The application relates to co-pending, commonly assigned U.S. patent application Ser. No. 10/396,241, entitled, “A Load Beam Apparatus Operative to Prevent Improper Operation Due to Off-Axis Loads,” filed on Mar. 25, 2003, which is incorporated by reference herein.
This application is related to the field of stress measurement devices and load beam transducers and more specifically to a multi-load beam transducer for preventing off-axis loads from affecting the output.
As is known in the prior art, load beam transducers optimally function in pure axial tension and compression. In certain applications, off axis loads are involved. These loads can result in inaccurate measurements or could, in fact, damage the beam. Load beams have been employed in many applications. As known in the prior art, side or transverse loads instead of axial loads can cause false reactions or fracture the beam. It is desirable to substantially reduce or eliminate side load effects. It is a further desire to provide another linkage for the beam in the event it does fail.
A load beam is typically small in size, for example, 0.085 inches wide and 0.270 inches thick. The length can be between 0.3 to 1 inch or more. The load beam basically is a relatively thin platform and is the active sensing element where the beam responds to axial tension and compression forces to cause gages or sensors located on the beam to produce an output indicative of the magnitude of the applied force. The beam is designed for maximum micro strain on the gauges located on the beam at maximum rated load. In tension or compression, the load beam can accept off axis perturbations to about 36 inch pounds before yielding and deforming the beam. These loads will be encountered especially in the compression mode, where beam-buckling can also occur. In any event, the critical buckling load is 16 times less, without side support for guiding the load beam in compression.
Co-pending, commonly-owned U.S. patent application Ser. No. 10/396,241, entitled, “A Load Beam Apparatus to Prevent Improper Operation Due to Off-Axis Loads,” filed on Mar. 25, 2003, teaches a linear bearing surrounding the beam which protects the load beam from buckling as a result of side or off-axis forces. However, the use of the linear bearing described in the aforementioned patent increases the cost and overall size of the load cell.
One simple remedy to overcome the reduced buckling load along a specific direction is to increase the load beam size in that direction. However, this is disadvantageous as it causes other problems. As one skilled in the art would recognize, the ability of the load-beam to measure stress is reduced by one-half when the cross-sectional area is doubled. Furthermore, as strain is proportional to stress, a reduction by one-half of the stress reduces the strain or deflection by one-half. Finally, as strain is proportional to accuracy, a reduction of one-half of the strain causes a reduction of one-half of the output voltage. Thus, by doubling the cross-sectional shape to increase off-axis force resistance, the measurement accuracy is significantly reduced. For example, doubling the cross-sectional area of a load beam designed to measure a maximum load of 500 lbs. on a 500 lb. scale would result in a measurement device that measures the 500 lb. load on a 1000 lb. scale. Hence, the accuracy of the measurement is reduced.
Accordingly, an improved system is needed that would increase the ability of the beam transducer to withstand excessive side or off-axis forces while maintaining reasonable measurement accuracy.
A multi-load beam load cell transducer is disclosed. The multi-load beam transducer comprises a fixed member, a movable member, and a plurality of load beams separated by a given distance, each positioned about a longitudinal axis between the fixed member and the moveable member, the plurality of load beams responsive to forces exerted on said members. The transducer further includes piezoresistors positioned on selected ones of the plurality of load beams. The plurality of resistors electrically connected in a bridge configuration and operable to determine the value of the forces applied to the transducer based on changes in the resistance.
a illustrates a cross-sectional view through a longitudinal axis of a conventional prior art stress measurement load beam;
b illustrates a cross-sectional view, through section A—A of the load beam shown in
a–2c illustrate cross-sectional views, similar to those shown in
a illustrates a cross-sectional view through a longitudinal axis of an exemplary embodiment of a multi-load beam load cell in accordance with the principles of the invention;
b illustrates a cross sectional view of a multi-load beam load cell shown in
a is a top plan view of a load beam cell according to this invention; and
b is a side cross-sectional view of the load beam cell of
a illustrates a simplified model of a conventional load beam cell 100. In this model, load cell 100 consists of a fixed or non-moveable first part or member 110, a moveable second part or member 120 and a load beam 130. Positioned on the load beam 130 are piezoresistors 140 that are operable to alter resistance value in response to changes in load beam 130 due to an applied force F. Leads (not shown) are conventionally attached to piezoresistors to configure the resistors 140 in a conventional bridge or circuit. In one aspect, resistors 140 may be configured in a half-Wheatstone bridge configuration. In a second aspect, resistors 140 may be configured in a full Wheatstone bridge configuration. As one skilled in the art would recognize, changes in the resistance of piezoresistors 140 in a Wheatstone bridge configuration are indicative of the magnitude of the applied force. This is well known.
As force 145 is applied to load cell 100, second member 120 moves in accordance with the applied force 145 and the load beam 130 is stressed in response to the applied force 145. The sensors 140 change resistance according to the applied force enabling one to obtain a signal indicative of the force as applied to the beam. More detailed teaching of load cell technology may be found in commonly assigned U.S. patent application Ser. No. 09/814,903, entitled “Force Transducer with Environmental Protection,” filed on Mar. 22, 2001. Force 145 as seen in
b illustrates a cross-sectional view, through section A—A, of load-cell 100 shown in
a illustrates a cross-sectional view of load-beam 210 having substantially a square cross section and
Returning to
a is a side view of a load beam 300 according to this invention.
Piezoresistors 140 may be placed on either load beam 310(U) or 310(L) or both to measure the changes in the corresponding load beam 310 due to the application force 345. In one aspect piezoresistors 140 positioned on the load beam 310 may be connected to a half-Wheatstone or full-Wheatstone bridge to determine the force applied. In a second aspect, piezoresistors 140 may be placed on both of the illustrated load beams 310 (U and L) and electrically connected to a full-Wheatstone bridge. The use of a full Wheatstone bridge is advantageous as it provides for a more accurate determination of the force 345 applied to load cell 300. However, it should be understood that measurement using a half-Wheatstone bridge may also be appropriate for the expected loads or forces to be measured.
b illustrates a cross-sectional view through section A—A of the multi-load beam configuration shown in
Table 1 illustrates a comparison of buckling loads for several load beam cross sections.
As expected, the buckling load associated with square- and circular-shaped cross-sectionally shaped load beams is greater than with a rectangular-shaped load beam. However, a dual rectangular beam configuration unexpectedly produces an increase in the buckling load in the order of five (5) times greater than a rectangular beam along the y-axis.
As expected, the load beam having an “I-” or cross-shaped cross-section (
The characteristics and the performance advantages of a dual load beam load cell transducer over a single load beam load cell may be determined as follows:
As shown in Table 2, the dual load-beam configuration of the present invention is operable to sustain an increase in the order of 1900 lbs. before buckling or a failure occurs. Furthermore, the strain experienced on the beam(s) of the dual load beam configuration at the working load is eighty percent (80%) that of the single load beam configuration. Accordingly, the accuracy of dual load beam configuration is reduced substantially by 80%. As one skilled in the art would recognize, the use of a dual-load beam configuration is a balance between resistance to buckling load and measurement accuracy.
Referring to
As indicated above, there are apertures 51 and 60 in sections 50 and 52. These apertures can accommodate suitable bolts or other fastening means to firmly fix the portion 50 to a fixed area of an aircraft. Essentially, the force transducer, as depicted, is utilized as a force transducer for an aircraft which measures pressure exerted on a moveable member of the aircraft, such as a rudder or elevator structure of the aircraft. The moveable portion of the assembly depicted generally by reference numeral 55, which has an end portion 56. Located in between the fixed portion 50 and the moveable portion 55 are beams 53 and 54. As seen in
Typically, dimensions are as follows, the length L is 0.400 inches, width W is 0.270 inches, while thickness T shown in
The utilization of a plurality of beams as, for example, shown in
Thus, there are many advantages in using the above techniques. It would be apparent to one skilled in the art that one can utilize more than two beams, as shown, for example, in
It is thus apparent that there are many alternative designs which one skilled in the art will envision and which are all deemed to be part of the breadth and scope of the claims as appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3576128 | Lockery | Apr 1971 | A |
3949603 | Laimins | Apr 1976 | A |
4023634 | Provi et al. | May 1977 | A |
4128001 | Marks | Dec 1978 | A |
4181011 | Brendel | Jan 1980 | A |
4420985 | Raskin | Dec 1983 | A |
4454770 | Kistler | Jun 1984 | A |
4619147 | Yoshimura et al. | Oct 1986 | A |
4657097 | Griffen | Apr 1987 | A |
4796474 | Koenig | Jan 1989 | A |
4838369 | Albert | Jun 1989 | A |
4899599 | Eddens | Feb 1990 | A |
4899600 | Lee | Feb 1990 | A |
5052505 | Naito et al. | Oct 1991 | A |
5327791 | Walker | Jul 1994 | A |
5336854 | Johnson | Aug 1994 | A |
5391844 | Johnson et al. | Feb 1995 | A |
5440077 | Konishi et al. | Aug 1995 | A |
5539158 | Utsunomiya et al. | Jul 1996 | A |
5773729 | Nahar | Jun 1998 | A |
6092838 | Walker | Jul 2000 | A |
6319221 | Savage et al. | Nov 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040221664 A1 | Nov 2004 | US |