Multi-lumen implant

Information

  • Patent Grant
  • 6808504
  • Patent Number
    6,808,504
  • Date Filed
    Thursday, October 4, 2001
    23 years ago
  • Date Issued
    Tuesday, October 26, 2004
    20 years ago
Abstract
An implant for use in direct left ventricle to coronary vessel revascularization is disclosed. The implant includes a sleeve sized to pass through a heart wall. The sleeve is sufficiently rigid to remain open during contraction of the heart. The implant also includes a plurality of conduits at least partially mounted in the sleeve.
Description




FIELD OF THE INVENTION




The present invention pertains to an implant for passing blood directly between a chamber of the heart and a coronary vessel.




BACKGROUND




The placing of artificial shunts or other durable passageways in the heart wall to connect heart chambers containing oxygenated blood with coronary arteries also is known. These devices and the techniques for placing them in the heart are described in detail in U.S. Pat. No. 5,944,019, issued Aug. 31, 1999, which is hereby incorporated by reference. Such implants typically are placed in the wall of the heart to allow oxygenated blood to flow into a partially or completely occluded coronary artery as an alternative to more traditional or conventional vein graft coronary arterial bypass procedures.




SUMMARY OF THE INVENTION




According to an embodiment of the present invention, a transmyocardial implant is disclosed for establishing a blood flow path through a myocardium between a heart chamber and more than one coronary vessel. The implant includes a rigid housing sized to be inserted into and retained within the myocardium. The rigid conduit is sufficiently rigid to withstand collapse in response to contraction forces of the myocardium. Additionally, the implant includes a plurality of conduits, each conduit having a first end secured in the rigid housing and a second end sized to be secured to a coronary vessel. The conduits are blood compatible. The rigid housing and the conduits define blood flow paths from the heart chamber to more than one coronary vessel.




A variety of additional advantages of the invention will be set forth in the description which follows, and will be apparent from the description. It is to be understood that both the foregoing material and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several aspects of the invention and together with the description, serve to explain the principles of the invention. A brief description of the drawings is as follows.





FIG. 1

is a perspective view of an implant according to an embodiment of the present invention.





FIG. 2

is a cross-sectional end view of the implant shown in

FIG. 1

taken along section line


2





2


.





FIG. 3

is a side sectional view of an implant according to an embodiment of the present invention shown in place in a human heart wall.





FIG. 4

is a plan view of an implant according to an embodiment of the present invention shown in place in a human heart establishing direct blood flow paths from a heart chamber to more than one coronary vessel.





FIG. 5

is a plan view of an implant according to an embodiment of the present invention shown in place in a human heart establishing direct blood flow paths from a heart chamber to more than one coronary vessel.





FIG. 6

is a plan view of an implant according to an embodiment of the present invention shown in place in a human heart establishing direct blood flow paths from a heart chamber to more than one coronary vessel.





FIG. 7

is a perspective view of an implant according to an embodiment of the present invention.





FIG. 8

is a schematic view of a kit according to an embodiment of the present invention.











DETAILED DESCRIPTION




Reference will now be made in detail to exemplary aspects of the present invention that are illustrated in the accompanying drawings. The same reference numbers will be used throughout the drawings to refer to the same or like parts. It should be noted that throughout the description, the terms “including” and “having” are used synonymously with “comprising”.





FIGS. 1-3

show an implant


10


including a hollow, rigid housing


12


and a plurality of flexible conduits


14


,


16


, and


18


. The housing


12


may be formed of titanium or another rigid biocompatible material such as nickel-titanium alloy or pyrolytic carbon or may be titanium or another material that is coated with pyrolytic carbon. The material of the housing


12


should be sufficiently rigid so as to withstand the contraction forces of the myocardium and maintain an open path through the myocardium during both systole and diastole. An end


13


of the housing


12


is sized to extend through the myocardium MYO of the human heart to project into the interior of a heart chamber HC (preferably, the left ventricle) by a distance of about 5 mm (see FIG.


3


).




The housing


12


may be provided with tissue-growth inducing material


20


adjacent an upper end to immobilize the housing


12


within the myocardium MYO (shown in FIG.


3


). The material


20


surrounds the exterior of the housing


12


and may be a polyester woven sleeve or sintered metal to define pores into which tissue growth from the myocardium MYO may occur.




The surgeon depending upon the nature of the procedure may select the number and size of the flexible conduits. The inner diameter of the flexible conduits preferably ranges from approximately 1 to 5 mm. Additionally, the length of the flexible conduits may vary. The length and inner diameter of the conduits need not be the same from conduit to conduit. In one non-limiting example, two flexible conduits may have an inner diameter of 1.5 mm while the third flexible conduit has an inner diameter of 4.0 mm. In another non-limiting example, the implant may include three flexible implants each having an inner diameter of 2.0 mm. In certain embodiments, a surgeon can cut the conduits to desired lengths.




The flexible conduits are preferably made from any suitable plastic material. Preferably, the flexible conduits are made from expanded polytetrafluorethylene. The use of ePTFE flexible conduits results in blood flowing through path being exposed only to ePTFE which is a material already used as a synthetic vessel with proven blood and tissue compatibility thereby reducing risk of thrombosis and encouraging endotheliazation.




Each flexible conduit has a first end


30


and a second end


40


. The first end


30


of each flexible conduit is inserted through the interior of the housing


12


and secured. In one embodiment, the first ends of the flexible conduits are secured using a securing material


32


, such as collagen or another suitable polymer. The ends


30


are secured by filling the voids formed between the flexible conduits with the securing material. The securing material may be injected or placed in the voids by another suitable means. Alternatively, the first ends


30


of the flexible conduits may be secured in the interior of the housing


12


by a forced fit.




The implant including the rigid housing


12


and plurality of flexible conduits is preferably placed in the myocardium MYO with the lower end of the housing protruding into the left ventricle HC, as shown in FIG.


3


. The implant


10


thus defines open blood flow paths in blood flow communication with a heart chamber.




To bypass obstructions in more than one coronary vessel, ends


40


of the flexible conduits are attached to the coronary vessels in any suitable manner. For example, the ends


40


may be anastomosed to an artery with sutures (not shown) in an end-to-side anastomosis as is done in conventional coronary artery bypass procedures. Alternatively, the ends of the flexible conduits may be secured to the vessel using an end-end anastomosis. The ends


40


are secured to the appropriate vessels downstream from the obstructions. In certain embodiments, anastomosis devices such as those disclosed in U.S. Provisional Patent Application No. 60/304,208 and U.S. patent application Ser. No. 09/931,655, which are hereby incorporated by reference, can be used.




For the purposes of this application, the term coronary vessels refers to the coronary arteries, coronary veins, and branches thereof. Ends


40


of the flexible conduits may be connected to a right coronary artery RCA and a left coronary artery LCA, as shown in

FIG. 4

; multiple sites on a single artery as shown in

FIG. 5

; or the ends may be connected to sites on the left coronary artery and on the circumflex branch as shown in FIG.


6


. In addition to arteries, the ends


40


may be secured coronary veins such as in a retrograde profusion procedure.




With the above-described embodiments, the implant


10


permits revascularization from the left ventricle LV to more than one coronary vessel such as right and left coronary arteries RCA and LCA. The use of elongated, flexible conduits permits revascularization where the vessel CA is not necessarily in overlying relation to the chamber HC. For example, the implant


10


permits direct blood flow between the left ventricle HC and a vessel such as the right coronary artery RCA overlying the right ventricle as shown in FIG.


4


.




In an alternative embodiment, a plurality of discrete rigid rings


17


(shown in

FIG. 7

) may be provided along the length of the flexible conduit not located within the rigid sleeve


12


. Preferably, the rings are LDPE each having an interior surface heat bonded to an exterior surface of flexible conduits. At the radius


15


, LDPE rings


17




a


are integrally formed with the radius


15


with the cross-sectional planes of the rings


17




a


set at a fixed angle of separation (e.g., about 20 degrees) to support the flexible conduit throughout the 90 degree bend. Again, an interior surface of rings


17




a


is heat bonded to an exterior surface of the flexible conduit. The rings


17


,


17




a


provide crush resistance. Between the rings


17


,


17




a


, the flexible conduit may flex inwardly and outwardly to better simulate the natural compliance of a natural blood vessel. By way of a further non-limiting example, the discrete rings


17


could be replaced with a continuous helix.




Referring to

FIG. 8

, the implant may be provided as part of a sterile, sealed package or kit. An exemplary kit


100


may include a suitable container


102


, flexible conduits of varying lengths and inner diameters


104


, a housing


106


, a securing material


108


such as collagen or another suitable polymer, and instructions


110


.




In performing a multi-coronary bypass using an implant according to the present invention, the surgeon is able to tailor the implant to the individual depending on the nature of the procedure and the condition of the individual's heart. The surgeon is capable of selecting the number of flexible conduits as well as the length and inner diameter of each of the flexible conduits. After selecting the number and the inner diameters of each of the flexible conduits, the surgeon assembles the implant. To assemble the implant, the surgeon inserts a first end of each of the conduit into the interior of the housing. Next, the flexible conduits are secured in the housing by injecting a securing material such as collagen or another suitable polymer into the voids between the conduits and allowing the implant to set for a suitable period time. After the implant has been assembled, a first end of the implant housing is inserted into the heart chamber through the heart wall and retained within the heart wall. Then, the second ends of each of the flexible conduits are secured to sites on one or more coronary vessels by an appropriate means.




Having disclosed the present invention in a preferred embodiment, it will be appreciated that modifications and equivalents may occur to one of ordinary skill in the art having the benefits of the teachings of the present invention. It is intended that such modifications shall be included within the scope of the claims are appended hereto.



Claims
  • 1. An apparatus for performing a multi-vessel coronary bypass procedure comprising:a housing, the housing having one end configured to extend through a heart wall and into a heart chamber and configured to be sufficiently rigid to withstand a contraction of the heart wall, and a plurality of flexible hollow conduits, each conduit having a first end secured in the housing and a second end configured to be secured to a coronary vessel.
  • 2. The apparatus according to claim 1, further comprising a plurality of reinforcing members secured to an outer surface of each flexible conduit and along a length of each flexible conduit.
  • 3. The apparatus according to claim 1, wherein the hollow conduits have different inner diameters.
  • 4. The apparatus according to claim 1, wherein the first end of each of the flexible conduits is secured in the housing using a securing material that fills voids between the flexible conduits.
  • 5. The apparatus according to claim 1, wherein an inner diameter of each flexible conduit ranges from 1 to 5 mm.
  • 6. A kit for performing a multi-coronary bypass procedure comprising:a biocompatible sleeve configured to extend through a heart wall; a plurality of biocompatible conduits configured to be mounted in the sleeve, each conduit having a first end configured to be secured to a coronary vessel; a securing material for configured to be secure a second end of each flexible conduit in the sleeve; and a container for configured to hold the sleeve, the conduits and the securing material.
  • 7. The kit according to claim 6, wherein each conduit comprises a plurality of reinforcing members secured to an outer surface of the conduit and along a length of the conduit.
  • 8. The kit according to claim 6, wherein the conduits have different inner diameters.
  • 9. The kit according to claim 6, wherein the inner diameter of each conduit ranges from approximately 1 to 5 mm.
  • 10. A method of performing a multi-coronary bypass procedure by using an implant having a sleeve and a plurality of conduits having first end portions that extend through the sleeve and second end portions that project outwardly from the sleeve, the method comprising:placing the sleeve through a heart wall such that the first end portions of the conduits are placed in fluid communication with a chamber of the heart; and securing the second end portions of the conduits to one or more coronary vessels.
  • 11. The method according to claim 10, wherein the coronary vessels are coronary veins, coronary arteries, or both.
  • 12. The method according to claim 10, wherein the sleeve is sufficiently rigid as to remain open during both systole and diastole.
  • 13. The method according to claim 10, further comprising:selecting the plurality of conduits such that each conduit has a predetermined inner diameter, and assembling the implant by securing the first end portion of each conduit in the sleeve.
  • 14. The method according to claim 13, wherein each conduit has an inner diameter ranging from approximately 1 to 5 mm.
US Referenced Citations (28)
Number Name Date Kind
4995857 Arnold Feb 1991 A
5287861 Wilk Feb 1994 A
5409019 Wilk Apr 1995 A
5655548 Nelson et al. Aug 1997 A
5755682 Knudson et al. May 1998 A
5824071 Nelson et al. Oct 1998 A
5908029 Knudson et al. Jun 1999 A
5921952 Desmond et al. Jul 1999 A
5944019 Knudson et al. Aug 1999 A
5984956 Tweden et al. Nov 1999 A
6029672 Vanney et al. Feb 2000 A
6044845 Lewis Apr 2000 A
6053942 Eno et al. Apr 2000 A
6076529 Vanney et al. Jun 2000 A
6093166 Knudson et al. Jul 2000 A
6102941 Tweden et al. Aug 2000 A
6113630 Vanney et al. Sep 2000 A
6113823 Eno Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6139541 Vanney et al. Oct 2000 A
6182668 Tweden et al. Feb 2001 B1
6193726 Vanney Feb 2001 B1
6197050 Eno et al. Mar 2001 B1
6214041 Tweden et al. Apr 2001 B1
6223752 Vanney et al. May 2001 B1
6237607 Vanney et al. May 2001 B1
6250305 Tweden Jun 2001 B1
6253768 Wilk Jul 2001 B1