This invention relates to optimizing railway operations, and more particularly to a system and method of optimizing railway operations using a multi-level, system-wide approach.
Railways are complex systems, with each component being interdependent on other components within the system. Attempts have been made in the past to optimize the operation of a particular component or groups of components of the railway system, such as for the locomotive, for a particular operating characteristic such as fuel consumption, which is a major component of the cost of operating a railway system. Some estimates indicate that fuel consumption is the second largest railway system operating cost, second only to labor costs.
For example, U.S. Pat. No. 6,144,901 proposes optimizing the operation of a train for a number of operating parameters, including fuel consumption. However, optimizing the performance of a particular train, which is only one component of a much larger system; including, for example, the railway network of track, other trains, crews, rail yards, departure points, and destination points, may not yield an overall system-wide optimization. Optimizing the performance of only one component of the system (even though it may be an important component such as a train) may actually result in increased system-wide costs, because this prior art approach does not consider the interrelationships and impacts on other components and on the overall railway system efficiency. As one example, optimizing at the train ignores potential efficiencies for a locomotive within the individual train, which efficiencies may be available if the locomotives were free to optimize their own performance.
One system and method of planning at the railway track network system is disclosed in U.S. Pat. No. 5,794,172. Movement planners such as this are primarily focused on movement of the trains through the network based on business objective functions (BOF) defined by the railroad company, and not necessarily on the basis of optimizing performance or a particular performance parameter such as fuel consumption. Further, the movement planner does not extend the optimization down to the train (much less the consist or locomotive), nor to the railroad service and maintenance operations that plan for the servicing of the trains or locomotives.
Thus, in the prior art, there has been no recognition that optimization of operations for a railway system requires a multi-level approach, with the gathering of key data at each level and communicating data with other levels in the system.
One aspect of the present invention is the provision of a multi-level system for management of a railway system and its operational components in which the railway system comprises a first level configured to optimize an operation within the first level that includes first level operational parameters which define operational characteristics and data of the first level, and a second level configured to optimize an operation within the second level that includes second level operational parameters which define the operational characteristic and data of the second level. The first level provides the second level with the first level operational parameters, and the second level provides the first level with the second level operational parameters, such that optimizing the operation within the first level and optimizing the operation within the second level are each a function of optimizing a system optimization parameter.
A further aspect of the present invention includes the provision of a method for optimizing an operation of a railway system having first and second levels which comprises communicating from the first level to the second level a first level operational parameter that defines an operational characteristic of the first level, communicating from the second level to the first level a second level operational parameter that defines an operational characteristic of the second level, optimizing a system operation across a combination of the first level and the second level based on a system optimization parameter, optimizing an operation within the first level based on a first level optimization parameter and based in part on the system optimization parameter, and optimizing an operation within the second level based on a second level optimization parameter and based in part on the system optimization parameter.
Another aspect of the present invention is the provision of a method and system for multi-level railway operations optimization for a complex railroad system that identifies key operating constraints and data at each level, communicates these constraints and data to adjacent levels and optimizes performance at each level based on the data and constraints of adjacent levels.
Aspects of the present invention further include establishing and communicating updated plans and monitoring and communicating compliance with the plans at multiple levels of the system.
Aspects of the invention further include optimizing performance at the railroad infrastructure level, railway track network level, individual train level within the network, consist level within the train, and the individual locomotive level within the consist.
Aspects of the invention further include optimizing performance at the railroad infrastructure level to enable condition-based, rather than scheduled-based, servicing of locomotives, including both temporary (or short-term) servicing requirements such as fueling and replenishment of other consumable materials on-board the locomotive, and long-term servicing requirements such as replacement and repair of critical locomotive operating components, such as traction motors and engines.
Aspects of the invention include optimizing performance of the various levels in light of the railroad operating company's business objective functions, such as on-time deliveries, asset utilization, minimum fuel usage, reduced emissions, optimized crew costs, dwell time, maintenance time and costs, and reduced overall system costs.
These Aspects of the invention provide benefits such as reduced journey-to-journey fuel usage variability, fuel savings for each locomotive operating within the system, graceful recovery of the system from upsets, elimination of out-of-fuel mission failures, improved fuel inventory handling logistics and decreased autonomy of crews in driving decisions.
Referring to
Railway Infrastructure Level
Optimization of the railway system 50 at the railroad infrastructure level 100 is depicted in
As illustrated in
As one example of the operations of the infrastructure level 100,
Optimization of the railroad infrastructure operation is not a static process, but rather is a dynamic process that is subject to revision at regular scheduled intervals (such as every 30 minutes) or as significant events occur and are reported to the infrastructure level 100 (such as train brake downs and service facility problems). Communication within the infrastructure level 100 and with the other levels may be done on a real-time or near real-time basis to enable the flow of key information necessary to keep the service plans current and distributed to the other levels. Additionally, information may be stored for later analysis of trends or the identification or analysis of particular level characteristics, performance, interactions with other levels or the identification of particular equipment problems.
Railroad Track Network Level
Within the operational plans of the railroad infrastructure, optimization of the railroad track network level 200 is performed as depicted in
As with the infrastructure level 100, the railroad track network 200 schedule (or movement plan) is revised at periodic intervals or as material events occur. Communication of the input and output of critical data and command may be done on a real-time basis to keep the respective plans current.
An example of an existing movement planner is disclosed in U.S. Pat. No. 5,794,172. Such a system includes a prior art computer aided dispatch (CAD) system having a power dispatching system movement planner for establishing a detailed movement plan for each locomotive and communicating to the locomotive. More particularly, such a movement planner plans the movement of trains over a track network with a defined planning horizon such as 8 hours. The movement planner attempts to optimize a railroad track network level Business Objective Function (BOF) that is the sum of the BOF's for individual trains in the train levels of the railroad track network level. The BOF for each train is related to the termination point for the train. It may also be tied to any point in the individual train's trip. In the prior art, each train had a single BOF for each planning cycle in a planning territory. Additionally, each track network system may have a discrete number of planning territories. For example, a track network system may have 7 planning territories. As such, a train that will traverse N territories will have N BOF's at any instance in time. The BOF provides a means of comparing the quality of two movement plans.
In the course of computing each train's movement plan each hour, the movement planner compares thousands of alternative plans. The track network level problem is highly constrained by the physical layout of track, track or train operating restrictions, the capabilities of trains, and conflicting requirements for the resources. The time required to compute a movement plan in order to support the dynamic nature of railroad operations is a major constraint. For this reason, train performance data is assumed, based on pre-computed and stored data based upon train consist, track conditions, and train schedule. The procedure used by the movement planner computes the minimum run time for a train's schedule by simulating the train's unopposed movement over the track, with stops and dwells for work activities. This process captures the run time across each track segment and alternate track segment in the train's path. A planning cushion, such as a percentage of run time, is then added to the train's predicted run time and the cushioned time is used to generate the movement plan.
One such prior art movement planner is illustrated in
As mentioned above, the
A further enhancement specifies a higher planning cushion for trains that are equipped with a fuel optimizer 704 and whose schedules are not critical. This provides savings to local trains and trains running on lightly trafficked rail. This involves an interface to the movement planner 702 to set the planning cushion for the train and a modification to the movement plan 706 to allow the planning cushion to be set for individual trains.
Inputs to the track network level movement planner 702 also includes locations of fuel depots, cost of fuel ($/gallon per depot and cost of time to fuel or so-called “cost penalty”), engine efficiency as represented by the slope of the change in the fuel use over the change in the horsepower (e.g., slope of Δfuel use/ΔHP), fuel efficiency as represented by the slope of the change in the fuel use over the change in speed or time, derating of power for locomotives with low or no fuel, track adhesion factors (snow, rain, sanders, cleaners, lubricants), fuel level for locomotives in trains, and projected range for fuel of the train.
The railroad track network level functionality established by the movement planner 702 includes determination of required consist power as a function of speed under current or projected operating conditions, and determination of fuel consumption as a function of power, locomotive type, and network track. The movement planner 702 determinations may be for locomotives, for the consist or the train which would include the assigned load. The determination may be a function of the sensitivity of the change of fuel over the change of power (ΔFuel/ΔHP) and/or change in horsepower over speed (ΔHP/ΔSpeed). The movement planner 702 further determines the dynamic compensation to fuel-rate (as provided above) to account for thermal transients (tunnels, etc.), and adhesion limitations, such as low speed tractive effort or grade, that may impair movement predictions, e.g., the expected speed. The movement planner 702 may predict the current out-of-fuel range based on an operating assumption such as that the power continues at the current level or an assumption regarding the future track. Finally, the detection of parameters that have changed significantly may be communicated to the movement planner 702, and as a result, an action such as a change in the movement plan may be required. These actions may be automatic functions that are communicated continuously, periodically, or done on exception basis such as for detection of transients or predicted out-of-fuel conditions.
The benefits of this operation of the track network level 200 includes allowing the movement planner 702 to consider fuel use in optimizing the movement plan without regard to details at the consist level, to predict fuel-rate as a function of power and speed, and by integration, to determine the expected total fuel required for the movement plan. Additionally, the movement planner 702 may predict the rate of schedule deterioration and make corrective adjustments to the movement plan if needed. This may include delaying the dispatch of trains from a yard or rerouting trains in order to relieve congestion on the main line. The track network level 200 also will enable the factoring of the dynamic consist fuel state into refueling determination at the earliest opportunity, including the consideration of power loss, such as when one locomotive within a consist shuts down or is forced to operate at reduced power. The track network level 200 will also enable the determination (at the locomotive level or consist level) of optimum updates to the movement plan. This added optimization data reduces the monitoring and signal processing required in the movement plan or computer aided dispatch processes.
The movement plan output from the track network level 200 specifies where and when to stop for fuel, amount of fuel to take on, lower and upper speed limits for train, time/speed at destination, and time allotted for fueling.
Train Level
Assuming for discussion purposes a more complex train configuration, then the input data at the train level 300, as shown in
The inputs to the train level 300 from the consist level 400 is typically the aggregation of information obtained from the locomotives and potentially from the load cars. These include current operating conditions, current equipment status, equipment capability, fuel status, consumable status, consist health, optimization information for the current plan, optimization information for the plan optimization.
The current operating conditions of the consist may include the present total tractive effort (TE), dynamic braking effort, air brake effort, total power, speed, and fuel consumption rate. These may obtained by consolidating all the information from the consists at the consist level 400, which include the locomotives at the locomotive level 500 within the consist, and other equipment in the consist. The current equipment status includes the ratings of locomotives, the position of the locomotives and loads within the consist. The ratings of units may be obtained from each consist level 400 and each locomotive level 500 including derations due to adhesion/ambient conditions. This may be obtained from the consist level 400 or directly from the locomotive level 500. The position of the locomotives may be determined in part by trainline information, GPS position sensing, and air brake pressure sensing time delay. The load may be determined by the tractive effort (TE), braking effort (BE), speed and track profile.
Equipment capability may include the ratings of the locomotives in the consist including the maximum tractive effort (TEmax), maximum braking effort (BEmax), Horsepower (HP), dynamic brake HP, and adhesion capability. The fuel status, such as the current and projected amount of fuel in each locomotive, is calculated by each locomotive based on the current fuel level and projected fuel consumption for the operating plan. The consist level 400 aggregates this per-locomotive information and sends the total range and possibly fuel levels/status at known fueling points. It may also send the information where the item may become critical. For example, one locomotive within a consist may run out of fuel and yet the train may run to the next fueling station, if there is enough power available on the consist to get to that point. Similarly, the status of other consumables other than fuel like sand, friction modifiers, etc. are reported and aggregated at the consist level 400. These are also calculated based on current level and projected consumption based on weather, track conditions, the load and current plan. The train level aggregates this information and sends the total range and possibly consumable levels/status at known servicing points. It may also send the information where the item may become critical. For example, if adhesion limited operation requiring sand is not expected during the operation, it may not be critical that sanding equipment be serviced.
The health of the consist may be reported and may include failure information, degraded performance and maintenance requirements. The optimization information for the current plan may be reported. For example, this may include fuel optimization at the consist level 400 or locomotive level 500. For fuel optimization, as shown in
Also as shown in
Consist Level
As an input, the train level 300 provides data 1210 associated with train load, train length, current train capability, operating constraints, and data from the one or more consists within the train level 300. Information 1210 sent from the locomotive level 500 to the consist level 400 may include current operating conditions and current equipment status. Current locomotive operating conditions includes data that is passed to the consist level to determine the overall performance of the consist. These may be used for feedback to the operator or to the railroad control system. They may also be used for consist optimization. This data may include:
Current locomotive equipment status may include data, in addition to one of the above items a to e, for consist optimization and for feedback to the train level and back up to the railroad track network level. This includes:
Temperature of equipment such as the engine, traction motor, inverter, dynamic braking grid, etc.
A measure of the reserve capacity of the equipment at a particular point in time and may be used determine when to transfer power from one locomotive to another.
Equipment capability such as a measure of the reserve capability. This may include engine horsepower available (considering ambient conditions, engine and cooling capability), tractive effort/braking effort available (considering track/rail conditions, equipment operating parameters, equipment capability), and friction management capability (both friction enhancers and friction reducers).
Fuel level/fuel flow rate—The amount of fuel left may be used to determine when to transfer power from one locomotive to another. The fuel tank capacity along with the amount of fuel left may be used by the train level and back up to the railroad track network level to decide the refueling strategy. This information may also be used for adhesion limited tractive effort (TE) management. For example, if there is a critical adhesion limited region of operation ahead, the filling of the fuel tank may be planned to enable filing prior to the consist entering the region. Another optimization is to keep more fuel on locomotives that can convert that weight into useful tractive effort. For example, a trailing locomotive typically has a better rail and can more effectively convert weight to tractive effort provided the axle/motor/power electronics are not limiting (from above mentioned equipment capability level). The fuel flow rate may be used for overall trip optimization. There are many types of fuel level sensors available. Fuel flow sensors are also available currently. However, it is possible to estimate the fuel flow rate from already known/sensed parameters on-board the locomotive. In one example, the fuel injected per engine stroke (mm3/stroke) may be multiplied by the number of strokes/sec (function of rpm) and the number of cylinders, to determine the fuel flow rate. This may be further compensated for return fuel rate, which is a function of engine rpm, and ambient conditions. Another way of estimating the fuel flow rate is based on models using traction HP, auxiliary HP and losses/efficiency estimates. The fuel available and/or flow rate may be used for overall locomotive use balancing (with appropriate weighting if necessary). It may also be used to direct more use of the most fuel-efficient locomotive in preference to less efficient locomotives (within the constraint of fuel availability).
Fuel/Consumable range—Available fuel (or any other consumable) range is another piece of information. This is computed based on the current fuel status and the projected fuel consumption based on the plan and the fuel efficiency information available on board. Alternatively, this may be inferred from models for each of the equipment or from past performance with correction for ambient conditions or based on the combination of these two factors.
Friction modifier level—The information regarding the amount and capacity of the friction modifiers may be used for dispensing strategy optimization (transfer from one locomotive to another). This information may also be used by the railroad track network and infrastructure levels to determine the refilling strategy.
Equipment degradation/wear—The cumulative locomotive usage information may be used to make sure that one locomotive does not wear excessively. Examples of these may include the total energy produced by the engine, temperature profile of dynamic braking grids, etc. This may also allow locomotive operation resulting in more wear to some components if they are scheduled for overhaul/replacement any way.
Locomotive position—The position and/or facing direction of the locomotive may be used for power distribution consideration based on factors like adhesion, train handling, noise, and vibration.
Locomotive health—The health of the locomotive includes the present condition of the locomotive and its key subsystems. This information may be used for consist level optimization and by the track network and infrastructure levels for scheduling maintenance/servicing. The health includes component failure information for failures that do not degrade the current locomotive operation such as single axle components on an AC electromotive locomotive that does not reduce the locomotive horse power rating, subsystem degradation information, such as hot ambient condition, and engine water not fully warmed up, maintenance information such as wheel diameter mismatch information and potential rating reductions like partially clogged filters.
Operating parameter or condition relationship information—A relation to one or more operating parameters or conditions may be defined. For example,
Slope 1704 at the current operating plan time (fuel consumption reduction per unit time increase for example in gallons/sec). This parameter gives the amount of fuel reduction for every unit of travel time increase.
Fuel increase between the fastest plan 1710 and the present plan 1706. This value corresponds to the difference in fuel consumption between points F3 and F1, as shown on
Fuel reduction between the optimum plan 1712 and the present plan 1706. This value corresponds to the difference in fuel consumption between points F1 and F4 of
Fuel reduction between the allocated plan and current plan. This value corresponds to the difference in fuel consumption between points F1 and F2 of
The complete fuel as a function of time profile (including range).
Any other consumable information.
For optimizations at the consist level 400, multiple closed loop estimations may be done by the consist level and each of the locomotives or the locomotive level. Among the consist level inputs from within the consist level are operator inputs, anticipated demand inputs, and locomotive optimization and feedback information.
The information flow and sources of information within the consist level include:
There are three categories of functions performed by the consist level 400 and the associated consist level processor 1202 to optimize consist performance. Internal consist optimization, consist movement optimization, and consist monitoring and control.
Internal optimization functions/algorithms optimize the consist fuel consumption by controlling operations of various equipments internal to the consist like locomotive throttle commands, brake commands, friction modifier commands, anticipatory commands. This may be done based on current demand and by taking into account future demand. The optimization of the performance of the consist level include power and dynamic braking distribution among the locomotives within the consist, as well as the application of friction enhancement and reducers at points along the consist for friction management. Consist movement optimization functions and algorithms help in optimizing the operation of the train and/or the operation of the movement plan. Consist control/monitoring functions help the railroad controllers with data regarding the current operation and status of the consist and the locomotives/loads in the consist, the status of the consumables, and other information to help the railroad with consist/locomotive/track maintenance.
The consist level 400 optimization provides for optimization of current consist operations. For consist optimization, in addition to the above listed information other information can also be sent from the locomotive. For example, to optimize fuel, the relationship between fuel/HP (measure of fuel efficiency) and horsepower (HP) as shown in
Slope 1804 of Fuel/HP as a function of HP at the present operating horsepower. This parameter provides a measure of fuel rate increase per horsepower increase.
Maximum horsepower 1808 and the fuel rate increase corresponding to this horsepower.
Most efficient operating point 1812 information. This includes the horsepower and the fuel rate change to operate at this point.
Complete fuel flow rate as a function of horsepower.
The update time and the amount of information may be determined based on the type and complexity of the optimization. For example, the update may be done based on significant changes. These include notch change, large speed change or equipment status changes including failures or operating mode changes or significant fuel/HP changes, for example, a variation of 5 percent. The ways of optimizing include sending only the slope (item a above) at the current operating point and may be done at a slow data rate, for example, at once per second. Another way is to send items a, b and c once and then to send the updates only when there is a change. Another option is to send only item d once and only update points that change periodically such as once per second.
Optimization within the consist considers factors such as fuel efficiency, consumable availability and equipment/subsystem status. For example, if the current demand is for 50% horsepower for the whole consist (prior art consists have all of the locomotives at the same power, here at 50% horsepower for each), it may be more efficient to operate some locomotives at less than a 50% horsepower rating and other locomotives at more than a 50% horsepower rating so that the total power generated by the consist equals the operator demand. In this case, higher efficiency locomotives will be operating at a higher horsepower than the lower efficiency locomotives. This horsepower distribution may be obtained by various optimizing techniques based on the horsepower as a function of fuel rate information obtained from each locomotive. For example, for small horsepower distribution changes, the slope of the function of the horsepower as a function of the fuel rate may be used. This horsepower distribution may be modified for achieving other objective functions or to consider other constraints, such as train handling/drawbar forces based on other feedback from the locomotives. For example, if one of the locomotives is low on fuel, it may be necessary to reduce its load so as to conserve fuel if this locomotive is required to produce a large amount of energy (horsepower/hour) before refueling, even if this locomotive is the most efficient one.
Other input information from each locomotive at the locomotive level 500 may be provided to the consist level 400. This other information from the locomotive level includes:
Maintenance cost. This includes the routine/scheduled maintenance cost due to wear and tear that depends on horsepower (ex. $/kwhr) or tractive effort increase.
Transient capability. This may be expressed in terms of the continuous operating capability of the locomotive, maximum capability of the locomotive and the transient time constant and gain.
Fuel efficiency at each point of operation.
Slope at every point of operation. This parameter gives the amount of fuel rate increase per horsepower increase.
Maximum horsepower at every point of operation and the fuel rate increase corresponding to this horsepower.
Most efficient operating point information at every point of operation. This includes the horsepower and the fuel rate change to operate at this point.
Complete fuel flow rate vs. horsepower curve at every point of operation.
Fuel (and other consumable) range, based on current fuel level and the plan and the projected fuel consumption rate.
If the complete profile information is known, the overall consist optimization considers the total fuel and consumables spent. Other weighting factors that may be considered include cost of locomotive maintenance, transient capability and issues like train handling, and adhesion limited operation. Additionally, if the shape of the consist level fuel use as a function of time as depicted by
As input to the movement plans, optimization information may be developed at the consist level 400. Information may be sent from the locomotive level 500 to be combined by the consist level with other information or aggregated with other locomotive level data for use by the railroad network level 200. For example, to optimize fuel, fuel consumption information as a function of plan time, e.g., the time to reach the destination or an intermediate point like meet or pass, may be passed from each locomotive to the consist controller 1202.
To illustrate one embodiment of the operation of optimization at the consist level 400,
As noted above, the outputs of the consist level 400 include data to the train level 300, commands and controls to the locomotive level 500 as well as the internal consist level 400 optimization. The consist level output 1230 to the train level includes data associated with the health of the consist, service requirements of the consist, the power of the consist, the consist braking effort, the fuel level, and fuel usage of the consist. In one embodiment, the consist level sends the following types of additional information for use in the train level 300 for train level optimization. To optimize on fuel only, fuel consumption information as a function of plan time (time to reach the destination or an intermediate point like meet or pass) can be passed from each of the consists to the train/railroad controller.
Slope 1404 at the current operating plan time (fuel consumption reduction per unit time increase: gallons/sec). This parameter gives the amount of fuel reduction for every unit of time increase.
Fuel increase between the fastest plan and the current plan. This value corresponds to the difference in fuel consumption between points 1410 and 1406.
Fuel reduction between the best and current plan. This value corresponds to the difference in fuel consumption between points 1406 and 1412, of
Fuel reduction between the allocated plan and current plan. This value corresponds to the difference in fuel consumption between points 1406 and 1408 of
The complete fuel as a function of time profile as depicted in
As noted in
Operating commands may include notch settings for each of the locomotives, tractive effort/dynamic braking effort to be generated for each of the locomotives, train air brake levels (which may be expanded to individual car air brake in the event electronic air brakes are used and when individual cars/group of cars are selected), and independent air brake levels on each of the locomotives. Adhesion modification commands are sent to the locomotive level or cars (for example, at the rear of the locomotive) to dispense friction-enhancing material (sand, water, or snow blaster) to improve adhesion of that locomotive or the trailing locomotives or for use by another consist using the same track. Similarly, friction lowering material dispensing commands are also sent. The commands include, the type and amount of material to be dispensed along with the location and duration of material dispensing. Anticipatory controls include actions to be taken by the individual locomotives within the locomotive level to optimize the overall trip. This includes pre-cooling of the engine and/or electrical equipment to get better short-term rating or get through high ambient conditions ahead. Even pre-heating may be performed (for example, water/oil may need to be at a certain temperature to fully load the engine). Similar commands may be sent to the locomotive level and/or storage tenders of a hybrid locomotive, as is depicted in
The timing of updates sent to and from the consist level and the amount of information can be determined based on the type and complexity of the optimization. For example, the update may occur at a predetermined point in time, at regularly scheduled times or when significant changes occur. These later ones may include: significant equipment status changes (for example the failure of a locomotive) or operating mode changes such as the degraded operation due to adhesion limits, or significant fuel, horsepower, or schedule changes such as a change in the horsepower by 5 percent. There are many ways of optimizing based on these parameters and functions. For example, only the slope (item a above) of the fuel use as a function of the time at the current operating point may be sent and this may be done at a slow rate, such as once every 5 minutes. Another way is to send items a, b and c once and only send updates when there is a change. Yet another option is to send only item d once and only update points that change periodically, such as once every 5 minutes.
As indicated in the earlier discussion, with simplified versions of train configurations, such as single locomotive consists and/or single locomotive trains, the relationship and extent of communication between the train level 300, consist level 400 and locomotive level 500 becomes less complex, and in some embodiments, collapses into a less than three separately functioning levels or processors, with possibly all three levels operating within a single functioning level or processor.
Locomotive Level
The information flow and sources of information at the locomotive level 500 include:
Three categories of functions performed by the locomotive level include internal optimization functions/algorithms, locomotive movement optimization functions/algorithms, and locomotive control/monitoring. Internal optimization functions/algorithms optimize the locomotive fuel consumption by controlling operations of various equipments internal to the locomotive, e.g., engine, alternator, and traction motor. This may be done based on current demand and by taking into account future demand. Locomotive movement optimization functions and/or/algorithms help in optimizing the operation of the consist and/or the operation of the movement plan. Locomotive control/monitoring functions help the consist and railroad controllers with data regarding the current operation and status of the locomotive, the status of the consumables and other information to help the railroad with locomotive and track maintenance.
Based on the constraints imposed at the locomotive level, operation parameters that may be optimized include engine speed, DC link voltage, torque distribution and source of power.
For a given horsepower command, there is a specific engine speed which produces the optimum fuel efficiency. There is a minimum speed below which the diesel engine cannot support the power demand. At this engine speed the fuel combustion does not happen in the most efficient manner. As the engine speed increases the fuel efficiency improves. However, losses like friction and windage increase and therefore an optimum speed can be obtained where the total engine losses are the minimum. This fuel consumption vs. engine speed is illustrated in
The DC link voltage on an AC locomotive determines the DC link current for a given power level. The voltage typically determines the magnetic losses in the alternator and the traction motors. Some of these losses are illustrated in
For a specific horsepower demand, the distribution of power (torque distribution) to the six traction axles of one embodiment of a locomotive may be optimized for fuel efficiency. The losses in each traction motor, even if it is producing the same torque or same horsepower, can be different due to wheel slip, wheel diameter differences, the operating temperature differences and the motor characteristics differences. Therefore, the distribution of the power between each axles can be used to minimize the losses. Some of the axles may even be turned off to eliminate the electrical losses in those traction motors and the associated power electronic devices.
In locomotives with additional power sources, for example, hybrid locomotives such as shown in
For consists or locomotives equipped with friction management systems, the amount of friction seen by the load cars (especially at higher speeds) may be reduced by applying friction reducing material on to the rail behind the locomotive. This reduces the fuel consumption since the tractive effort required to pull the load has been reduced. This amount and timing of dispensing may be further optimized based on the knowledge of the rail and load characteristics.
A combination of two or more of the above variables (engine speed, DC link voltage and torque distribution) along with auxiliaries like engine and equipment cooling may be optimized. For example, the maximum DC link voltage available is determined by the engine speed and hence it is possible to increase the engine speed beyond the optimum (based on engine only consideration) to obtain a higher voltage resulting in an optimum operating point.
There are other considerations for optimization once the overall operating profile is known. For example, parameters and operations such as locomotive cooling, energy storage for hybrid vehicles, and friction management materials may be utilized. The amount of cooling required can be adjusted based on anticipated demand. For example, if there is big demand for tractive effort ahead due to high grade, the traction motors may be cooled ahead of time to increase its short term (thermal) rating which will be required to produce high tractive effort. Similarly if there is a tunnel ahead if the engine and other components may be pre-cooled to enable operation through the tunnel to be improved. Conversely, if there is a low demand ahead, then the cooling may be shut down (or reduced) to take advantage of the thermal mass present in the engine cooling and in the electric equipment such as alternators, traction motors, power electronic components.
In a hybrid vehicle, the amount of power in a Hybrid Vehicle that should be transferred in and out of the energy storage system may be optimized based on the demand that will be required in the future. For example, if there is a large period of dynamic brake region ahead, then all the energy in the storage system can be consumed now (instead of from the engine) so as to have no stored energy at the beginning of dynamic brake region (so that the maximum energy may be recaptured during the dynamic brake region of operation). Similarly if there is a heavy power demand expected in the future, the stored energy may be increased for use ahead.
The amount and duration of dispensing of friction increasing material (like sand) can be reduced if the equipment rating is not needed ahead. The trailing axle power/tractive effort rating may be increased to get the maximum available adhesion without expending these friction-enhancing resources.
There are other considerations for optimization other than fuel. For example, emissions may be another consideration especially in cities or highly regulated regions. In those regions it is possible to reduce emissions (smoke, Nitrogen Oxide, etc.) and trade off other parameters like fuel efficiency. Audible noise may be another consideration. Consumable conservation under certain constraints is another consideration. For example, dispensing of sand or other friction modifiers in certain locations may be discouraged. These location specific optimization considerations may be based on the current location information (obtained from operator inputs, track inputs, GPS/track information along with geofence information). All these factors are considered for both the current demand and for optimizations for the overall operating plan.
Hybrid Locomotive
Referring to
To do so, the energy management subsystem 2112 communicates with the diesel engine 2102, alternator 2104, inverters and controllers 2120 and 2140 for the traction motors 2122 and 2142 and the energy storage subsystem interface 2126.
As described above, a hybrid locomotive provides additional capabilities for optimizing locomotive level 500 (and thus consist and train level) performance. In some respects, it allows current engine performance to be decoupled from the current locomotive power demands for motoring, so as to allow the operation of the engine to be optimized not only for the present operating conditions, but also in anticipation of the upcoming topography and operational requirements. As shown in
When introducing elements of the present invention or the embodiment(s) thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Those skilled in the art will note that the order of execution or performance of the methods illustrated and described herein is not essential, unless otherwise specified. That is, it is contemplated that aspects or steps of the methods may be performed in any order, unless otherwise specified, and that the methods may include more or less aspects or steps than those disclosed herein.
While various embodiments of the present invention have been illustrated and described, it will be appreciated to those skilled in the art that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention. As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense
This application claims priority to U.S. Provisional Patent Application No. 60/438,234 filed Jan. 6, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5129605 | Burns et al. | Jul 1992 | A |
5177684 | Harker et al. | Jan 1993 | A |
5420883 | Swensen et al. | May 1995 | A |
5623413 | Matheson et al. | Apr 1997 | A |
5794172 | Matheson et al. | Aug 1998 | A |
5828979 | Polivka et al. | Oct 1998 | A |
5836529 | Gibbs | Nov 1998 | A |
6135396 | Whitfield et al. | Oct 2000 | A |
6144901 | Nickles et al. | Nov 2000 | A |
6154735 | Crone | Nov 2000 | A |
6263266 | Hawthorne | Jul 2001 | B1 |
6490523 | Doner | Dec 2002 | B2 |
6622068 | Hawthorne | Sep 2003 | B2 |
6631322 | Arthur et al. | Oct 2003 | B1 |
7073753 | Root et al. | Jul 2006 | B2 |
20010029411 | Hawthorne | Oct 2001 | A1 |
20020065698 | Schick et al. | May 2002 | A1 |
20030055666 | Roddy et al. | Mar 2003 | A1 |
20030213875 | Hess, Jr. et al. | Nov 2003 | A1 |
20030236598 | Villarreal Antelo et al. | Dec 2003 | A1 |
20060005736 | Kumar | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0 554 983 | Jan 1993 | EP |
000554983 | Aug 1993 | EP |
0 958 987 | May 1999 | EP |
1 293 948 | Sep 2002 | EP |
Entry |
---|
PCT International Search Report for PCT Patent Application PCT/US2004/020910, Nov. 25, 2004, 8 pages, European Patent Office, Massalski, M. |
Number | Date | Country | |
---|---|---|---|
20040133315 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60438234 | Jan 2003 | US |