An embodiment of the invention is directed to transmitter and receiver circuits for light waveguide data communications over relatively short distance links. Other embodiments are also described.
Light waveguide data communications (also referred to here as optical data communications) is becoming increasingly popular due to its advantages in relation to systems that use conductive wires for transmission. Such advantages include resistance against radio frequency interference and higher data rates. An example of a light waveguide transmission system is an optical fiber cable link. Such links are widely used for high speed communications between computer systems. Each system that is attached to the link has a transmitter portion and a receiver portion. The transmitter portion includes electronic circuitry that controls a light source such as a laser, to generate a light signal in the cable that is modulated with information and/or data to be transmitted. The light signal is detected at the receiver portion by a light detector, such as a photodiode, and with the help of appropriate circuitry the received data is then demodulated and recovered.
The transmitter and receiver portions of an optical link are designed with the concept of an optical power budget in mind. The required power or light intensity of the source signal at the transmitter is a function of not just the dynamic range of the receiver, but also connector losses and fiber attenuation. Enough power should reach the receiver such that the signal to noise ratio (SNR) is adequate to achieve a minimum bit error ratio (BER). In other words, the transmit power needs to be high enough so that despite such losses, there is enough signal power at the receiver to detect the transmitted information. The higher the losses in the link, the smaller the available light intensity range in which the data to be transmitted can be modulated or encoded. In addition, optical fiber cable causes dispersion in the light signal, making it difficult for the receiver to distinguish between adjacent data symbols in a received sequence. The data symbols are conventionally encoded using a binary coding scheme where each symbol that is transmitted is represented by one of only two different light intensity levels.
The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” embodiment or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one.
The various embodiments of the invention described here encompass a multi-level coding scheme, i.e. more than two levels for representing each transmitted symbol, which makes more efficient use of the power budget of an optical link.
With at least two binary bit streams delivering the information to be transmitted, each transmitted symbol can be represented by a single one of at least four different current levels in the transmitter 104. Note that the driver circuit can receive further transmit data, in additional bit streams. In that case, the current robbing circuit 108 will be able to divert additional amounts of current from the transmitter 104, in accordance with predetermined values of those further bit streams. This allows the multi-level coding circuitry to be easily scaled to coding schemes that have a greater number of levels.
The multi-level coding scheme described here makes more efficient use of optical data communication signals, thereby helping reduce power consumption. For instance, although the per-channel power may be similar to that of a binary coded link, in the case of a pulse amplitude modulation (PAM) PAM-4 level coding, the data rate is doubled. Thus, the effective power per binary bit that is transmitted is actually reduced. In addition, with multi-level coding, the resulting optical channel has higher information spectral density, thereby reducing the needed channel count in a large communication network.
The multi-level coding scheme described here, may be particularly advantageous when used in relatively short distance optical links in which the optical power budget is relaxed, in relation to longer distance optical links. With short distance optical links, such as those made of present technology multi-mode optical fiber cables that can run without a repeater for up to about 100 meters, fiber attenuation and distortion is greatly reduced. This increases the portion of the link signal to noise budget which can be allocated to support the reduced eye opening that is present with multi-level coding.
Turning now to
The bias transistor 206 may be biased to a DC level that maintains a constant current through the VCSEL 204, until some of that current is diverted by one or more of the two transistors 208, 209. The transistors 208, 209 divert current from the same node 210 that receives the current generated by the bias transistor 206. Whenever the value of the binary signal D0− is in a predetermined, high range, the transistor 208 diverts an amount, I, of current from node 210. Similarly, a second amount of current, 2I, is diverted by transistor 209, whenever the value of the binary signal D1− is in the predetermined, high range. In this embodiment, the signals D0−, D1− are the complementary branches of separate and generally independent differential signals (D0, D1) that contain separate binary bit streams (see the example waveforms for D0 and D1 in
The respective amounts of current that are diverted by the transistors 208, 209 are different and fixed by current generators 212, 213. An additional pair of transistors 214, 215 (that also operate as switches) are provided to ensure that the currents through the generators 212, 213 are maintained at all times, regardless of the logic values that appear in the signals D0, D1. These are controlled by D0+, D1+ (complements of D0−, D1−). In other words, the current I through generator 212 is maintained, by being sourced from node 210 of the VCSEL 204, or from another node 217. The latter may be connected directly to a power supply rail, typically indicated as VCC or VDD.
In the embodiment of the invention shown in
The above truth table implements a 4-level coding scheme (e.g., PAM-4) where each symbol is represented by one of four distinct VCSEL current levels. Each symbol can thus take on four different values, corresponding to four different combinations of the values of two, binary bit streams (in differential signals D0 and D1). The table also shows that the external current, used by the driver circuit, remains constant for all four symbols.
It can be seen that the circuitry in
Turning now to
The top detector 310 determines and tracks the highest level of voltage from the output of the TIA 306. This voltage level is representative of the highest level of light intensity incident on the photo detector 304. Correspondingly, the bottom detector 312 determines and tracks the lowest level of voltage from the output of the TIA 306, which is representative of the lowest level of light intensity incident on the photo detector 304. The lowest level of light intensity is generally nonzero. The voltage range between the top and bottom detectors 310, 312 represents the range of light intensity present in the multi-level encoded symbols. The resistive ladder network 308 divides the voltage range into thresholds which are presented to the comparators 314-316, upon which the comparator scan determine the level of the voltage in the incoming signal.
Referring now to
Other system applications of the multi-level coding circuitry include usage in an interface to an optical interconnect bus that may replace a copper, chip-to-chip interconnect of a desktop or notebook personal computer system.
The invention is not limited to the specific embodiments described above. For instance, regarding the system in
This application is a continuation of U.S. patent application Ser. No. 11/480,671 filed on Jun. 30, 2006 now U.S. Pat. No. 7,613,400 and claims priority thereto.
Number | Name | Date | Kind |
---|---|---|---|
7613400 | Cheng et al. | Nov 2009 | B2 |
20020167693 | Vrazel et al. | Nov 2002 | A1 |
20030030873 | Hietala et al. | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20100028022 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11480671 | Jun 2006 | US |
Child | 12577119 | US |