The present invention relates generally to a multi-material golf club head with improved performance. More specifically, the present invention relates to a multi-material golf club head having a metallic frontal portion and a lightweight aft portion with an addition of an internal ribbon support member. The internal ribbon support member helps significantly improve the structural rigidity of the lightweight aft portion and improve the acoustic performance of the golf club head itself. The present invention may also further be comprised of a weighting mechanism that is accessible via an opening within the lightweight aft portion, but connects directly to the metallic frontal portion to mitigate any of the structural integrity issues associated with installing weights in lightweight portions of a golf club head.
The utilization of weighting elements to improve the performance of a golf club head has been known in the industry. U.S. Pat. No. 3,692,306 to Glover filed in 1971 shows one of the earliest golf club with a weighting mechanism. Using different material with inherently different density and weighting properties allows the performance of the golf club head to be improved.
Modern day golf club heads, especially metalwood type golf club heads have continuously improved upon the ability to utilize weighting to improve the performance of a golf club head. U.S. Pat. No. 8,951,143 to Morales et al. illustrated one of the more modern ideas that taught a weight attachment mechanism wherein a weight member is coupled with a bracket.
The issues of adding weights to a golf club head becomes even more complicated when a lightweight composite material is used to form a portion of a golf club head. Lightweight composite materials, although very strong in an orientation that is perpendicular to their fibers, can often be weak when subjected to forces in alternate orientations. Hence, adding weighting to a lightweight composite golf club head can often be difficult. U.S. Pat. No. 8,979,671 to DeMille et al. illustrates one of the solutions to address this issue, by strengthening the material around the weight and adding additional support members.
Hence it can be seen there is a need in the industry to create a golf club that utilizes a lightweight composite aft body that is capable of sufficient structural rigidity, good sounds, and good performance.
Additionally, the addition of the thickness of the material to strengthen the material around the weight and the addition of support members can create the undesirable effect of adding in weight at locations that is not desirable. Hence, based on the above, there exists a need to help improve upon the weight attachment mechanism of a golf club head that has a lightweight second material to form a portion of the golf club head itself, without any of the negative side effects associated with traditional methods.
One aspect of the present invention is a golf club head comprising of a frontal striking face portion having one or more threaded receptacles and an aft body attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having one or more weight openings, and internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, wherein the internal ribbon support member further comprises a secondary wall, separating an internal overall volume of the golf club head into a frontal volumetric chamber and a rear volumetric chamber, wherein the golf club head has a Volumetric Ratio of between about 12.6 to about 19.1. The Volumetric Ratio is defined as:
In another aspect of the present invention is a golf club head comprising of a frontal striking face portion having one or more threaded receptacles and an aft body attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having one or more weight openings, and internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, wherein the internal ribbon support member further comprises a secondary wall, separating an internal overall volume of the golf club head into a frontal volumetric chamber and a rear volumetric chamber wherein the golf club head has a frontal volumetric chamber that comprises of between about 82% to about 91% of the internal overall volume of the golf club head.
In another aspect of the present invention is a golf club head comprising of a frontal striking face portion having one or more threaded receptacles and an aft body attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having one or more weight openings, and internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, wherein the internal ribbon support member further comprises a secondary wall, separating an internal overall volume of the golf club head into a frontal volumetric chamber and a rear volumetric chamber wherein the golf club head has a frontal volumetric chamber that comprises of between about 82% to about 91% of the internal overall volume of the golf club head and wherein greater than about 15 percent of an overall mass of the golf club head is located rearward of and behind the secondary wall.
In another aspect of the present invention is a golf club head comprising of a frontal striking face portion having one or more threaded receptacles and an aft body attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having one or more weight openings, and internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, wherein the internal ribbon support member further comprises of a plurality of cutouts, and wherein the internal ribbon support member has a mass of less than about 5.0 grams.
In another aspect of the present invention the internal ribbon support member further comprises of an internal component and an external component.
In another aspect of the present invention, the internal component and the external component combine to form a diamond shaped internal ribbon support member.
In another aspect of the present invention is a golf club head that produces a sound that has a Critical Time Tcritical of greater than about 0.01 seconds and less than about 0.02 seconds; said Critical Time Tcritical is defined as the amount of time it take said sound to oscillate from a peak amplitude Amax to a point of 10% of said peak amplitude Amax.
In another aspect of the present invention is a golf club head comprising of a frontal striking face portion having one or more threaded receptacles and an aft body attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having one or more weight openings, and internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, and one or more screw weights inserted through the one or more weight opening to engage the one or more threaded receptacle, wherein the lightweight shell and the internal ribbon support member are both made from a fiber reinforced polymer.
In another aspect of the present invention is a golf club head comprising of a frontal striking face portion having two or more threaded receptacles, and an aft body portion attached to the rear of the frontal striking face portion. The aft body portion further comprises of a lightweight shell having two or more weigh openings, an internal ribbon support member that attaches to an internal surface of the lightweight shell around a skirt of the lightweight shell, and two or more screw weights inserted through the one or more weight openings to engage the two or more threaded receptacle, wherein the two or more screw weights are separated by a distance of between about 80 mm to about 120 mm.
In another aspect of the present invention the lightweight shell further comprises of a lightweight crown sub-shell that is further comprised of an outer layer, a central layer, and an internal layer, wherein the central layer is made from a polyphenylene sulfide (PPS) material that is a semi-crystalline resin material. And wherein the outer layer and the internal layer are both made from a polyetherimide (PEI) film.
In another aspect of the present invention, at least one of a lightweight crown sub-shell, a lightweight sole sub-shell, and a internal ribbon support member further comprises of an outer layer, a central layer, and an internal layer, wherein the central layer further comprises of between about 5 individual layers and about 13 individual layers.
In another aspect of the present invention, the aft body portion of the golf club head is further comprised of a sole plate.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The foregoing and other features and advantages of the invention will be apparent from the following description of the invention as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The following detailed description describes the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below, and each can be used independently of one another or in combination with other features. However, any single inventive feature may not address any or all of the problems discussed above or may only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
In order to provide more context to the location of cross-sectional line C-C′ shown in
It should be noted here that the screw weight 438 of the present invention, although spatially appears at the rear end of the golf club head 400 by being inserted into the weight opening 410 on the lightweight shell 436 of the aft body portion 404, actually engages a threaded receptacle 439 located on the frontal striking face portion 402. The method of attachment here is critical to the proper functioning of the present invention, as it addresses some of the major drawbacks of conventional weight attachment mechanisms. Traditionally, due to the utilization of lightweight materials to form the lightweight shell 436, it is difficult to attach high density weighting mechanisms directly onto those materials, as those materials are not strong enough to endure the vibration of high density weights when impacting a golf ball. Alternatively, one can attach weights directly onto the generally metallic frontal striking face portion 402, but it may not always be desirable to have the weight located so close to the front of the face. The present invention addresses both of those issues by creating a weight opening 410 in the lightweight shell 436 to which the screw weights 438 can be directly attached to the threaded receptacles 439 in the metallic frontal striking face portion 402.
In addition to the above, the exploded view of the golf club head 400 shown in
Finally, the internal weight cover 430, the weighting member 432, and the internal ribbon support member 434 are also critical to the proper function of the present invention unrelated to the weighting mechanism. Although invisible from the outside, the internal ribbon support member 434 is a critical and one of the most important components to achieve the improved performance of the golf club head 400 in accordance with the present invention. The internal ribbon support member 434 attaches to the internal surface of the lightweight shell 436 around a skirt portion of said lightweight shell 436. The skirt or ribbon of a golf club head 400 is a term of art in the industry that refers to the junction between the crown of the golf club head 400 and the sole of the golf club head 400. The internal ribbon support member 434, as shown in this current embodiment of the present invention, may generally also be made from fiber reinforced polymer, which can be either glued or diffusion bonded to the lightweight shell 436. However, it should be noted that the internal ribbon support member 434 can be made out of alternate material that is either lightweight or non-lightweight all without departing from the scope and content of the present invention, as long as it is capable of increasing the structural rigidity of the aft body portion 404. The internal ribbon support member has at least four identifiable benefits in that it 1) allows the weighting member 432 to be secured to the rear of the lightweight shell 436, 2) improves the bond between the frontal striking face portion 402 and the aft body portion 404, 3) increases structural rigidity of the aft body portion to prevent failure when a fiber reinforced polymer is used to form the lightweight shell 436, and 4) enhances the sound characteristics of the golf club head 400 when it contacts a golf ball.
First, the internal ribbon support member 434 allows the weighting member 432 to be properly secured to the lightweight shell 436 of the aft body portion 404 of the golf club head 400. The weighting member 432 in this embodiment is located at the rearmost portion of the golf club head 400 to help improve the moment of inertia of the golf club head 400. This weighting member 432, generally made out of a high density metallic material such as tungsten, may generally need to be bonded to the lightweight shell 436 via glue, especially if the lightweight shell 436 is made out of fiber reinforced polymer as these types of golf club heads 400 generally are. In order to address the bonding issue generally occurring when a heavy weighting member 432 is attached to a fiber reinforced polymer, an internal weight cover 430 may be used to help secure the weighting member 432 is secured to the lightweight shell 436. Finally, due to the fact that the thickness of the lightweight shell 436 being extremely thin to save weight, combined with the geometry of the lightweight shell 436 at the rear of the golf club head 400 converging into a small edge, the structural rigidity of the lightweight shell 436 at the rear of the golf club head 400 may generally not be strong enough to support the vibration and movement of a high density weighting member 432 experiences when a golf club head 400 impacts a golf ball. In order to address this issue, the present invention includes an internal ribbon support member 434, generally made to be slightly thicker, to further help the structural rigidity of the golf club head 400 around the portion of the weighting member 432. The present invention does this by installing the internal ribbon support member 434 around the internal ribbon portion of the lightweight shell 436, thus providing a more robust are for which the high density weighting member 432 and the weight cover 430 to be attached to.
Secondly, in addition to providing additional structural rigidity to the lightweight shell 436 relating to weight retention as mentioned above, the internal ribbon support member 434 provides even more benefit in helping the entire golf club head 400 stay together by providing support to the entirety of the aft body portion 404. Increasing the structural rigidity of the entirety of the aft body portion 404 is just as important, if not more important, than the weight retention feature of the internal ribbon support member 434. Lightweight shells 436, as previously stated, is generally made from fiber reinforced polymer. Fiber reinforced polymer materials, for starters, can't be directly bonded to a metallic material without the need of an adhesive. Adhesively bonded materials can generally come lose when either of the bonded materials vibrate and move too much, which fiber reinforced polymers tend to do when subject to high impact forces. This movement of the material can often make it difficult to bond to solid metallic structures such as the titanium frontal striking face portion 402 to a fiber reinforced polymer aft body portion 404, thus creating a significant design challenge. In order to address this issue, the internal ribbon support member 434 provides a solid surface around which the lightweight shell 436 may bond to, thus reducing vibration of the parts, hence increasing the bond between the frontal striking face portion 402 and the aft body portion 404 that's often achieved via glue.
As a side note, the previously mentioned joint cover 420 also helps with the bond between the frontal striking face portion 402 and the aft body portion 404 by increasing the structural rigidity of the bond area. The joint cover 420, although made out of the same fiber reinforced polymer in this embodiment, may be made out of any alternate material that can be glued to the external surface of the bond region to improve structural rigidity all without departing from the scope and content of the present invention.
Thirdly, as a corollary to the ability of the structural rigidity of the aft body portion's 404 ability to bond to a metallic frontal striking face portion 402; the same type of undesirable movement that prohibits proper bonding between the frontal striking face portion 402 and the aft body portion 404 could cause the lightweight shell 436 to fail when subjected to high impact forces. The present invention's utilization of the internal ribbon support member 434 also helps address the issue of the ability of the lightweight shell 436, that is made out of a thin fiber reinforced polymer material, to withstand the impact forces of a golf club head 400 with a golf ball. The internal ribbon support member 434 achieves this by strengthening the weak areas of the lightweight shell 436 that can often vibrate more than normal upon impact with a golf ball, thus preventing the lightweight shell 436 that is made from a fiber reinforced polymer from cracking or delaminating.
Fourthly, and finally, the addition of the internal ribbon support member 434 improves the acoustic of the golf club head 400, as golf clubs that have a significant portion made purely out of thin fiber reinforced polymer may result in an undesirable sound. For a more detailed discussion regarding the sound in a golf club head, including the methodology to test for sounds, please refer to commonly owned U.S. Pat. No. 10,653,927 to Murphy et al., the disclosure of which is incorporated by reference in its entirety. In summary, it can be said that the internal ribbon support member 434 allows the present golf club head 400 to achieve similar desirable sound characteristics as the golf club in U.S. Pat. No. 10,653,927 described. Referring to
It should also be noted here that the internal ribbon support member 434 may also further comprise out of two recesses 433, to which they engage the two or more weight openings 410 to create a space that allows the screw weights 438 to engage the threaded receptacles 439.
Finally, the internal ribbon support member 434, in its current embodiment as shown, may generally have a total mass of between about 3.7 grams and about 4.1 grams, more preferably between about 3.8 grams and about 4.0 grams, and most preferably about 3.9 grams. However, it should be noted that the mass of the internal ribbon support member 434 is also critical to the proper functionality of the present golf club head 400, as an internal ribbon support member 434 that is too robust and heavy may place weight at undesirable locations of the golf club head 400, while the mistake of making that same internal ribbon support member 434 too flimsy and lightweight may not offer sufficient structural support to the golf club head 400 itself to achieve the desired result.
Relating to the weighting mechanism,
The location and existence of the screw weights 638 weighting members 632 allows the current inventive golf club head 600 to have improved center of gravity and moment of inertia properties. More specifically, the golf club head 600 may have a CG depth, in the z-direction as shown in
Finally, this cross-sectional view of the golf club head 600 shows how the joint cover 620 wraps around the entire junction between the frontal striking face portion 602 and the aft body portion 604 to eliminate any step in the transition between the two pieces, and the joint cover 620 further includes a sole plate 622 to protect the underside of the golf club head 600 as that portion of the golf club head 600 is more easily prone to being scuffed up when swinging the golf club head 600.
Generally speaking, when applying cosmetic paint to the golf club head, the cosmetic paint may have a harder time adhering to the surface of a composite type material, especially when compared to its adhesion properties to a metallic material such as titanium. Moreover, in addition to the strength of the adhesion, the cosmetic paint, when applied to composite type material containing resin, may generally be less resistant to scratches even after it's been applied. Hence, to address this deficiency, sole plate 622 is added to the present invention to provide a protective barrier.
Sole plate 622, and sole plate 322 (shown in
It should be noted here that although
The lightweight shell 1436 in this embodiment may be formed out of two different pieces, a lightweight crown sub-shell 1436a and a lightweight sole sub-shell 1436b, both of which combine to form the lightweight shell 1436. These sub-components may generally be formed independently of one another and joined as separate and individual pieces after they have been formed. It should be noted that since the entirety of the lightweight shell is generally made from a fiber reinforced polymer, the lightweight crown sub-shell 1436a and the lightweight sole sub-shell 1436b may generally also be formed out of the same fiber reinforced polymer. However, in an alternative embodiment of the present invention, the lightweight crown sub-shell 1436a and the lightweight sole shell 1436b could each be made out of different fiber reinforced polymer, have only one of the components be made out of a fiber reinforced polymer, or even have both be made out of alternate lightweight materials that's not a fiber reinforced polymer all without departing from the scope and content of the present invention. Combining a lightweight crown sub-shell 1436a and a lightweight sole sub-shell 1436b to form the lightweight shell 1436 itself may be preferred as these substantially flat sub-components are easier to manufacture. However, when joining multiple sub-component pieces together to form the lightweight shell 1436, the structural integrity of the aft body portion 1406 may suffer, thus making the internal ribbon support member (not shown in
The internal ribbon support member 1434 shown in
Finally, the weighting system 1440 may generally be a weighting system that has a high density weight member made from a metallic material attached to a chassis that is made from a lightweight material. The utilization of the lightweight material may generally be the same type of material as the lightweight shell 1436, however alternative materials may be used for the chassis of the weighting system so long as it is capable of being bonded to the remainder of the rear aft body 1406 all without departing from the scope and content of the present invention.
It should be noted here that a significant portion of the weighting system here in this embodiment is placed behind the secondary wall 1442, and it makes up a significant portion of the overall mass of the golf club head 1400. In this current exemplary embodiment, the mass rearward of and behind the secondary wall 1442 may generally be greater than about 30 grams, more preferably greater than about 35 grams, and most preferably greater than about 40 grams. Alternatively speaking, assuming that the overall golf club head 1400 has a mass of about 200 grams, it can be said that greater than about 15 percent of the overall mass of the golf club head 1400 is located rearward of and behind the secondary wall 1442, more preferably greater than about 17.5 percent of the overall mass of the golf club head 1400 is located rearward of and behind the secondary wall 1442, and most preferably greater than about 20 percent of the overall mass of the golf club head 1400 is located rearward of and behind the secondary wall 1442.
In order to better see the two separate volumetric chambers created by the secondary wall 1442 and the internal workings of the weighting system 1440, a cross-sectional view of this golf club head 1400 in accordance with this further alternative embodiment is provided in
Based on the numbers and percentages outlined above, it can be said that the golf club head 1400 may have a Volumetric Ratio of between about 12.6 to about 19.1, more preferably between about 13.9 to about 17.1, and most preferably about 15.4 all without departing from the scope and content of the present invention, with the Volumetric Ratio defined by Equation (1) below:
As a corollary to the volume measurements articulated above, the location of the secondary wall 1442 may also be defined as a measurement from the rearmost point of the golf club head 1400. In the current exemplary embodiment of the present invention, the second wall is angled at an angle α of between about 8° to about 12°, more preferably between about 9° to about 11°, and most preferably about 10 ° measured from a horizontal ground plane. Resultingly, the upper end of the secondary wall 1442 is located at a distance D3 of between about 20 mm to about 26 mm from the rearmost portion of the golf club head 1400, more preferably between about 21 mm to about 25 mm from the rearmost portion of the golf club head 1400, and most preferably about 23 mm from the rearmost portion of the golf club head 1400. The lower end of the secondary wall 1442 is located at a distance D4 of between about 28 mm to about 34 mm from the rearmost portion of the golf club head 1400, more preferably between about 29 mm to about 33 mm from the rearmost portion of the golf club head 1400, and most preferably about 31 mm from the rearmost portion of the golf club head 1400. Due to the positive angle α, the upper end of the secondary wall 1442 is always located closer to the rearmost point of the golf club head 1400. It should be noted that in an alternative embodiment, the angle α could be a negative number, wherein the lower end of the secondary wall 1442 is located closer to the rearmost point of the golf club head 1400 as well, also without departing from the scope and content of the present invention. Thus, regardless of whether the angle α is positive or negative, it can be said that no portion of the secondary wall 1442 is located within 26 mm from the rearmost portion of the golf club head 1400, more preferably no portion of the secondary wall 1442 is located within 25 mm from the rearmost portion of the golf club head 1400, and most preferably no portion of the secondary wall 1442 is located within 23 mm from the rearmost portion of the golf club head 1400.
Finally, the cross-sectional view of golf club head 1400 shown in
Other than the opening 1743 in the secondary wall 1643 of the internal ribbon support member 1734, the remaining components of the golf club head 1700 are essentially identical. The golf club head 1700 is still comprised out of a frontal striking face portion 1702 and an aft body portion 1706. The lightweight shell 1736 in this embodiment could be further split up into the lightweight crown sub-shell 1736a and a lightweight sole sub-shell 1736b, and the weighting system 1740 is still attached to the rear portion of the aft body portion 1702.
In order to show more details regarding the plurality of cutouts 1954 on the external component 1950 of the internal ribbon support member 1934, an enlarged perspective view of the internal ribbon support member 1934 is shown in
In addition to illustrating the plurality of cutouts 1954 along the external component 1954 of the internal ribbon support member 1934,
Starting with the most critical layer in the lightweight crown sub-shell 2536a, the central layer 2536a-2 in accordance with this embodiment of the present invention is generally made out of a semi-crystalline thermoplastic part for its ability to achieve desirable acoustic properties with desirable sound when the golf club head 2500 itself comes into contact with a golf ball. Such semi-crystalline materials may be polyether ether ketone (PEEK), polyphenylene sulfide (PPS), and polyacryletherketone (PEAK), and as previously discussed in U.S. Patent Publication No. 2020/0023247 to Larsen et al. and U.S. Patent Publication No. 2020/0188746 to Sugimae et al., both of which have been previously incorporated by reference in their entirety. Alternatively, the material of the central layer 2536-a-2 could also be made out of amorphous materials such as polyetherimide (PEI) polysulfone (PSU), or polyvinyl chloride (PVC) also without departing from the scope and content of the present invention. In this alternative embodiment of the present invention, the central layer 2536a-2 comprises of at least one layer of PPS resin having about 80 grams/m2 Fiber Areal Weight (FAW) with about 40% resin content, having a thickness of about 0.10 mm. In a preferred embodiment, the central layer 2536a-2 could have two or more layers of between about 5 layers to about 13 layers of PPS resin materials for a total thickness of between about 0.50 mm and 1.30 mm, all without departing from the scope and content of the present invention. In a more preferred embodiment of the present invention, the central layer 2536a-2 could have between about 7 layers to about 11 layers of PPS semi-crystalline resin materials having a total thickness of between about 0.70 mm to about 1.10 mm. However, it should be noted that other types of polymer material may be used to form the central layer 2536a-2 without departing from the scope and content of the present invention as long as it is capable of producing the desired acoustics frequencies of the golf club previously described.
In addition to the number of layers used to form the central layer 2536a-2, the fiber orientation of each of the specific layers to form the central layer 2536a-2 may also be critical to the performance of the golf club head.
In a 5 layered embodiment, the fiber orientation and layup in accordance with exemplary embodiments of the present invention may be as follows, with the 1st layer being closest to the inside of the central layer 2536a-2 resulting in that 1st layer being closest to the inside of the golf club head 2500 itself.
In a 7 layer embodiment, the fiber orientation and layer in accordance with exemplary embodiments of the present invention may be as follows, with the 1st layer being closes to the inside of the central layer 2536a-2 resulting in that 1st layer being closest to the inside of the golf club head 2500 itself.
In an 8 layer embodiment, the fiber orientation and layer in accordance with exemplary embodiments of the present invention may be as follows, with the 1st layer being closes to the inside of the central layer 2536a-2 resulting in that 1st layer being closest to the inside of the golf club head 2500 itself.
In an 11 layer embodiment, the fiber orientation and layer in accordance with exemplary embodiments of the present invention may be as follows, with the 1st layer being closest to the inside of the central layer 2536a-2 resulting in that 1st layer being closest to the inside of the golf club head 2500 itself.
In a 12 layer embodiment, the fiber orientation and layer in accordance with exemplary embodiments of the present invention may be as follows, with the 1st layer being closes to the inside of the central layer 2536a-2 resulting in that 1st layer being closest to the inside of the golf club head 2500 itself.
The PPS material in accordance with the present invention may be a filled PPS or unfilled PPS material that is a semi-crystalline resin material. The filler material, if used, may incorporate continuous or chopped reinforcing fiber. Alternatively, the central layer may be filled or unfilled with the base material in the polysulfides family such as PSU, PES, or PPSU all without departing from the scope and content of the present invention.
Despite the tremendous acoustic benefit associated with semi-crystalline thermoplastic type materials described above, the problem with these types of material is it's inability to bond well to non-resin based materials such as a titanium chassis of a golf club head 2500. The inability to create a strong bond is at least partially due to the fact that the resin of semi-crystalline thermoplastic type material is generally chemically resistant to solvents. Another downside of semi-crystalline thermoplastic type material is that the resin is generally clear, thus allowing the underlying fiber to be shown; and it tends to create a relatively dull finish. In order to address these drawbacks, the present invention utilizes a three layered construction, wherein the outer layer 2536a-1 is made out of a material capable of addressing the cosmetic deficiencies of the semi-crystalline thermoplastic type material, and the internal layer 2536a-3 is made out of material capable of addressing the bonding deficiencies of the semi-crystalline thermoplastic type material.
Moving onto the outer layer 2536a-1 of the lightweight crown sub-shell 2536a, it should be noted that the outer layer 2536a-1 shown here is generally made out of a polyetherimide (PEI) polymer resin film having a thickness of less than about 0.10 mm, more preferably less than about 0.08 mm, and most preferably less than about 0.06 mm. This utilization of the PEI polymer resin film to form the outer layer 2536a-1 can provide a finished product that is cosmetically appealing, without the need to paint the lightweight crown sub-shell 2536a in a secondary post processing step.
Finally, the inner layer 2536a-3 of the lightweight crown sub-shell 2536a in accordance with the current embodiment of the present invention may also be made out of a PEI polymer resin film material having a thickness of less than about 0.10 mm, more preferably less than about 0.08 mm, and most preferably less than about 0.06 mm. This utilization of the PEI polymer resin film to form the inner layer 2536a-3 can provide a nice intermediary bonding layer between the multiple layers of PPS resin and other non-resin based material used to form the chassis of the golf club head 2500. In one exemplary embodiment of the present invention, a DP420 NS type epoxy may be used to bond the entirety of the lightweight crown sub-shell 2536 formed of the three layered sandwiched material to the chassis without departing from the scope and content of the present invention.
It should be noted that although
Other than in the operating example, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moment of inertias, center of gravity locations, loft, draft angles, various performance ratios, and others in the aforementioned portions of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear in the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the above specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the present invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
The present application is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 17/205,678, filed Mar. 18, 2021, which is a CIP of U.S. patent application Ser. No. 17/205,376, filed Mar. 18, 2021, which claims the benefit of U.S. Provisional Application Ser. No. 63/106,248 filed on Oct. 27, 2020, U.S. Provisional Application Ser. No. 63/112,551, filed Nov. 11, 2020, and U.S. Provisional Application Ser. No. 63/119,121, filed Nov. 30, 2020, the disclosure of which are all incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63106248 | Oct 2020 | US | |
63112551 | Nov 2020 | US | |
63119121 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17205678 | Mar 2021 | US |
Child | 17225862 | US | |
Parent | 17205376 | Mar 2021 | US |
Child | 17205678 | US |