |
Advisory Action for U.S. Appl. No. 14/217,316 dated May 19, 2016. |
Office Action for U.S. Appl. No. 14/217,365 dated Feb. 18, 2016. |
Office Action for U.S. Appl. No. 14/217,365 dated Mar. 2, 2016. |
Office Action for U.S. Appl. No. 14/690,305 dated Feb. 25, 2016. |
Office Action for U.S. Appl. No. 14/217,436 dated Feb. 25, 2016. |
Office Action for U.S. Appl. No. 14/217,316 dated Feb. 26, 2016. |
Office Action for U.S. Appl. No. 14/215,414 dated Mar. 1, 2016. |
Office Action for U.S. Appl. No. 14/616,700 dated Mar. 8, 2016. |
Office Action for U.S. Appl. No. 13/253,912 dated Jul. 16, 2014. |
Office Action for U.S. Appl. No. 13/475,878 dated Jun. 23, 2014. |
Office Action for U.S. Appl. No. 12/876,113 dated Jul. 11, 2014. |
Office Action for U.S. Appl. No. 12/876,113 dated Oct. 16, 2014. |
Notice of Allowance for U.S. Appl. No. 12/270,626 dated Oct. 3, 2014. |
Office Action for U.S. Appl. No. 12/270,626 dated May 23, 2014. |
Office Action for U.S. Appl. No. 12/270,626 dated Apr. 4, 2011. |
Office Action for U.S. Appl. No. 12/270,626 dated Dec. 18, 2013. |
Office Action for U.S. Appl. No. 12/270,626 dated Mar. 15, 2013. |
Office Action for U.S. Appl. No. 12/270,626 dated Aug. 23, 2012. |
Office Action for U.S. Appl. No. 13/475,878, dated Jun. 23, 2014. |
Office Action for U.S. Appl. No. 12/270,626 dated Feb. 3, 2012. |
Notice of Allowance/Allowability for U.S. Appl. No. 12/270,626 dated Oct. 3, 2014. |
Advisory Action for U.S. Appl. No. 12/876,113 dated Oct. 16, 2014. |
Office Action for U.S. Appl. No. 14/297,628 dated Jul. 17, 2015. |
Office Action for U.S. Appl. No. 13/475,878 dated Dec. 4, 2014. |
USPTO Notice of Allowability & attachment(s) dated Jan. 7, 2013 for U.S. Appl. No. 12/876,247. |
Office Action dated Sep. 14, 2012 for U.S. Appl. No. 12/876,247. |
Office Action dated Feb. 1, 2012 for U.S. Appl. No. 12/876,247. |
Notice of Allowance/Allowability dated Mar. 31, 2015 for U.S. Appl. No. 13/475,878. |
Office Action dated May 22, 2015 for U.S. Appl. No. 13/253,912. |
Office Action for U.S. Appl. No. 14/616,700 dated Oct. 20, 2016. |
Notice of allowance/allowability for U.S. Appl. No. 14/217,041 dated Apr. 11, 2016. |
Office Action for U.S. Appl. No. 14/217,316 dated Aug. 25, 2016. |
Office Action for U.S. Appl. No. 14/690,305 dated Aug. 26, 2016. |
Advisory Action for U.S. Appl. No. 14/217,291 dated Sep. 9, 2016. |
Advisory Action for U.S. Appl. No. 14/689,045 dated Sep. 16, 2016. |
Notice of Allowance for U.S. Appl. No. 14/182,303 dated Sep. 12, 2016. |
Advisory Action for U.S. Appl. No. 14/690,114 dated Sep. 12, 2016. |
Notice of Allowance for U.S. Appl. No. 14/215,414 dated Sep. 23, 2016. |
Advisory Action for U.S. Appl. No. 14/866,946 dated Oct. 13, 2016. |
Office Action for U.S. Appl. No. 14/687,700 dated Sep. 26, 2016. |
Office Action for U.S. Appl. No. 15/170,768 dated Oct. 6, 2016. |
Office Action dated Sep. 11, 2015 for U.S. Appl. No. 14/217,436. |
Office Action dated Sep. 24, 2015 for U.S. Appl. No. 14/217,334. |
Office Action dated Sep. 18, 2015 for Taiwanese Patent Application No. 102144165. |
Office Action dated Sep. 29, 2015 for U.S. Appl. No. 14/217,316. |
Office Action dated Sep. 28, 2015 for U.S. Appl. No. 14/689,045. |
Advisory Action for U.S. Appl. No. 14/217,316 dated Jun. 15, 2017. |
Office Action for U.S. Appl. No. 14/217,316 dated Mar. 23, 2017. |
Office Action for U.S. Appl. No. 14/690,305 dated Feb. 10, 2017. |
Advisory Action for U.S. Appl. No. 14/690,305 dated Nov. 25 2016. |
Notice of Allowance/Allowability for U.S. Appl. No. 14/217,334 dated Mar. 23, 2017. |
Number | Date | Country | |
---|---|---|---|
61800395 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14217041 | Mar 2014 | US |
Child | 15344537 | US |