This application is a divisional application of U.S. Pat. No. 10,821,669, filed Jan. 26, 2018, for “Method For Producing A Component Layer-By-Layer,” which is hereby incorporated by reference in its entirety including the drawings.
This invention relates generally to additive manufacturing, and more particularly to methods for curable material handling in additive manufacturing.
Additive manufacturing is a process in which material is built up piece-by-piece, line-by-line, or layer-by-layer to form a component. Stereolithography is a type of additive manufacturing process which employs a vat of liquid radiant-energy curable photopolymer “resin” and a curing energy source such as a laser. Similarly, DLP 3D printing employs a two-dimensional image projector to build components one layer at a time. For each layer, the projector flashes a radiation image of the cross-section of the component on the surface of the liquid or through a transparent object which defines a constrained surface of the resin. Exposure to the radiation cures and solidifies the pattern in the resin and joins it to a previously-cured layer or to another build surface.
In curing the photopolymer resin, it is preferable to have a clean supply of material for each layer. Old resin may contain cured products such as supports that have broken off of the part or other external contamination. In a vat-based process, this contamination or the contaminated material can cure into the component, resulting in undesirable geometry, or otherwise disrupt the build process and damage the final part.
According to one aspect of the technology described herein, an additive manufacturing apparatus that includes a vat. The vat includes multiple chambers and at least one of the chambers is a resin chamber that is configured to receive a radiant-energy-curable resin. A build surface is defined by the resin chamber within the vat, wherein at least a portion of the build surface is transparent. The additive manufacturing apparatus includes a stage that is positioned facing the vat and the build surface and the stage is configured to hold a stacked arrangement of one or more cured layers of the radiant-energy-curable resin. A method is provided for operating the additive manufacturing apparatus such that successive chambers of resin are cured. While a chamber of resin is being cured, another chamber can participate in other steps such as unloading or loading of resin. Optionally a stage cleaning step can be conducted while an unloading or loading of resin is conducted in one of the resin chambers.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
Referring now to
The floor 212 defines a build surface 226 within each of the chambers 222. For purposes of convenient description, each build surface 226 may be considered to be oriented parallel to an X-Y plane of the apparatus 10, and a direction perpendicular to the X-Y plane is denoted as a Z-direction (X, Y, and Z being three mutually perpendicular directions).
The build surfaces 226 may be configured to be “non-stick”, that is, resistant to adhesion of cured resin. The non-stick properties may be embodied by a combination of variables such as the chemistry of the floor 212, its surface finish, and/or applied coatings. In one example, a permanent or semi-permanent non-stick coating may be applied. One non-limiting example of a suitable coating is polytetrafluoroethylene (“PTFE”). In one example, all or portions of the build surfaces 226 of vat 210 may incorporate a controlled roughness or surface texture (e.g. protrusions, dimples, grooves, ridges, etc.) with nonstick properties. In one example, the floor 212 may be made in whole or in part from an oxygen-permeable material.
The vat 210, or selected portions of it, are transparent. As used herein, “transparent” refers to a material which allows radiant energy of a selected wavelength to pass through. For example, as described below, the radiant energy used for curing could be ultraviolet light or laser light in the visible spectrum. Nonlimiting examples of transparent materials include polymers, glass, and crystalline minerals such as sapphire or quartz. The vat 210 could be made up of two or more subcomponents, at least some of which are transparent.
Referring again to
Collectively, at least one of the chambers 222 together with the radiant energy apparatus 18 define a “build zone” 31. Another chamber 222 and an unloader 91 define an unload zone 92. Another chamber 222 and the material depositor 16 can define a fill or load zone 94 as shown in
Some means are provided for moving the vat 210 relative to the stage 14 parallel to the Z-direction. In
The material depositor 16 may be any device or combination of devices which is operable to introduce a layer of resin R into the chamber 222 that is positioned within the fill zone. The material depositor 16 may optionally include a device or combination of devices to define a height in the resin and/or to level the resin R. Nonlimiting examples of suitable material deposition devices include chutes, hoppers, pumps, spray nozzles, spray bars, or printheads (e.g. inkjets).
In the example shown in
The radiant energy apparatus 18 may comprise any device or combination of devices operable to generate and project radiant energy on the resin R in a suitable pattern and with a suitable energy level and other operating characteristics to cure the resin R during the build process, described in more detail below.
In one exemplary embodiment as shown in
The radiant energy source 50 may comprise any device operable to generate a beam of suitable energy level and frequency characteristics to cure the resin R. In the illustrated example, the radiant energy source 50 comprises a UV flash lamp.
The image forming apparatus 52 may include one or more mirrors, prisms, and/or lenses and is provided with suitable actuators, and arranged so that the source beam 54 from the radiant energy source 50 can be transformed into a pixelated image in an X-Y plane coincident with the surface of the resin R. In the illustrated example, the image forming apparatus 10 may be a digital micromirror device. For example, the projector 48 may be a commercially-available Digital Light Processing (“DLP”) projector.
As an option, the projector 48 may incorporate additional means such as actuators, mirrors, etc. configured to selectively move the image forming apparatus 52 or other parts of the projector 48, with the effect of rastering or shifting the location of the patterned image 56 on the build surface 226. Stated another way, the patterned image 56 may be moved away from a nominal or starting location. This permits a single image forming apparatus 52 to be used to project images appropriate to each given layer. For example, to cover a larger build area or to better align the edges of subsequent layers. Means for rastering or shifting the patterned image from the image forming apparatus 52 are commercially available. This type of image projection may be referred to herein as a “tiled image”.
In another exemplary embodiment as shown in
The radiant energy source 62 may comprise any device operable to generate a beam of suitable power and other operating characteristics to cure the resin R. Nonlimiting examples of suitable radiant energy sources include lasers or electron beam guns.
The beam steering apparatus 10 may include one or more mirrors, prisms, and/or lenses and may be provided with suitable actuators, and arranged so that the beam 66 from the radiant energy source 62 can be focused to a desired spot size and steered to a desired position in plane coincident with the surface of the resin R. The beam 66 may be referred to herein as a “build beam”. Other types of scanned beam apparatus may be used. For example, scanned beam sources using multiple build beams are known, as are scanned beam sources in which the radiant energy source itself is movable by way of one or more actuators.
The turntable 20 is configured to rotate the vat 210 such that at least a portion of the vat 210 is within the build zone 31. The turntable 20 includes a platter 22 that is configured to receive the vat 210. The platter 22 is sufficiently transparent such that radiant energy can pass through it to cure the resin R. The platter 22 is mechanically linked to a motor 24 by a shaft 26. The motor 26 is configured to move such that the platter 22 rotates. In this manner, the vat 210 can be rotated beneath the stage 14 such that a curing chamber 222 can be positioned in the build zone 31 or removed from the build zone 31 as will be discussed further below.
The apparatus 10 may include a controller 68. The controller 68 in
Optionally, the components of the apparatus 10 may be surrounded by a housing 70, which may be used to provide a shielding or inert gas atmosphere using gas ports 72. Optionally, pressure within the enclosure could be maintained at a desired level greater than or less than atmospheric. Optionally, the enclosure 70 could be temperature and/or humidity controlled. Optionally, ventilation of the enclosure 70 could be controlled based on factors such as a time interval, temperature, humidity, and/or chemical species concentration.
The resin R comprises a material which is radiant-energy curable and which is capable of adhering or binding together the filler (if used) in the cured state. As used herein, the term “radiant-energy curable” refers to any material which solidifies in response to the application of radiant energy of a particular frequency and energy level. For example, the resin R may comprise a known type of photopolymer resin containing photo-initiator compounds functioning to trigger a polymerization reaction, causing the resin to change from a liquid state to a solid state. Alternatively, the resin R may comprise a material which contains a solvent that may be evaporated out by the application of radiant energy.
Generally, the resin R should be flowable so that it can be leveled within the vat 210. The composition of the resin R may be selected as desired to suit a particular application. Mixtures of different compositions may be used. A suitable resin R can have a lower viscosity such that it flows easily and is quickly self-leveling. It should be appreciated that the resin R can be filled.
The resin R may be selected to have the ability to out-gas or burn off during further processing, such as the sintering process described below.
If a filler is used, it may be pre-mixed with resin R, then loaded into the material depositor 16. The filler comprises particles, which are conventionally defined as “a very small bit of matter”. The filler may comprise any material which is chemically and physically compatible with the selected resin R. The particles may be regular or irregular in shape, may be uniform or non-uniform in size, and may have variable aspect ratios. For example, the particles may take the form of powder, of small spheres or granules, or may be shaped like small rods or fibers.
The composition of the filler, including its chemistry and microstructure, may be selected as desired to suit a particular application. For example, the filler may be metallic, ceramic, polymeric, and/or organic. Other examples of potential fillers include diamond, silicon, and graphite. Mixtures of different compositions may be used.
The filler may be “fusible”, meaning it is capable of consolidation into a mass upon via application of sufficient energy. For example, fusibility is a characteristic of many available polymeric, ceramic, glass, and metallic powders.
The proportion of filler to resin R may be selected to suit a particular application. Generally, any amount of filler may be used so long as the combined material is capable of flowing and being leveled, and there is sufficient resin R to hold together the particles of the filler in the cured state.
Examples of the operation of the apparatus 10 will now be described in detail. It will be understood that, as a precursor to producing a component and using the apparatus 10, the component 74 is software modeled as a stack of planar layers arrayed along the Z-axis. Depending on the type of curing method used, each layer may be divided into a grid of pixels. The actual component 74 may be modeled and/or manufactured as a stack of dozens or hundreds of layers. Suitable software modeling processes are known in the art.
The material depositor 16 can be used to fill a selected one of the chambers 222 of the vat 210 with the curable resin R. Alternatively, multiple chambers 222 can be filled in this step. In the example shown in
After the material is deposited, i.e., at least one chamber 222 is filled, the turntable 20 is operated to move the filled chamber from the load zone 94 to the build zone 31. Alternatively, multiple chambers 222 can be moved into the build zone 31 such that resin contained within the multiple chambers 222 can be simultaneously exposed to curing energy. A curing step is executed as follows: the apparatus 10 is positioned to define a selected layer increment within the chamber 222. The layer increment is defined by some combination of the thickness of the resin R that is applied by the material depositor 16, or the operation of the stage 14, or some combination thereof. For example, the stage 14 could be positioned such that the upper surface 30 is just touching the applied resin R. The layer increment affects the speed of the additive manufacturing process and the resolution of the component 74. The layer increment can be variable, with a larger layer increment being used to speed the process in portions of a component 74 not requiring high accuracy, and a smaller layer increment being used where higher accuracy is required, at the expense of process speed.
Once the layer increment has been defined, the radiant energy apparatus 18 is used to cure a cross-section or layer of the component 74 being built. In this manner a first cured layer is created. A second cured layer, a third cured layer and additional cured layers can be created through the operational steps described below.
Where a projector 48 is used, the projector 48 projects a patterned image 56 representative of a cross-section of the component 74 through the floor 212 of the vat 210 to the resin R. Exposure to the radiant energy cures and solidifies the pattern in the resin R. This type of curing is referred to herein as “selective” curing. It will be understood that photopolymers undergo degrees of curing. In many cases, the radiant energy apparatus 18 would not fully cure the resin R. Rather, it would partially cure the resin R enough to “gel” and then a post-cure process (described below) would cure the resin R to whatever completeness it can reach. It will also be understood that, when a multi-layer component is made using this type of resin R, the energy output of the radiant energy apparatus 18 may be carefully selected to partially cure or “under-cure” a previous layer, with the expectation that when the subsequent layer is applied, the energy from that next layer will further the curing of the previous layer. In the process described herein, the term “curing” or “cured” may be used to refer to partially-cured or completely-cured resin R. During the curing process, radiant energy may be supplied to a given layer in multiple steps (e.g. multiple flashes) and also may be supplied in multiple different patterns for a given layer. This allows different amounts of energy to be applied to different parts of a layer.
Once curing of the first layer is complete, the stage 14 is separated from the vat 210, for example by raising the stage 14 using the actuator 32. It is noted that stage 14 and the vat 210 do not necessarily have to remain parallel during the separation procedure. For example, the vat 210 could rotate (e.g. using of a pinned joint or a flexure) or through small-scale deformations of the vat 210. This flexing or rotation could be helpful in separating cured resin from the vat 210.
Conventional alignment means (pins, guides, etc.—not shown) may be provided to ensure repeatable positioning of the vat 210 within the build zone and/or in a loading or cleaning area outside of the build zone 31.
Where a scanned beam apparatus is used instead of a projector, the radiant energy source 68 emits a beam 66 and the beam steering apparatus 70 is used to cure the resin R by steering a focal spot of the build beam 66 over the exposed resin R in an appropriate pattern. The radiant energy source 68 again emits a build beam 66 and the beam steering apparatus 70 is used to steer the focal spot of the build beam 66 over the exposed resin R in an appropriate pattern. The exposed layer of the resin R is exposed to the radiant energy which selectively cures resin R as described above, and joins it to the previously-cured layer above. This cycle of incrementing a layer, applying resin R, and then selectively curing is repeated until the entire workpiece 74 is complete.
Optionally, a scanned beam apparatus may be used in combination with a projector. For example, a scanned beam apparatus may be used to apply radiant energy (in addition to that applied by the projector) by scanning one or multiple beams over the build surface 26. This may be concurrent or sequential with the use of the projector.
The accuracy of either process, defined as the smallest component feature size which can be produced, is limited mainly by the resolution of the projector 48 or the scanned beam apparatus 60. The accuracy is also influenced by the optical properties of the resin including how deeply light may penetrate and how light is scattered, which can be a function of the amount of filler used and the properties of the filler.
Any of the curing methods described above results in a component 74 in which the filler (if used) is held in a solid shape by the cured resin R. This component may be usable as an end product for some conditions. Subsequent to the curing step, the component 74 may be removed from the stage 14.
If the end product is intended to be composed of the filler (e.g. to be purely ceramic, glass, metallic, diamond, silicon, graphite, etc., the component 74 may be treated to a conventional sintering process to burn out the resin R and to consolidate the remaining particles. Optionally, a known infiltration process may be carried out during or after the sintering process, in order to fill voids in the component with a material having a lower melting temperature than the filler. The infiltration process improves component physical properties.
The turntable 20 can be operated such that the chamber 222 that is within the build zone 31 is moved to the unload zone 92 (and simultaneously, another chamber 222 is moved into the build zone 31). Then the used resin R is removed from the chamber 222 within the unload zone 92 by suitable apparatus such as a pump 93. The used resin R can be cleaned by filtering or other means and returned to the apparatus 10 to be reused. The turntable 20 is then operated to progress the chamber 222 from the unload zone 92 to the load zone 94.
As shown in
Referring now to
Within the receptacle 421, the floor 412 is configured with two or more different levels, such that the receptacle includes a working area 423 and a sump 425. Within the working area 423, the floor 412 defines a build surface 426. Together with the apparatus 18, the build surface 426 can define a build zone 431. As shown in
The working area 423 has a first depth relative to the top edge 414 of the perimeter wall 413. The sump 425 that has a second depth relative to the top edge 414. The second depth is greater than the first depth. The sump 425 is configured to receive solids such as cured resin and other debris that are swept into it, as will be described below. In the illustrated example, the sump 425 occupies one-quarter of the circular area of the receptacle.
A divider 430 is positioned within the receptacle 421. It includes a central hub 434 mounted for rotation about the post 415, and arms 432 radiating from the central hub 434. Four arms 432 are shown in this example. As see in
The arms 432 functionally divide the receptacle 421 into a plurality of chambers 422. The chambers 422 are generally analogous to the chambers 222 except that the shape and volume of the chambers 422 are determined by where they are positioned within the receptacle 421. It should be noted that in some embodiments, the arms 432 are not evenly distributed about the hub 434.
When a chamber 422 is entirely in the build zone 431 of the receptacle 421, the depth of that chamber 422 is equal to the depth of the build zone 431. When a chamber 422 is entirely in the sump area 425, the depth of that chamber 422 is defined by the depth of the sump area 425.
Proceeding in a clockwise direction in
The vat 410 can be better understood by a description of the operation thereof. Resin R contained within the chamber 422 in the build zone 431 is cured in a curing step as described above. After completion of a layer, the divider 430 is rotated. The divider 430 is configured to pass over floor 412 such that debris is removed therefrom. Thus, rotating the divider 430 causes an arm 432 to sweep debris from the build zone 431 into the sump 425. The debris falls to the bottom of the sump 425 and is retained there until unloaded during an unloading step. An unloading step can occur for each curing step or can occur once per multiple curing steps.
Resin R is added to the load zone 456 in a loading step. It should be appreciated that a different resin R can be loaded into adjacent chambers 422. Such a method would result in adjacent layers containing different material, i.e., multi-material between layers. The loading step can occur concurrently with a curing step and an unloading step. Clean and ready to use resin is contained within the ready zone 458. Rotation of the divider 430 brings this clean resin into the build zone 431 for use during a subsequent curing step.
In an alternative embodiment, see in
The stage cleaning process may be used for the purpose of removing resin R that did not cure or resin R that did not cure enough to gel during the selective curing step described above. For example, it might be desired to clean the component 74 and/or the stage 14 to ensure that no additional material or material contamination is present in the final component 74. For example, cleaning could be done by contacting the component 74 and/or the stage 14 with the cleaning fluid such as a liquid detergent or solvent.
The operation of the vat 610 can be better understood through the following exemplary sequence of alternating curing steps and stage cleaning steps. The curing steps and the stage cleaning steps occur in the build zone 631. The turntable 20 is operated to position a predetermined chamber 622, 624, 626, and 628 in the build zone 631 by the turntable 20 in accordance with instructions from the controller 68.
During each curing step, a predetermined one of the chambers 622, 624, and 626 is positioned in the build zone 631. During each cleaning step, the cleaning chamber 628 is positioned in the build zone 631. Parallel loading and unloading operations can be conducted of the chambers 622, 624, and 626 in the appropriate loading or unloading zone. It should be appreciated that one cleaning chamber 628 in a vat 610 is an efficient use of materials and equipment. However, such a configuration can result in operational inefficiencies such as the inability to conduct parallel loading and unloading operations in some cleaning and/or curing steps. Therefore vats 610 can be provided where a cleaning chamber 628 is positioned between adjacent chambers 622, 624, and 626 as shown in
During a stage cleaning step, the stage 14 would then be lowered to bring the component 74 into contact with the cleaning fluid. Upon completion of the cleaning cycle, the stage 14 would then be raised to move the component 74 clear of the cleaning chamber 628.
Optionally, the cleaning process may include the introduction of some type of relative motion between the cleaning fluid 697 and the component 74.
Optionally, the cleaning process can include a “drying” step in which air nozzles 392 (
The method described herein has several advantages over the prior art. In particular, it eliminates a major pathway for build failures in vat-based photopolymerization. It also potentially has lower cost, less material waste, and higher process speed compared to prior art tape casting methods.
The foregoing has described a method and apparatus for additive manufacturing. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Name | Date | Kind |
---|---|---|---|
4575330 | Hull | Mar 1986 | A |
4752498 | Fudim | Jun 1988 | A |
5026146 | Hug et al. | Jun 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5088047 | Bynum | Feb 1992 | A |
5096530 | Cohen | Mar 1992 | A |
5104592 | Hull et al. | Apr 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5143663 | Leyden et al. | Sep 1992 | A |
5171490 | Fudim | Dec 1992 | A |
5174931 | Almquist et al. | Dec 1992 | A |
5182055 | Allison et al. | Jan 1993 | A |
5192559 | Hull et al. | Mar 1993 | A |
5203944 | Prinz et al. | Apr 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5207371 | Prinz et al. | May 1993 | A |
5258146 | Almquist et al. | Nov 1993 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5387380 | Cima et al. | Feb 1995 | A |
5432045 | Narukawa et al. | Jul 1995 | A |
5447822 | Hull et al. | Sep 1995 | A |
5454069 | Knapp et al. | Sep 1995 | A |
5496682 | Quadir et al. | Mar 1996 | A |
5573721 | Gillette | Nov 1996 | A |
5626919 | Chapman et al. | May 1997 | A |
5650260 | Onishi | Jul 1997 | A |
5660621 | Bredt | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5697043 | Baskaran et al. | Dec 1997 | A |
5718279 | Saoth et al. | Feb 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5985204 | Otsuka et al. | Nov 1999 | A |
6051179 | Hagenau | Apr 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6193923 | Leyden et al. | Feb 2001 | B1 |
6200646 | Neckers et al. | Mar 2001 | B1 |
6206672 | Grenda | Mar 2001 | B1 |
6363606 | Johnson et al. | Apr 2002 | B1 |
6376148 | Liu et al. | Apr 2002 | B1 |
6401002 | Jang et al. | Jun 2002 | B1 |
6403002 | van der Geest | Jun 2002 | B1 |
6436520 | Yamamoto | Aug 2002 | B1 |
6471800 | Jang et al. | Oct 2002 | B2 |
6500378 | Smith | Dec 2002 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6780368 | Liu et al. | Aug 2004 | B2 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6850334 | Gothait | Feb 2005 | B1 |
6896839 | Kubo et al. | May 2005 | B2 |
6930144 | Oriakhi | Aug 2005 | B2 |
6966960 | Boyd et al. | Nov 2005 | B2 |
6986654 | Imiolek et al. | Jan 2006 | B2 |
7008209 | Iskra et al. | Mar 2006 | B2 |
7034246 | Muylaert et al. | Apr 2006 | B2 |
7052263 | John | May 2006 | B2 |
7087109 | Bredr et al. | Aug 2006 | B2 |
7195472 | John | Mar 2007 | B2 |
7270528 | Sherwood | Sep 2007 | B2 |
7300613 | Sano et al. | Nov 2007 | B2 |
7455804 | Patel et al. | Nov 2008 | B2 |
7520740 | Wahlstrom et al. | Apr 2009 | B2 |
7550518 | Bredt et al. | Jun 2009 | B2 |
7578958 | Patel et al. | Aug 2009 | B2 |
7614866 | Sperry et al. | Nov 2009 | B2 |
7636610 | Schillen et al. | Dec 2009 | B2 |
7767132 | Patel et al. | Aug 2010 | B2 |
7783371 | John et al. | Aug 2010 | B2 |
7785093 | Holmboe et al. | Aug 2010 | B2 |
7790093 | Shkolnik et al. | Sep 2010 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
7815826 | Serdy et al. | Oct 2010 | B2 |
7867302 | Nevoret et al. | Jan 2011 | B2 |
7892474 | Shkolnik et al. | Feb 2011 | B2 |
7894921 | John et al. | Feb 2011 | B2 |
7896639 | Kritchman et al. | Mar 2011 | B2 |
7946840 | Perret et al. | May 2011 | B2 |
7959847 | Wicker et al. | Jun 2011 | B2 |
8003040 | El-Siblani | Aug 2011 | B2 |
8071055 | Davidson et al. | Sep 2011 | B2 |
8110135 | El-Siblani | Feb 2012 | B2 |
8126580 | El-Siblani et al. | Feb 2012 | B2 |
8157908 | Williams | Apr 2012 | B2 |
8185229 | Davidson | May 2012 | B2 |
8096262 | Ederer et al. | Jun 2012 | B2 |
8211226 | Bredt et al. | Jul 2012 | B2 |
8326024 | Shkolnik et al. | Dec 2012 | B2 |
8444903 | Lyons et al. | May 2013 | B2 |
8475946 | Dion et al. | Jul 2013 | B1 |
8506862 | Giller et al. | Aug 2013 | B2 |
8506870 | Hochsmann et al. | Aug 2013 | B2 |
8568649 | Balistreri et al. | Oct 2013 | B1 |
8616872 | Matsui et al. | Dec 2013 | B2 |
8623264 | Rohner et al. | Jan 2014 | B2 |
8636494 | Gothait et al. | Jan 2014 | B2 |
8636496 | Das et al. | Jan 2014 | B2 |
8666142 | Shkolnik et al. | Mar 2014 | B2 |
8715832 | Ederer et al. | May 2014 | B2 |
8741194 | Ederer et al. | Jun 2014 | B1 |
8741203 | Liska et al. | Jun 2014 | B2 |
8761918 | Silverbrook | Jun 2014 | B2 |
8801418 | El-Siblani et al. | Aug 2014 | B2 |
8815143 | John et al. | Aug 2014 | B2 |
8844133 | Fuller | Sep 2014 | B2 |
8845316 | Schillen et al. | Sep 2014 | B2 |
8845953 | Balistreri et al. | Sep 2014 | B1 |
8876513 | Lim et al. | Nov 2014 | B2 |
8915728 | Mironets et al. | Dec 2014 | B2 |
8926304 | Chen | Jan 2015 | B1 |
8926879 | Vagt et al. | Jan 2015 | B2 |
8932511 | Napadensky | Jan 2015 | B2 |
8968625 | Tan | Mar 2015 | B2 |
8991211 | Arlotti et al. | Mar 2015 | B1 |
8998601 | Busato | Apr 2015 | B2 |
9067359 | Rohner et al. | Jun 2015 | B2 |
9079357 | Ebert et al. | Jul 2015 | B2 |
9101321 | Kiesser | Aug 2015 | B1 |
9120270 | Chen et al. | Sep 2015 | B2 |
9149989 | Uckelmann | Oct 2015 | B2 |
9205601 | DeSimone et al. | Dec 2015 | B2 |
9211678 | DeSimone et al. | Dec 2015 | B2 |
9216546 | DeSimone et al. | Dec 2015 | B2 |
9233504 | Douglas et al. | Jan 2016 | B2 |
9248600 | Goodman et al. | Feb 2016 | B2 |
9259880 | Chen | Feb 2016 | B2 |
9327385 | Webb et al. | May 2016 | B2 |
9360757 | DeSimone et al. | Jun 2016 | B2 |
9364848 | Silverbrook | Jun 2016 | B2 |
9403322 | Das et al. | Aug 2016 | B2 |
9403324 | Ederer et al. | Aug 2016 | B2 |
9415544 | Kerekes et al. | Aug 2016 | B2 |
9429104 | Fuller | Aug 2016 | B2 |
9434107 | Zenere | Sep 2016 | B2 |
9453142 | Rolland et al. | Sep 2016 | B2 |
9456884 | Ucelmann et al. | Oct 2016 | B2 |
9463488 | Ederer et al. | Oct 2016 | B2 |
9469074 | Ederer et al. | Oct 2016 | B2 |
9487443 | Watanabe | Nov 2016 | B2 |
9498920 | DeSimone et al. | Nov 2016 | B2 |
9511546 | Chen et al. | Dec 2016 | B2 |
9517591 | Yoo et al. | Dec 2016 | B2 |
9517592 | Yoo et al. | Dec 2016 | B2 |
9527244 | El-Siblani | Dec 2016 | B2 |
9529371 | Nakamura | Dec 2016 | B2 |
9533450 | El-Siblani et al. | Jan 2017 | B2 |
9539762 | Durand et al. | Jan 2017 | B2 |
9545753 | Costabeber | Jan 2017 | B2 |
9555584 | Costabeber | Jan 2017 | B2 |
9561622 | Das et al. | Feb 2017 | B2 |
9561623 | El-Siblani et al. | Feb 2017 | B2 |
9578695 | Jerby et al. | Feb 2017 | B2 |
9579852 | Okamoto | Feb 2017 | B2 |
9592635 | Ebert et al. | Mar 2017 | B2 |
9604411 | Rogren | Mar 2017 | B2 |
9632420 | Allanic | Apr 2017 | B2 |
9632983 | Ueda et al. | Apr 2017 | B2 |
9636873 | Joyce | May 2017 | B2 |
9649812 | Hartmann et al. | May 2017 | B2 |
9649815 | Atwood et al. | May 2017 | B2 |
9670371 | Pervan et al. | Jun 2017 | B2 |
9676143 | Kashani-Shirazi | Jun 2017 | B2 |
9676963 | Rolland et al. | Jun 2017 | B2 |
9682166 | Watanabe | Jun 2017 | B2 |
9682425 | Xu et al. | Jun 2017 | B2 |
20080170112 | Hull et al. | Jul 2008 | A1 |
20100003619 | Das et al. | Jan 2010 | A1 |
20110310370 | Rohner et al. | Dec 2011 | A1 |
20120195994 | El-Siblani et al. | Aug 2012 | A1 |
20140084517 | Sperry et al. | Mar 2014 | A1 |
20140103581 | Das et al. | Apr 2014 | A1 |
20140227382 | Liska et al. | Aug 2014 | A1 |
20140275317 | Moussa | Sep 2014 | A1 |
20140319735 | El-Siblani et al. | Oct 2014 | A1 |
20140322374 | El-Siblani et al. | Oct 2014 | A1 |
20150102531 | El-Siblani et al. | Apr 2015 | A1 |
20150102532 | DeSimone et al. | Apr 2015 | A1 |
20150140152 | Chen | May 2015 | A1 |
20150145174 | Comb | May 2015 | A1 |
20150165695 | Chen et al. | Jun 2015 | A1 |
20150183168 | Liverman et al. | Jul 2015 | A1 |
20150210012 | Zenere | Jul 2015 | A1 |
20150224710 | El-Siblani | Aug 2015 | A1 |
20150246487 | El-Siblani | Sep 2015 | A1 |
20150355553 | Allanic | Dec 2015 | A1 |
20160031010 | O'Neill et al. | Feb 2016 | A1 |
20160046075 | DeSimone et al. | Feb 2016 | A1 |
20160059485 | Ding et al. | Mar 2016 | A1 |
20160096332 | Chen et al. | Apr 2016 | A1 |
20160107387 | Ooba et al. | Apr 2016 | A1 |
20160129631 | Chen et al. | May 2016 | A1 |
20160166359 | Flach et al. | Jun 2016 | A1 |
20160193785 | Bell et al. | Jul 2016 | A1 |
20160214327 | Uckelmann et al. | Jul 2016 | A1 |
20160221262 | Das et al. | Aug 2016 | A1 |
20160297141 | El-Siblani et al. | Oct 2016 | A1 |
20160332386 | Kuijpers | Nov 2016 | A1 |
20160361872 | El-Siblani | Dec 2016 | A1 |
20160368050 | Morris et al. | Dec 2016 | A1 |
20170001377 | Meisner et al. | Jan 2017 | A1 |
20170008234 | Cullen et al. | Jan 2017 | A1 |
20170008236 | Easter et al. | Jan 2017 | A1 |
20170028472 | Shaw et al. | Feb 2017 | A1 |
20170057177 | Ferguson et al. | Mar 2017 | A1 |
20170057178 | FrantzDale et al. | Mar 2017 | A1 |
20170066196 | Beard et al. | Mar 2017 | A1 |
20170072635 | El-Siblani et al. | Mar 2017 | A1 |
20170100891 | Meisner et al. | Apr 2017 | A1 |
20170100893 | Meisner et al. | Apr 2017 | A1 |
20170100895 | Chou et al. | Apr 2017 | A1 |
20170100897 | Chou et al. | Apr 2017 | A1 |
20170100899 | El-Siblani | Apr 2017 | A1 |
20170102679 | Greene et al. | Apr 2017 | A1 |
20170113409 | Patrov | Apr 2017 | A1 |
20170120332 | DeMuth et al. | May 2017 | A1 |
20170120333 | DeMuth et al. | May 2017 | A1 |
20170120334 | DeMuth et al. | May 2017 | A1 |
20170120335 | DeMuth et al. | May 2017 | A1 |
20170120336 | DeMuth et al. | May 2017 | A1 |
20170120387 | DeMuth et al. | May 2017 | A1 |
20170120518 | DeMuth et al. | May 2017 | A1 |
20170120529 | DeMuth et al. | May 2017 | A1 |
20170120530 | DeMuth et al. | May 2017 | A1 |
20170120537 | DeMuth et al. | May 2017 | A1 |
20170120538 | DeMuth et al. | May 2017 | A1 |
20170123222 | DeMuth et al. | May 2017 | A1 |
20170123237 | DeMuth et al. | May 2017 | A1 |
20170136688 | Knecht et al. | May 2017 | A1 |
20170136708 | Das et al. | May 2017 | A1 |
20170165916 | El Siblani | Jun 2017 | A1 |
20170173865 | Dikovsky et al. | Jun 2017 | A1 |
20170182708 | Lin et al. | Jun 2017 | A1 |
20170190120 | Bloome et al. | Jul 2017 | A1 |
20170197363 | FrantzDale | Jul 2017 | A1 |
20170266876 | Hocker | Sep 2017 | A1 |
20170266880 | Matsubara | Sep 2017 | A1 |
20170266888 | Pang | Sep 2017 | A1 |
20170266890 | Volk | Sep 2017 | A1 |
20170291804 | Craft et al. | Oct 2017 | A1 |
20170297108 | Gibson et al. | Oct 2017 | A1 |
20170297109 | Gibson et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
102007010624 | Sep 2008 | DE |
2505341 | Oct 2012 | EP |
61114817 | Jun 1986 | JP |
61114818 | Jun 1986 | JP |
61116322 | Jun 1986 | JP |
H0499203 | Mar 1992 | JP |
9806560 | Feb 1998 | WO |
2006077665 | Jul 2006 | WO |
201045950 | Apr 2010 | WO |
201709368 | Jan 2017 | WO |
2017091913 | Jun 2017 | WO |
Entry |
---|
Translation of DE 102007010624 A1 (published on Sep. 4, 2008). |
Nussbaum et al., Evaluation of Processing Variables in Large Area Polymer Sintering of Single Layer Components, Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabracation Symposium—An Additive Manufacturing Conference Reviewed Paper, University of South Florida, Tampa, Florida, US. |
Matthews et al., Diode-Based Additive Manufacturing of Metals Using an Optically-Addressable Light Valve, Optic Express Research Article, May 10, 2017, vol. 25, No. 10, Lawrence Livermore National Laboratory, Livermore, California, US. |
Lee et al., Large-Area Compatible Laser Sintering Schemes with a Spatially Extended Focused Beam, www.mdpi.com/journal/micromachinesm, Article May 11, 2017, Micromachines, Seoul University, Seoul, Korea. |
International Preliminary Report on Patentability issued in connection with related International Patent Application No. PCT/US2019/012711 dated Jul. 28, 2020. |
Extended European Search Report for EP Application No. 19744461.5 dated Sep. 17, 2021 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20200406543 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15881153 | Jan 2018 | US |
Child | 17022849 | US |