The application claims priority to Chinese patent application No. 202110058134.9 filed on Jan. 16, 2021, the entire contents of which are incorporated herein by reference.
A multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges belong to the field of nondestructive testing of high-end equipment.
Plate structures are widely applied to high-end equipment in key fields such as aerospace, navigation, and automobiles. Due to the limitation of the existing technologies, some defects and damages are inevitably resulted in plate structures during the manufacturing and service process. For example, delaminations are inevitably introduced in carbon fibre reinforced plastics laminates prepared by hot-pressing, and folding defects are commonly encountered in rolled titanium alloy plates, which seriously reduce the bearing performance and reliability in operation of high-end equipment parts. Therefore, if the defects and damages in the plate structures could be effectively inspected and evaluated, disasters can be warned in early stage, which is of great significance to the reliability of high-end equipment.
Critically refracted longitudinal wave is a longitudinal wave incident at the first critical angle, parallel to the surface of a material and propagated along subsurface. It is widely used in residual stress measurement, surface/subsurface defect inspection, and so on. Existing studies show that the effective excitation of critically refracted longitudinal wave is relatively difficult and requires a strict incident angle. At present, the main solution is to design a wedge with an inclination angle of the first critical angle according to the longitudinal wave velocity of the inspected material, so as to realize the excitation and reception. This method needs to design wedges with different inclination angles for different materials. For the anisotropy of ultrasonic velocity or the change of ultrasonic velocity with time, multiple wedges not only have poor adaptability, increase the inspection cost, but also easily change the coupling state during the wedge replacement process, which bring a lot of inconveniences to quantitative inspection and characterization and cannot meet the urgent needs in manufacturing and service of high-end equipment.
The excitation method based on phased array ultrasonic of critically refracted longitudinal wave provides a solution for this problem. An appropriate delay law is designed to control the deflection of waves, ultrasonic waves can then be incident into a material at a first critical angle, and a single wedge can meet the situations of various materials and ultrasonic velocity changes, without depending on thickness information of a sample, which can effectively solve the in-plane velocity measurement problems of plate-like structures, significantly improve detection efficiency and reliability and reduce detection costs, and are of great significance to the development of high-quality detection and characterization technology for high-end equipment.
The present invention proposes a multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges. By building a phased array ultrasonic transmitting and receiving inspection system, single-angle wedges can be used to detect critically refracted longitudinal wave under the condition of various materials or ultrasonic velocity changes, so as to accurately calculate the longitudinal wave velocity of a material.
The technical solution adopted by the present invention is:
A multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges, a transmitting wedge and a receiving wedge with the same inclination angle are designed, and a phased array ultrasonic-based inspection system of critically refracted longitudinal wave is built:
(1) Design of a Transmitting Wedge and a Receiving Wedge with a Single Angle
a range of longitudinal wave velocity of a material, vw, to be tested is estimated, a material is selected for the wedges, and the longitudinal wave velocity of the wedges, vw, is required to satisfy vw<vm; a first critical angle α1 range corresponding to critically refracted longitudinal wave is calculated on the basis of the Snell law, and the formula is as follows:
a certain angle within the α1 range is selected as the inclination angle θw of the wedges; a first array element center height of the wedges is determined according to an ultrasonic attenuation coefficient of the selected material for the wedges; the size of the wedges is determined according to the size of phased array ultrasonic probes, an ultrasonic absorption layer is arranged between the two wedges to ensure that the transmitted and received ultrasonic signals do not interfere with each other, the wedges are placed on the surface of the material to be tested, and the coupling stability between the two is ensured with the help of a coupling agent;
(2) Building of Phased Array Ultrasonic-Based Inspection System of Critically Refracted Longitudinal Wave
a phased array ultrasonic-based transmitting and receiving inspection system of critically refracted longitudinal wave is built with the wedges, specifically including: an M2M MultiX++ phased array ultrasonic system, a computer and a pair of linear array phased array ultrasonic probes; the computer is used to control the inspection system and record critically refracted longitudinal wave signal.
A multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges: calculating and optimizing a phased array ultrasonic law, reading the arrival time of a received signal and performing interpolation, and calculating a critically refracted longitudinal wave velocity of a material; including the following steps:
(1) Preliminarily Calculating a Phased Array Ultrasonic Delay Law
preliminarily selecting a number of array elements in an aperture n according to the ultrasonic attenuation coefficient of the wedges, giving a longitudinal wave velocity vm value, calculating a corresponding first critical angle α1 by formula (1), and calculating a phased array ultrasonic incident deflection angle θ by formula (2) according to the angle of the wedges:
θ=α1−θw (2)
then, calculating a delay law of the phased array ultrasonic transmitting probe by formula (3):
where i is a serial number of any aperture array element, I is a serial number of an initial aperture array element, J is a serial number of a final aperture array element, I≤i≤J≤n (i, I, J, and n are all positive integers), t is a delay time of the i-th array element, and P is a spacing between array elements;
(2) Optimizing the Calculated Delay Law
selecting a certain value of 5% to 10% in the longitudinal wave velocity range of the material to be tested as a step, setting the longitudinal wave velocity vm of the material to be tested in sequence from low to high in the phased array ultrasonic inspection system, and exciting and receiving a critically refracted longitudinal wave according to the calculated delay law of the transmitting probe when the receiving probe is not delayed; adjusting a gain of instruments and fixing the gain to a certain value to ensure that the maximum amplitude in the received signals is not less than 80% of the full screen and does not exceed the full screen; building a relation curve between longitudinal wave velocities vm of the material and amplitudes A of critically refracted longitudinal waves, fitting and determining a vm value corresponding to the maximum A value;
setting different numbers of aperture array elements n, calculating a delay law of the transmitting probe as described above, and exciting and receiving a critically refracted longitudinal wave when the receiving probe is not delayed, to obtain a relation curve between the numbers of aperture array elements n of the transmitting probe and the amplitudes A of the critically refracted longitudinal waves; selecting a number of array elements in an aperture n according to the quality of received signals, adjusting the gain of instruments, and determining an optimized delay law to ensure that the amplitude of received signals is not less than 50% of the full screen, and the signal-to-noise ratio is not less than 12 dB;
(3) Reading and Interpolating the Arrival Time of a Received Signal
exciting and receiving a critically refracted longitudinal wave on the basis of the optimized calculated delay law, and recording A scan and B scan signals in the computer at a sampling frequency of not less than 50 MHz; performing linear interpolation on the A scan signal corresponding to each array element, to ensure that the sampling frequency is not less than 500 MHz;
(4) Calculating the Longitudinal Wave Velocity of the Material to be Tested
calculating a delay time tij between two array elements in the aperture used by the receiving probe by reading and interpolating the arrival time of a received signal, and calculating an angle Δθ between the critically refracted longitudinal wave and the plane of phased array ultrasonic array elements in the B scan in step (5) by formula (4):
calculating the longitudinal wave velocity vm of the material to be tested according to the solved Δθ by formula (5):
(5) Calculating an Optimal Delay Law
on the basis of the calculated longitudinal wave velocity vm of the material to be tested, further repeating the preliminary calculation of the phased array ultrasonic delay law, and calculating the optimal delay law, thereby realizing high-quality excitation and reception of critically refracted longitudinal wave based on single-angle wedges on the material to be tested, to inspect defects and evaluate damages.
The beneficial effects of the present invention are: in the multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges: a transmitting wedge and a receiving wedge with the same inclination angle are designed, and phased array ultrasonic-based inspection system of critically refracted longitudinal wave are built: a longitudinal wave velocity range of a material to be tested is estimated, a phased array ultrasonic delay law is calculated and optimized, and a relation between a longitudinal wave velocity and an amplitude of critically refracted longitudinal wave is built; the arrival time of a received signal is read and interpolated, and a longitudinal wave velocity of the material to be tested is calculated; an optimal delay law is determined, and A critically refracted longitudinal wave is excited and received. By building a phased array ultrasonic transmitting-receiving inspection system, single-angle wedges can be used to detect critically refracted longitudinal wave under the condition of various materials or ultrasonic velocity changes, without depending on thickness information, which can effectively solve in-plane ultrasonic velocity measurement problems of plate-like structures, significantly improve inspection efficiency and reliability and reduce inspection costs, and are of great significance to the development of inspection and characterization technology for high-end equipment.
Step 1 Design of a Transmitting Ultrasonic Wedge and a Receiving Ultrasonic Wedge with a Single Angle
Taking a CSK-IA standard test block (carbon steel) as a sample, its longitudinal wave velocity vm is estimated as 4000 m/s˜10000 m/s. According to the requirement of vw<vm, plexiglass with a longitudinal wave velocity of 2730 m/s is selected as the material used for the wedges. The first critical angle α1 range corresponding to critically refracted longitudinal wave is calculated according to formula (1), and the result is 15.4° to 43.0°.
20° is selected as the inclination angle θw of the wedges. A first array element center height of the wedges is determined to be 4 mm according to the ultrasonic attenuation coefficient 0.20 dB/mm measured by a pulse reflection method. It is determined according to the size of the selected phased array ultrasonic probe that the wedges have a length of 56 mm and a width of 37 mm, and the height of the maximum point is 12 mm. The wedges are integrated with an ultrasonic absorption layer, as shown in
Step 2 Building of Phased Array Ultrasonic-Based Inspection System of Critically Refracted Longitudinal Wave
A phased array ultrasonic-based transmitting-receiving inspection system of critically refracted longitudinal wave is built with the wedges designed in step 1, as shown in
Step 3 Preliminary Calculation of a Phased Array Ultrasonic Delay Law
The number of array elements in an aperture n is preliminarily selected to be 6 according to the ultrasonic attenuation coefficient of the wedges in step 1. It can be known from step 1 that the first critical angle α1 corresponding to the ultrasonic velocity value of 4000 m/s is 43.0°. A phased array ultrasonic incident deflection angle 9 is calculated by formula (2):
θ=α1−θw=43.0°−20°=23.0° (2)
Then, a delay law of the phased array ultrasonic transmitting probe is calculated. Taking the delay time t6 of the sixth array element as an example, the calculation method is as shown in formula (3), and the delay time obtained is 430 ns.
Similarly, the delay time of other array elements can be calculated, as shown in
Step 4 Optimization of the Calculated Delay Law
According to the estimated ultrasonic velocity range in step 1, the longitudinal wave velocity vm of the material to be tested is set with a step of 500 m/s in sequence from low to high in the operation process of the phased array ultrasonic-based inspection system shown in
The number of array elements in an aperture n of the transmitting probe is set to be 12, 18, 24, and 32 respectively, 6000 m/s is selected as vm in formula (1), and a delay law of the transmitting probe is calculated according to step 3. Taking the number 32 of array elements in an aperture as an example, the delay time is shown in
Step 5 Reading and Interpolation of Arrival Time of a Received Signal
A critically refracted longitudinal wave is excited and received on the basis of the delay law optimized in step 4, and A scan and B scan signals are recorded in the computer at a sampling frequency of 100 MHz.
Step 6 Calculation of Ultrasonic Velocity of the Material to be Tested
The A scan signals corresponding to the receiving array elements 1 and 32 in step 5 are selected, and the corresponding time at the maximum amplitudes of the critically refracted longitudinal waves, as shown in
According to formula (5), the longitudinal wave velocity of the material to be tested is calculated to be 5866 m/s, and this value is the actual longitudinal wave velocity of the material to be tested.
Step 7 Optimization of the Delay Law
The actual longitudinal wave velocity calculated in step 6 is set as vm in formula (1) in the calculation principle of the delay law, the longitudinal wave velocity of the material is set to be 5866 m/s in the phased array ultrasonic-based inspection system of critically refracted longitudinal wave in step 2, and the number of array elements in an aperture n is set to be 24. Step 3 is repeated, and the calculated optimal delay law is as shown in
Number | Date | Country | Kind |
---|---|---|---|
2021100581349 | Jan 2021 | CN | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/074278 | Jan 2021 | US |
Child | 17742237 | US |