The instant invention relates to uprights for supporting and securing a net for playing volleyball, tennis, badminton, and other sports, and, more particularly, to a composite locking upright having a composite tube with two protective collars, a multi-material tube, and a locking tool all designed to maximize the rigidity and durability, while minimizing the weight, of the upright.
Uprights are used to hold a net in position for athletic or recreational sporting activities, such as volleyball, tennis, and badminton. Many sporting facilities are constructed with a court or a playing surface that is multifunctional. For instance, the playing surface may, on occasion, be a basketball court, at other times the court may be setup for badminton, tennis, or volleyball. To support a multifunctional role, the playing surface may have a plurality of sleeves or recesses installed in the playing surface. One end of the upright is typically inserted into the sleeve. The sleeves permit the upright to be installed and removed, allowing the playing surface to be converted from facilitating one sport to another sport. For badminton, tennis, and volleyball, two uprights are generally required to provide support for the net to be strung tautly between the uprights.
Most sporting regulations require that the net be taut between the uprights. By pulling the net taut, the load on the upright increases, causing the upright to flex in the direction of the net. In most regulation sports, only minimal flexing of the upright is permitted. As the upright length increases it must be more resistant to flexing. In other words, the upright must be more rigid. This is particularly true for volleyball.
In use, in addition to holding the net in position, the uprights must be able to withstand impact of a ball on the net, and the impact of one or more players into the net or pole. The latter of the two impacts can amount to significant forces on the upright due to the momentous forces produced by a moving body.
Some uprights have telescopic designs. Two tubes, one having a smaller diameter, are constructed so that one extends from and slides within another. Once the desired net playing height is set, the two tubes are locked into position relative to each other. Telescoping adjustable height uprights serve different classifications of players. For example, a youth league may require a lower net playing height than an adult league, which may have different net playing heights for women than for men. This telescoping design permits adjustment of the net to meet the net playing height requirements for multiple leagues of varying skill levels.
In addition to having flexible height setup, the upright should be easy to handle for setup and removal. The weight of the upright may influence the ease with which the upright is installed and removed from the sleeve. Obviously, as the upright weight increases, handling the upright during installation and removal becomes increasingly more difficult and, possibly, dangerous. Not only is bodily injury an issue for heavy uprights, damage to the playing surface may also occur. Therefore, light uprights are more desirable because they are easier and safer to install and remove. Unfortunately, light uprights generally lack the durability and rigidity desired, that is, light uprights flex more and are more likely to fail under reasonable playing conditions.
Like with other sporting goods, advanced materials have allowed some reconciliation between the competing design requirements. Composites are one type of advanced material. Composites offer the advantage of having lower weight with greater rigidity, making them an attractive alternative to multi-material components. Fiber reinforced composites consist of a plurality of fibers of one material that are bound in a matrix of resin or another organic material. The reinforcing fibers tend improve the rigidity of the matrix while the matrix distributes the load among the fibers. One of the drawbacks with fiber reinforced composites is that many of the fibers found in composites are susceptible to flaws or defects on their surfaces. These defects may cause the composite to fail or fracture when placed under a load. Moreover, composites are less durable than their multi-material counterparts mainly due to defects caused by abrasion. In the case of the upright, abrasion from installation, setup, and removal, may cause a reduction in the rigidity and strength of the composite.
There remains an unfulfilled need for a composite locking upright that is light in weight but does not sacrifice durability and useable life to attain its light weight. Additionally, there remains an unfulfilled need to provide a composite locking upright which is rigid while being cost effective.
In its most general configuration, the present invention advances the state of the art with a variety of new capabilities and overcomes many of the shortcomings of prior devices in new and novel ways. In its most general sense, the present invention overcomes the shortcomings and limitations of the prior art in any of a number of generally effective configurations. The instant invention demonstrates such capabilities and overcomes many of the shortcomings of prior methods in new and novel ways.
The present invention is a composite locking upright for installation into a playing surface having a plurality of built-in sleeves. By way of example and not limitation, the playing surface may be used for indoor volleyball, badminton, and tennis, in addition to basketball or other sports not requiring uprights. In an embodiment of the instant invention the composite locking upright supports a net at a net playing height by supporting, and securing, a plurality of ropes so that, by way of example and not limitation, volleyball, badminton, and tennis may be played.
In one embodiment, the composite locking upright has a composite tube, an upper protective collar, a lower protective collar, a multi-material tube, and a locking tool. The composite tube may be made of a fiber reinforced organic matrix. The multi-material tube may be made at least in part of a fiber reinforced organic matrix and may incorporate at least one abrasion resistant area.
In one embodiment, the composite tube has a composite tube interior surface, a composite tube exterior surface, a sleeve support end, and a receiving end. The upper protective collar has an upper collar attachment surface, a bearing surface, an upper collar exterior surface, and a guard surface. The upper protective collar is attached at the receiving end of the composite tube. The guard surface and the upper collar exterior surface substantially prevent damage to the receiving end of the composite tube. In one embodiment, the upper protective collar may have at least one locking tool receiver for cooperating with the locking tool.
In one embodiment, the lower protective collar has a lower collar attachment surface, a sleeve contact surface, a support end, and a reinforcement end. The lower protective collar may be attached at the sleeve support end of the composite tube. The lower protective collar cooperates with the built-in sleeve which may allow the upright to be installed and removed from the built-in sleeve without substantially damaging the composite tube.
The multi-material tube extends from the receiving end of the composite tube. In one embodiment, the multi-material tube may have a multi-material tube interior surface, a multi-material tube exterior surface, an insertion end, and a rope contact end. The multi-material tube exterior surface may be formed with a plurality of net height receiving fixtures. The multi-material tube telescopes in and out of the composite tube and may cooperate with the upper protective collar. In order to protect the composite tube from contact with the multi-material tube, as it slides longitudinally within the composite tube, the multi-material tube exterior surface may slide against the bearing surface of the upper protective collar. In another embodiment of the instant invention, the multi-material tube has a pulley wheel rotatably attached to the rope contact end.
The various positions of the multi-material tube relative to the composite tube may be locked by the locking tool operating in conjunction with the locking tool receiver and the net height receiving fixtures. Thus, when the rope is threaded onto the rope contact end, the net playing height is set by sliding the multi-material tube longitudinally within the composite tube and operating the locking tool in cooperation with both the locking tool receiver and the net height receiving fixtures to lock the multi-material tube relative to the composite tube.
The lower protective collar may prevent wear and damage to the composite tube during the installation of the upright into the built-in sleeves. Similarly, the upper protective collar may prevent wear and damage to the composite tube interior surface when the net playing height is adjusted. Furthermore, the upper protective collar may prevent wear and damage to the composite tube while operating the locking tool to lock the multi-material tube at the net playing height.
In another embodiment of the instant invention, the composite tube further includes a stop bar. The stop bar is positioned to intercept the multi-material tube prior to the rope contact end impacting the guard surface. In another embodiment of the instant invention, the multi-material tube is formed with a composite tube interior surface protective ring. The composite tube interior surface protective ring may guide the multi-material tube as it telescopes in and out of the composite tube during installation and preparation for storage and may reduce abrasion damage on the composite tube.
In another embodiment of the instant invention, a hook collar may be releasably attached to the composite tube. The hook collar may be positioned at a hook collar height measured from the sleeve support end. The hook collar secures the rope thereby holding the net in position and may reduce exterior surface damage from handling.
In another embodiment of the instant invention, the upper collar is formed with at least one locking recess. The locking recess may extend from the upper collar exterior surface to the bearing surface and may be completely within the upper collar. The net height receiving fixtures may be a plurality of pin recesses. The locking tool may be a pin that cooperates with both the locking recess and the pin recesses.
The upright of the instant invention enables a significant advance in the state of the art. The instant invention is, in addition, widely applicable to a large number of applications. The various embodiments, as would be understood by one skilled in the art, would be suitable to any recreational activity requiring light weight but rigid, durable, cost-effective uprights. These variations, modifications, alternatives, and alterations of the various preferred embodiments may be used alone or in combination with one another, as will become more readily apparent to those with skill in the art with reference to the following detailed description of the preferred embodiments and the accompanying figures and drawings.
Without limiting the scope of the present invention as claimed below and referring now to the drawings and figures:
These drawings are provided to assist in the understanding of the exemplary embodiments of the invention as described in more detail below and should not be construed as unduly limiting the invention. In particular, the relative spacing, positioning, sizing and dimensions of the various elements illustrated in the drawings are not drawn to scale and may have been exaggerated, reduced or otherwise modified for the purpose of improved clarity. Those of ordinary skill in the art will also appreciate that a range of alternative configurations have been omitted simply to improve the clarity and reduce the number of drawings.
The composite locking upright (50) of the instant invention enables a significant advance in the state of the art. The preferred embodiments of the device accomplish this by new and novel arrangements of elements and methods that are configured in unique and novel ways and which demonstrate previously unavailable but preferred and desirable capabilities. The detailed description set forth below in connection with the drawings is intended merely as a description of the presently preferred embodiments of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
Referring now generally to
With reference to
The composite tube (100) may be made of a combination of two or more distinct materials that may result in a high-strength, low-weight composite. By way of example, and not limitation, the composite tube (100) may be made of a combination of a reinforcement supported by a matrix material, such as a fiber reinforcement of an organic, or resin, matrix. Furthermore, the fiber reinforcement may be composed of discontinuous fibers or continuous fibers. As one skilled in the art will recognize, the fibers may be one material, such as glass, aramid, carbon, or intermulti-material fibers, to name only a few, or the fibers may be a combination of materials. The fibers may have low weight but great strength or rigidity, referred to as elastic modulus. The matrix binds the fibers together and transfers load to, and between, the individual fibers. There are a large number of resin formulations available, such as polyester and vinyl ester resins, thermoplastic resins, and epoxies. The matrix may have lower weight, rigidity, and strength than the fibers, however, the composite, the combination of the fiber and matrix, may have a high elastic modulus combined with low weight. As previously mentioned, even though the fibers have rigidity, many times the fibers weaken when damaged. Therefore, preventing damage to the composite by minimizing penetrations that segment or cut the fibers, and minimizing any damage to the composite, may improve the durability and long term performance of the composite tube (100).
With reference now to
In one embodiment, the upper protective collar (200), as seen in
The upper collar attachment periphery (212) and the composite tube exterior periphery (122) cooperate such that the upper protective collar (200) is attached at the receiving end (140) of the composite tube (100), as seen in
The guard surface (250) and the upper collar exterior surface (230) substantially prevent damage to the receiving end (140) of the composite tube (100). Consequently, the guard surface (250) and the upper collar exterior surface (230) may substantially prevent damage to the fiber reinforcement of the composite tube (100) during handling and during adjustment of the net playing height (24). In one embodiment, as seen in
With continued reference to
As seen in
In one embodiment of the present invention, as seen in
In one embodiment, seen well in
Placement of an abrasion resistant section (405) in a multi-material tube, wherein at least one of the plurality of net receiving fixtures (460) is at least partially set within at least one of the at least one abrasion resistant sections (405), helps protect the multi-material tube (400). Such an abrasion resistant section (405) may be a section that may be equal to a full thickness of the multi-material tube (400) as seen in
In order to protect the composite tube (100), as seen in
As seen in
During installation, when the rope (22) is threaded onto the rope contact end (440), the net (20) thereby releasably attaching the net (20) to the composite locking upright (50) and the net playing height (24) is set by sliding the multi-material tube (400) longitudinally within the composite tube (100) and operating the locking tool (700) in cooperation with both the locking tool receiver (240) and the net height receiving fixtures (460) to lock the multi-material tube (400) relative to the composite tube (100).
The upper and lower protective collars (200, 300) may be made of steel or other material, or may be made of a light weight material with a hard, abrasive resistant coating, that resists repetitious use of the composite locking upright (50) and that holds the multi-material tube (400) at the net playing height (24). In particular, the lower protective collar (300) may prevent wear and damage to the composite tube (100) during the installation of the upright (50) into the built-in sleeves (12) and from relative movement between the lower protective collar (300) and the built-in sleeve (12) during use of the upright (50). Similarly, the upper protective collar (200) may prevent wear and damage to the composite tube interior surface (110) when the net playing height (24) is adjusted. In addition, the upper protective collar (200) may prevent wear and damage to the composite tube (100) while operating the locking tool (700) to lock the multi-material tube (400) at the net playing height (24). In one embodiment of the instant invention, the composite tube (100) is not penetrated, and any penetrations are formed in the upper and lower protective collars (200, 300).
In another embodiment of the instant invention, as seen in
In another embodiment of the instant invention, as seen in
In another embodiment of the composite locking upright (50), as seen in
With continued reference to
In another embodiment of the instant invention, as seen in
In yet another embodiment of the instant invention, as seen in
In another embodiment of the instant invention, as seen in
In another embodiment of the instant invention, as seen in
In another embodiment of the instant invention, as seen in
In another embodiment of the instant invention, as seen best seen in
In one embodiment, seen well in
Such an abrasion resistant section (405) may be a section that may be equal to a full thickness of the multi-material tube (400) as seen in
Therefore, the pin (702), together with both the locking recess (242) and the pin recesses (462), locks the multi-material tube (400) relative to the composite tube (400). In another embodiment of the instant invention, the spacing of the pin recesses (462) may correspond to volleyball regulation standard net heights.
Numerous alterations, modifications, and variations of the preferred embodiments disclosed herein will be apparent to those skilled in the art and they are all anticipated and contemplated to be within the spirit and scope of the instant invention. For example, although specific embodiments have been described in detail, those with skill in the art will understand that the preceding embodiments and variations can be modified to incorporate various types of substitute and or additional or alternative materials, relative arrangement of elements, and dimensional configurations.
Accordingly, even though only few variations of the present invention are described herein, it is to be understood that the practice of such additional modifications and variations and the equivalents thereof, are within the spirit and scope of the invention as defined in the following claims. The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.
This application is a continuation of a previous application filed in the United States Patent and Trademark Office on Jul. 3, 2008, titled “Multi-Material Composite Locking Upright,” and given application Ser. No. 12/167,571 now U.S. Pat. No. 7,559,860, which is a continuation-in-part of application Ser. No. 11/436,687, filed on May 18, 2006, now U.S. Pat. No. 7,410,431; the contents of which are incorporated by reference as if completely written herein.
Number | Name | Date | Kind |
---|---|---|---|
834999 | Schutz | Nov 1906 | A |
942761 | Voynow | Dec 1909 | A |
1459723 | Eskell | Jun 1923 | A |
1668020 | Marquardt | May 1928 | A |
3350822 | Nachazel | Nov 1967 | A |
3931965 | Grant | Jan 1976 | A |
4040214 | Frye | Aug 1977 | A |
4065099 | Germain | Dec 1977 | A |
4071996 | Muto et al. | Feb 1978 | A |
4122451 | Senoh | Oct 1978 | A |
4197827 | Smith | Apr 1980 | A |
4253671 | Pace | Mar 1981 | A |
4281487 | Koller | Aug 1981 | A |
4444397 | Kaburagi et al. | Apr 1984 | A |
4615278 | Cabrelli | Oct 1986 | A |
4684230 | Smith | Aug 1987 | A |
4844455 | Funkhouser, Jr. | Jul 1989 | A |
4987718 | Knight | Jan 1991 | A |
5215310 | Allbright | Jun 1993 | A |
5242174 | Koole | Sep 1993 | A |
5308085 | Koole | May 1994 | A |
5358257 | Pardi | Oct 1994 | A |
5371986 | Guditis | Dec 1994 | A |
5542679 | Caso | Aug 1996 | A |
5855527 | Koole | Jan 1999 | A |
5860877 | Esser | Jan 1999 | A |
6030301 | Asada et al. | Feb 2000 | A |
6089995 | Schroeder | Jul 2000 | A |
6575434 | Bligh et al. | Jun 2003 | B2 |
6694698 | Ryan | Feb 2004 | B2 |
6755005 | Czachor et al. | Jun 2004 | B2 |
6800043 | Pohrer | Oct 2004 | B1 |
6852046 | Wewel et al. | Feb 2005 | B1 |
20020065153 | Bertrand | May 2002 | A1 |
20060073922 | Stambaugh | Apr 2006 | A1 |
20070270252 | Underwood | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090247330 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12167571 | Jul 2008 | US |
Child | 12481065 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11436687 | May 2006 | US |
Child | 12167571 | US |