The present invention relates to additive manufacturing processes and, in particular, to a multi-material membrane used in vat polymerization printers.
Additive manufacturing, or 3D printing as it is known, is a collection of different technologies that provide different means of direct production of various articles. One such technology is vat polymerization, which involves the selective curing of viscous resins contained in a vat using (typically) ultraviolet (UV) light sources. The resin is cured layer by layer so that the article under manufacture is created through a successive series of cross-sections that adhere to one another.
One issue of importance in vat polymerization printing is the makeup of the vat (or tank) in which the liquid polymer from which a printed three-dimensional object is obtained by photo-curing is collected. In order to avoid tearing newly-formed layers of polymer from other portions of the three-dimensional object under construction when an extraction plate is raised, the vat must permit detachment of that just-formed layer from its surface (typically, a transparent base that allows the passage of ultra-violet (UV) light for triggering the photo-curing process, e.g., quartz or borosilicate glass). Often, a non-stick coating is applied to the inside surface of the vat to allow the first layer of cured polymer to adhere to the extraction plate and successive layers to join together in sequence.
However, in conventional vat polymerization printers there exists a suction effect, which occurs between the surface of the object under construction and the non-stick material which covers the transparent base of the vat, and which imposes limiting effects on the speed with which the object can be printed. In effect, a newly-formed polymer layer remains immersed in the resin at a distance “s” (equal to the thickness of the next layer of the object being formed) from the non-stick surface of the vat (both surfaces being coplanar and flat to give precision to the layer which will be formed); and a new layer of the object is generated by photo-curing the resin within that space. The absence of air creates a vacuum between the two surfaces, which are surrounded by a highly viscous liquid, and when the newly formed layer is displaced away from the vat surface (to make room for yet a further layer of the object to be formed), mechanical stresses suffered by that new layer (which may be only a few tenths of a millimetre thick) may be significant. Thus, there is an attendant risk of tearing the newly formed layer if the previous layer to which it is adhered is displaced vertically away from the bottom surface of the vat in a rapid fashion.
In order to reduce this risk of tearing, conventional printing processes were performed in such a way that the extraction plate (and the objects adhered thereto) were raised slowly. This limited the speed of production of three-dimensional objects by vat polymerization to be on the order of hours per centimetre. Accordingly, techniques were developed to alleviate the mechanical stresses on newly formed polymer layers produced by such processes. One such technique was the introduction of flexible membranes between the bottom surface of the vat and the article undergoing fabrication. U.S. patent application Ser. No. 15/925,140, filed Mar. 19, 2018, and assigned to the assignee of the present invention describes one such flexible membrane made of a clear, self-lubricating polymer. Other membrane-based approaches have also been employed. For example, Elsey, U.S. PGPUB 2014/0191442 describes a membrane with an anti-stick surface made from a fluorinated ethylene propylene (FEP) fluoropolymer film. While flexible, such a film is not particularly elastic. Other materials contemplated by Elsey include nylon and mylar, or a laminated membrane having a layer of silicone bonded to a polyester film, with the silicone being the resin-facing side of the membrane and the polyester backing providing some elasticity.
While FEP fluoropolymer membranes do offer good anti-stick properties, they are relatively rigid and, therefore, do not afford much improvement of printing speeds over anti-stick coatings applied directly to vat surfaces. Furthermore, their rigidity can lead to the membrane being damaged during its installation in a vat polymerization printer. Silicone rubber membranes can provide improved flexibility over FEP fluoropolymer membranes, and thereby permit faster overall printing speeds, however, they suffer from susceptibility to wear and tear as they tend to degrade when exposed to high temperatures such as those produced due to the exothermic nature of the polymerization reaction within a printer's vat. They are also porous mediums and may offer little or no resistance to constituent components of some 3D printing resins.
A vat polymerization printer may comprise a tank assembly for containing a photo-curing liquid resin. The tank assembly may include a tank sidewall and a tank bottom formed by a membrane assembly. The membrane assembly may comprise a radiation-transparent flexible membrane, and a frame affixed to a perimeter of the radiation-transparent flexible membrane and configured to stretch the radiation-transparent flexible membrane along a first plane parallel to an extent of the frame.
In a first embodiment, the radiation-transparent flexible membrane may include a fluorinated ethylene propylene (FEP) or polyolefin polymer film bonded to a layer of silicone rubber. The layer of silicone rubber may be coated to reduce its surface energy. Coatings such as a silicone elastomer or polytetrafluoroethylene (PTFE) -based material may be used. The coatings are preferably sprayed on and allowed to cure or dry after the FEP or other film has been bonded to the layer of silicone rubber.
In a second embodiment, the radiation-transparent flexible membrane may include a radiation-transparent flexible substrate sandwiched between two FEP films or two polyolefin polymer films. More specifically, a first side of the radiation-transparent flexible substrate may be bonded to a first FEP or polyolefin polymer film, and a second side of the radiation-transparent flexible substrate may be bonded to a second FEP or polyolefin polymer film. In a preferred embodiment, the radiation-transparent flexible substrate may be a layer of silicone rubber.
These and other embodiments of the invention are more fully described in association with the drawings below.
The present invention is illustrated by way of example, and not limitation, in the figures of the accompanying drawings, in which:
Disclosed herein are examples of multi-material membranes for use in vat polymerization printers.
The 3D printing system 100 includes tank (or vat) 10 for containing the photo-curing liquid resin 18. The bottom of tank 10 (or at least a portion thereof) is sealed (i.e., to prevent the photo-curing liquid polymer 18 from leaking out of tank 10) by a flexible, multi-material membrane 14, which is transparent (or nearly so) at wavelengths of interest for curing of the resin to allow electromagnetic radiation from a light source 26 to enter into tank 10. A mask 24 (e.g., a liquid crystal layer) is disposed between light source 26 and the photo-curing liquid resin 18 to allow the selective curing of the liquid resin (which allows the formation of 3D objects into desired shapes/patterns). In various embodiments, collimation and diffusion elements such as lenses, reflectors, filters, and/or films may be positioned between mask 24 and light source 26. These elements are not shown in the illustrations so as not to unnecessarily obscure the drawing.
A platen or backing member 16 formed of borosilicate glass or other material is disposed between the mask 24 and the flexible, multi-material membrane 14 and provides structural support. The platen is also transparent (or nearly so) at the one or more wavelengths of interest for curing the resin. In other instances, platen 16 may be metal or plastic and include a transparent window to allow electromagnetic radiation from light source 26 to enter into tank 10. In other embodiments, the mask 24 itself may be used in place of a separate window and its perimeter sealed with a gasket. Note that although the mask 24, platen 16, and membrane 14 are shown as being displaced from one another by some distance, in practice these components may be positioned so as to touch one another, so as to prevent refraction at any air interfaces. Flexible, multi-material membrane 14 is secured to the edges of tank 10 or to a replaceable cartridge assembly (not shown) so as to maintain a liquid-tight perimeter at the edges of the tank or other opening (“liquid-tight” meaning that the tank does not leak during normal use).
When fabricating a layer of object 22 using 3D printing system 100, electromagnetic radiation is emitted from radiation source 26 through mask 24, platen 16, and membrane 14 into tank 10. The electromagnetic radiation forms an image on an image plane adjacent the bottom of object 22. Areas of high (or moderate) intensity within the image cause curing of localized regions of the photo-curing liquid resin 18. The newly cured layer adheres to the former bottom surface of object 22 and substantially does not adhere to the bottom surface of tank 10 due to the presence of flexible, multi-material membrane 14. After the newly cured layer has been formed, the emission of electromagnetic radiation may temporarily be suspended (or not, in the case of “continuous printing”) while the build plate 20 is raised away from the bottom of the tank so that another new layer of object 22 may be printed.
The build plate 20 may be raised and lowered by the action of a motor (M) 30, which drives a lead screw 12 or other arrangement. Rotation of the lead screw 12 due to rotation of the motor shaft causes the build plate 20 to be raised or lowered with respect to the bottom of the tank 10. In other embodiments, a linear actuator or other arrangement may be used to raise and lower the build plate 20.
Aspects of the printing process are directed by a controller 28, which may be implemented as a processor-based system with a processor-readable storage medium having processor-executable instructions stored thereon so that when the processor executes those instructions it performs operations to cause the actions described above. For example, among other things controller 28 may instruct raising/lowering of the build plate 20 via motor 30, activation and deactivation of the light source 26, and the projection of cross-sectional images of the object under fabrication via mask 24.
Controller 28 includes a bus 28-2 or other communication mechanism for communicating information, and a processor 28-4 (e.g., a microprocessor) coupled with the bus 28-2 for processing information. Controller 28 also includes a main memory 28-6, such as a random access memory (RAM) or other dynamic storage device, coupled to the bus 28-2 for storing information and instructions (e.g., g-code) to be executed by processor 28-4. Main memory 28-6 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 28-4. Controller 28 further includes a read only memory (ROM) 28-8 or other static storage device coupled to the bus 28-2 for storing static information and instructions for the processor 28-4. A storage device 28-10, for example a hard disk, flash memory-based storage medium, or other storage medium from which processor 28-4 can read, is provided and coupled to the bus 28-2 for storing information and instructions (e.g., operating systems, applications programs such as a slicer application, and the like).
Controller 28 may be coupled via the bus 28-2 to a display 28-12, such as a flat panel display, for displaying information to a computer user. An input device 28-14, such as a keyboard including alphanumeric and other keys, may be coupled to the bus 28-2 for communicating information and command selections to the processor 28-4. Another type of user input device is cursor control device 28-16, such as a mouse, a trackpad, or similar input device for communicating direction information and command selections to processor 28-4 and for controlling cursor movement on the display 28-12. Other user interface devices, such as microphones, speakers, etc. are not shown in detail but may be involved with the receipt of user input and/or presentation of output.
Controller 28 also includes a communication interface 28-18 coupled to the bus 28-2. Communication interface 28-18 may provide a two-way data communication channel with a computer network, which provides connectivity to and among the various computer systems discussed above. For example, communication interface 28-18 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN, which itself is communicatively coupled to the Internet through one or more Internet service provider networks. The precise details of such communication paths are not critical to the present invention. What is important is that controller 28 can send and receive messages and data, e.g., a digital file representing 3D articles to be produced using printer 100 through the communication interface 28-18 and in that way communicate with hosts accessible via the Internet. It is noted that the components of controller 28 may be located in a single device or located in a plurality of physically and/or geographically distributed devices.
The coating 36 applied to the silicone rubber layer 34 provides increased durability over untreated silicone rubber membranes used for 3D printing applications. Various coatings 36 may be used, for example chemical coatings such as silicone elastomers (e.g., silane acetates, silane ethyl acetates, silane triacetates, silane ethyl triacetates, silane methyl triacetates, octamethyltrisiloxane, methylhydo siloxane, siloxanes, and mixtures of two or more the foregoing, etc., with or without catalysts such as dibutyltindilaurate) dispersed in media such as xylene, tert-Butyl acetate, or similar solvents. These coatings are applied uniformly over the silicone rubber layer 34 and are allowed to cure, either at elevated temperature, e.g., 80-150° C., or at room temperatures, for approximately 5 minutes to 24 hours (depending on the relative humidity of the curing environment) to form a thin silicone film and may be applied to the silicone rubber layer 34 of membrane 14 either by brushing, dipping, or, preferably, spraying on of the coating. Prior to coating, the silicone rubber layer 34 may be cleaned using an appropriate solvent (e.g., one which will not be absorbed by the silicone rubber layer), which should be allowed to completely evaporate before application of the coating. The coating is applied so as to completely (or nearly so) cover the silicone rubber layer 34 and is then allowed to cure, either at room temperature or by heating, so that the solvent in which the elastomer is dispersed is completely evaporated.
Alternatively, the coating 36 may be a physical coating such as a polytetrafluoroethylene (PTFE)-based dry lubricant, with particle sizes of a few microns, e.g., an emulsion of PTFE in a fluid propellant. Such lubricants are preferably sprayed on, although brushing or dipping applications may be used, to provide a uniform application to the silicone rubber layer 34. These lubricants are sprayed on and typically dry as a thin layer adhering to the surface of the silicone rubber layer (by Van der Waals forces) at room temperatures. Prior to application, the silicone rubber layer 34 is cleaned with an appropriate solvent to remove any dirt or other surface coating. Other coatings that reduce the surface energy of the silicone rubber layer 34 may also be used.
Prior to the application of coating 36, the silicone rubber layer 34 is bonded to the FEP film 32. Any appropriate bonding technique may be used, for example using a plasma etching treatment as described in EP2074188 A1 or using a chemical etching treatment. After etching, the liquid silicone rubber is applied to the surface of the FEP film 32 and allowed to cure. During its application, the thickness of the liquid silicone rubber is controlled, e.g., using a roller arrangement with a well-defined gap between the rollers, or using a blade maintained at a well-defined distance from the surface of the FEP film to remove excess liquid. Once the liquid silicone rubber is cured, coating 36 is applied to it. The service life of the coated multi-material membrane 14 has been found to be very long as compared to other membranes, even where the other membranes are similarly coated (e.g., on the order of 24 times longer than a coated silicone rubber membrane) but it is possible that the multi-material membrane will need to be reconditioned at some point in its service life. To do so, the multi-material membrane 14 is removed from the tank 10, cleaned, and a fresh coating 36 is applied (e.g., by spraying, dipping, or brushing). Depending on the area of the membrane being coated, a coating layer of between 0.2 grams-1.5 grams, and preferably 0.36 grams-0.5 grams, may be applied.
While the refurbishment may be offered as a service by vendors of the multi-material membrane 14 and/or 3D printing system 100, it may also be performed by users of the 3D printing system with the aid of a refurbishment kit. Such a kit 600, as illustrated in
The first side of the radiation-transparent flexible substrate 33 may be bonded to a first FEP or polyolefin polymer film 32A. The second side of the radiation-transparent flexible substrate 33 may be bonded to a second FEP or polyolefin polymer film 32B. Stated differently, the radiation-transparent flexible substrate 33 may be sandwiched between two FEP films 32A, 32B, or two polyolefin polymer films 32A, 32B. The multi-material makeup of membrane 14 provides both anti-stick properties (i.e., meaning that the membrane will allow for rapid printing by allowing newly formed polymer layers to separate from the FEP film with minimal tearing) as well as high heat resistance, chemical resistance, strength and flexibility. Each FEP or polyolefin polymer film 32A, 32B may have a respective thickness of 0.01 mm to 0.1 mm. Likewise, the radiation-transparent flexible substrate 33 may have a thickness of 0.01 mm to 0.1 mm.
In the manufacturing of the multi-material membrane 14, the first FEP or polyolefin polymer film 32A may be bonded to a first side of the radiation-transparent flexible substrate 33 in the above-described manner in which the FEP film 32 is bonded to the layer of silicone rubber 34. Subsequently, the second FEP or polyolefin polymer film 32B may be bonded to a second side of the radiation-transparent flexible substrate 33 in the above-described manner in which the FEP film 32 is bonded to the layer of silicone rubber 34. Alternatively, it is possible for the first and second FEP films 32A, 32B to be bonded to the radiation-transparent flexible substrate 33 at the same time. Likewise, it is possible for the first and second polyolefin polymer films 32A, 32B to be bonded to the radiation-transparent flexible substrate 33 at the same time.
The main difference between the multi-material membrane 14 depicted in
As mentioned above, the multi-material membrane may be part of a replaceable cartridge assembly.
As depicted in
As described above, magnets (or magnetized portions of the frames) were used to automatically align through holes 510a with through holes 510b. In addition or alternatively, grooves (e.g., saw tooth grooves) disposed on both the bottom surface of frame 504 and the top surface of frame 508 (and particularly grooves in the bottom surface that are complementary to grooves in the top surface,) may also be used as a self-alignment mechanism.
Thus, examples of multi-material membranes for use in vat polymerization printers have been described.
This application is a continuation-in-part of U.S. application Ser. No. 16/948,118, filed on 3 Sep. 2020, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16948118 | Sep 2020 | US |
Child | 17647555 | US |