This invention relates generally to airfoils and in particular to fan blades with multi-material reinforcement.
Fan blades and other structures used in turbine engine applications are susceptible to foreign object impact damage, for example during bird ingestion events (“bird strikes”). Blades made of composite materials such as carbon fiber reinforced epoxy are attractive due to their high overall specific strength, specific stiffness and light weight. However, carbon composites are particularly prone to brittle fracture and delamination during foreign object impacts due to their low ductility. Blade leading edges, trailing edges, and tips are particularly sensitive because of the generally lower thickness in these areas and the well-known susceptibility of laminated composites to free edge delamination.
It is known to provide impact damage protection for composite fan blades using edge protectors, i.e., cladding, bonded thereto. For example, fan blades having a composite body with cladding extending over the leading edge, the tip, and the trailing edge are known. Such cladding can be much stronger and more ductile than the composite materials that form the body of the blade, which are often brittle.
There are circumstances in which clad composite blades can fail. It is known to configure conventional blades to fail in a predictable manner such that the damaged blades do not cause further damage to the engine. However, one problem with conventional composite material blades that include cladding is that the tips of such blades do not separate from the bodies of the blades when exposed to a rub event because the cladding does not fail in the manner that the composite material of the blade fails.
At least one of the above-noted problems is addressed by an airfoil that is clad with an edge protector that includes a tip portion and a body portion that meet at a boundary and the leading edge is configured such that it fails near the boundary when the leading edge experiences a predetermined force.
According to one aspect of the technology described herein, an airfoil that includes an airfoil body having a root and a tip, and convex and concave sides that extend between a leading edge and a trailing edge. The airfoil also includes at least a first cladding element that is attached to the airfoil body. The first cladding element includes a first portion and a second portion. The second portion is configured to separate from the first portion when the first cladding element encounters a force of at least a predetermined amount.
According to another aspect of the technology disclosed herein, a gas turbine engine apparatus that includes a turbomachinery core and a fan. The fan is coupled in a driven relationship with the turbomachinery core. The fan includes a plurality of blades positioned around a disk. Each blade includes an airfoil body made of the composite materials and having opposed pressure and suction sides. The blade extends in span between a root and a tip, and extends in chord between a leading edge and a trailing edge. At least a first cladding element is attached to the airfoil body. The first cladding element includes a first portion and a second portion and the second portion is configured to separate from the first portion when the first cladding element encounters a force of at least a predetermined amount.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
The engine 10 has a fan 12, booster 16, compressor 18, combustor 20, high pressure turbine or “HPT” 22, and low-pressure turbine or “LPT” 24 arranged in serial flow relationship. In operation, pressurized air from the compressor 18 is mixed with fuel in the combustor 20 and ignited, thereby generating combustion gases. Some work is extracted from these gases by the high-pressure turbine 22 which drives the compressor 18 via an outer shaft 26. The combustion gases then flow into the low-pressure turbine 24, which drives the fan 12 and booster 16 via an inner shaft 28.
The fan 12 is one example of a propulsion apparatus. It will be understood that the principles described herein are applicable to other kinds of propulsion apparatus operable to produce propulsive thrust, such as ducted propellers or compressors. Instead of a gas turbine engine, the fan 12 or other propulsion apparatus could be driven by another type of prime mover such as: heat engines, motors (e.g. electric, hydraulic, or pneumatic), or combinations thereof (for example electric hybrid drivetrains). The propulsion apparatus may be driven directly by a prime mover, or through an intermediate geartrain.
A plurality of mechanical fuses 29 are positioned mechanically between the fan 12 and the shaft 28. The mechanical fuses 29 are configured to transfer rotational energy from the shaft 28 during normal operation. High radial forces may cause a mechanical fuse 29 to fail thus allowing the fan 12 to rotate about a new axis of rotation. The mechanical fuse 29 is referred to as a load reduction device, or LRD.
Referring to
As shown in
The inner casing 40 includes a thin layer of shroud material 41 positioned adjacent to a blade tip path defined by the blades 30 of the fan 12. The shroud material 41 is supported by a containment structure 43. According to the illustrated embodiment, the containment structure 43 is generally solid and is not configured as a honeycomb structure or as other trench filler material such as that found in a conventional fan casing. Instead, the casing 40 consists essentially of a solid metal containment structure 43 and the shroud material 41.
A small radial gap 14 is present between the tips 34 of the fan blades 30 and the inner annular surface 50. It is this clearance, i.e., the radial gap 14, that is minimized in order to promote the efficiency of the engine 10.
The airfoil body 31 is made from a composite material, defined herein as a material including two or more distinct materials combined into one structure, for example a matrix having reinforcing fibers embedded therein. One example of a composite system suitable for use in aerospace applications includes an epoxy matrix with carbon fiber reinforcement.
In addition to the composite material, the fan blade 30 also incorporates at least one cladding element. In the specific example shown in
The leading edge guard 60 is attached to the body 31 to define the leading edge 38. The leading edge guard 60 provides the fan blade 30 with additional impact resistance, erosion resistance, and improved resistance of the composite structure to delamination.
As best seen in
The tip portion 55 and the body portion 57 define interior surfaces of the nose 64 and wings 66 that collectively define an interior surface 72 of the leading edge guard 60. The shape and dimensions of the interior surface 72 are selected to closely fit the exterior of the airfoil body 31.
The body portion 57 of the leading edge guard 60 is made from a first material that may be a metal alloy of a composition providing desired strength and weight characteristics. Non-limiting examples of suitable alloys for construction of the leading edge guard 60 include titanium alloys, nickel alloys, and steel alloys. The body portion 57 of the leading edge guard may also be made of a nonmetallic material.
The tip portion 55 of the leading edge guard 60 is made from a second material that may be a metal alloy of a composition providing desired strength and weight characteristics. Non-limiting examples of suitable alloys for construction of the leading edge guard 60 include titanium alloys, nickel alloys and steel alloys. The leading edge guard 60 may also be made of a nonmetallic material.
The body portion 57 and the tip portion 55 on the leading edge 60 are configured to separate from each other during the event of a rub as will be discussed further below.
Referring now to
Interior surfaces of the side walls 76 and 78 collectively define an interior surface 74 of the tip cap 62. The shape and dimensions of the interior surface 74 are selected to closely fit the exterior of the airfoil body 31.
Continuing to refer to
The tip cap 62 may be made from a metal alloy of a composition providing desired strength and weight characteristics. Non-limiting examples of suitable alloys for construction of the tip cap 62 include titanium alloys and nickel alloys and steel alloys. The tip cap 62 may also be formed of a nonmetallic material such as a ceramic material.
As shown in
As indicated above, the tip portion 55 is configured to separate from the tip body 57 at the boundary 56. In this regard, the boundary 56 is configured to fail during an event such as a “rub” in which the tip portion 55 contacts the shroud material 41. A rub could be caused, for example, by a blade 30 being damaged or released by a significant foreign object impact, or by a fan rotor decoupler to “fuse”, causing the fan blade 30 to be displaced outboard of its nominal position (e.g., for the fan rotor to orbit or whirl). In this regard, the boundary 56 is configured such that the tip 34 and associated region of the body 31 of the blade 30 can quickly separate from the remaining portion of the body 31 of the blade 30.
Referring now to
Referring now to
The boundary 156 can be formed of third material. The third material can be different than the first material and the second material described above with relation to the body region 157 and the tip region 155 respectively. The boundary 156 is configured to fail before the body region 157 such that the tip region 155 separates from the body region 157 of the leading edge 160 in the event of a rub or strike event. In this regard, the third material that comprises the boundary 156 can be chosen such that it is different than the first material and the second material and weaker. As a result, the boundary 156 would fail prior to the body region 157 of the leading edge 160. The term “weaker” may refer to the third material having a lesser material property, such as yield-to-failure or ultimate strength.
According to some embodiments, the boundary 156 can be mechanically configured such that it fails prior to the body region 157 allowing the tip 134 to separate from the remainder of body 131 of the blade 130. The first material, the second material, and the third material that make up the body region 157, the tip region 155 and the boundary 156 respectively can be the same or different in embodiments where the boundary 156 is mechanically configured to fail at a predetermined force. For example, the predetermined force may be
Referring now to
Referring now to
Referring now to
Referring to
The fan blade 30 described above incorporates the beneficial properties of a composite blade having a metal leading edge and a frangible tip. The metal leading edge is configured to provide strength and resistance to impacts and to fail in a predetermined manner when the blade tip experiences a predetermined amount of rub force. One of ordinary skill in the art would be able to compute the forces generated during a rub event.
The foregoing has described a composite blade with protective cladding that is configured to fail in a predetermined manner. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying potential points of novelty, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Name | Date | Kind |
---|---|---|---|
3564689 | Hirtenlechner | Feb 1971 | A |
4010530 | Delgrosso et al. | Mar 1977 | A |
4738594 | Sato | Apr 1988 | A |
6655921 | Kocian | Dec 2003 | B2 |
7156622 | Schreiber | Jan 2007 | B2 |
7967570 | Shi et al. | Jun 2011 | B2 |
8256661 | VanDyke | Sep 2012 | B2 |
9011087 | Mironets et al. | Apr 2015 | B2 |
9346134 | Godon et al. | May 2016 | B2 |
9364887 | Godon et al. | Jun 2016 | B2 |
9664201 | Dudon et al. | May 2017 | B2 |
9828860 | Schreiber | Nov 2017 | B2 |
9874103 | Leconte et al. | Jan 2018 | B2 |
9963971 | Franchet et al. | May 2018 | B2 |
10030522 | Benson | Jul 2018 | B2 |
20120028055 | Schmidt | Feb 2012 | A1 |
20120100006 | Merriman | Apr 2012 | A1 |
20150104325 | Yagi | Apr 2015 | A1 |
20160177744 | Benson | Jun 2016 | A1 |
20170197706 | Garcia Nieto et al. | Jul 2017 | A1 |
20170268349 | Bryant, Jr. | Sep 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200182062 A1 | Jun 2020 | US |