The present invention relates generally to information processing systems and more particularly to a methodology and implementation for accessing information related to a selected media presentation.
Subject matter disclosed and not claimed herein is disclosed and claimed in related co-pending applications Ser. No. 10/007,046 filed on Nov. 8, 2001, and Ser. No. 10/007,065 filed on Nov. 8, 2001, which are assigned to the assignee of the present application.
While modern television (TV) provides an immersive, shared experience, it is passive and has no means of interactivity or access to “in-depth” or detailed information concerning the TV presentations being made. More and more people are using the Internet to satisfy their need for information on spectator sports, entertainment and big name events. The World Wide Web (“the web”) can be used to enhance the TV viewing experience by giving viewers interactive views, more comprehensive information and access to a global community of people with similar interests in a connected environment.
Although television and web mediums can be complementary, today's approach of providing an integrated experience has significant drawbacks. One drawback is related to the available “visual real estate”. Integrating TV and web into a single screen reduces the amount of real estate or screen space available for each medium. The strategies of splitting the screen or overlaying one medium atop another medium to provide more content usually detract from the overall experience by adding clutter and distracting visual “noise”.
Another drawback of the current approach is in social scope and interaction styles. The interaction styles of TV and web presentations are completely different. TV is for the most part a public and passive viewing experience while the web is a highly personal and interactive experience. When TV and web media are combined on the same screen, the social scope/interaction style of the one medium interferes with that of the other medium.
Thus, there is a need for an improved method and system for selectively providing information which supplements and is coordinated with a selected presentation in a given medium.
An improved methodology and implementing system are provided in which a docking station or docking device is arranged to receive a number of individual wireless information management (IM) units or electronic “pads”. In an exemplary embodiment, the personal IM units include touch-sensitive display screens and are rechargeable at the docking station. One or more of the personal wireless IM units may be individually removed from the docking station and operated to selectively and individually communicate with the docking station to access and retrieve more detailed information related to a presentation being made in a given medium such as a TV. The docking station is arranged to receive input from a TV system relative to which channel is being presented on the TV and upon receiving a user request, is enabled to access and retrieve detailed information from a server which is related to the content of the current TV presentation. Alternatively, a user may select to use the personal IM unit independently of the TV to access selected unrelated web sites or to retrieve information from a server concerning a past or scheduled future TV presentation. The docking station includes means for determining which of a number of personal IM units is front-most in the docking station array such that the front-most personal IM unit docked in the docking station will continue to display available detailed content related to the TV channel being played despite the removal of any of the personal IM units by another user, including the front-most IM unit. The docking station may also be embodied in a cable or satellite receiver thereby serving a dual purpose. The server is programmed ahead of time with detailed information related to scheduled TV programs and may also be coupled to a TV station directly to dynamically provide additional content for unscheduled or live TV programs via a separate interconnection network such as the Internet. In another embodiment, one or more docking stations may be arranged to broadcast to and service a large number of individual IM pads which may be distributed or rented at a live event to provide additional information and/or Internet services to individual users while attending the event.
A better understanding of the present invention can be obtained when the following detailed description of a preferred embodiment is considered in conjunction with the following drawings, in which:
The various methods discussed herein may be implemented with a typical server computer system which may include a server workstation. Both the server and the docking station and personal IM units include code to implement the methodology hereinafter disclosed. In general, an implementing computer server system may include a plurality of processors in a multi-bus system in a network of similar systems. However, since the server implemented in the exemplary embodiment of the present invention is generally known in the art and composed of electronic components and circuits which are also generally known to those skilled in the art, circuit details beyond those shown are not specified to any greater extent than that considered necessary as illustrated, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
In an exemplary embodiment as shown in
Also shown in
In
In
In
In operation, the docking station 111 of the exemplary embodiment is placed beside or near a TV unit 101. The present invention is designed to interface with the TV system by acquiring the channel designation from the TV remote control unit 109 or from the TV or cable box. A particular advantage of the exemplary IM system is that it does not interfere with an existing TV system and can be operated in conjunction with any existing TV system. The docking station knows which channel the associated TV is tuned to from input from the TV remote unit 109 or, optionally, there is be a separate input on the docking station or TM unit for a user to input the channel for which the IM unit viewer wishes to view the related available server information content. The data connection between the docking station 111 and the server 129 enables streaming content to the docking station 111 that is synchronized with the TV channel being viewed. The docking station 111 transmits the content to the IM units 119–123 through a wireless connection to a transceivers 313. The docking station 111 is also enabled to receive input from the TM units 119–123 and transmit that input to the server 129. Using this mechanism, a TV program is enhanced with additional contextual and other content that is synchronized to the program and sent to individual personal TM units from the docking station without disrupting the public TV viewing experience and with no visual clutter added to the TV viewing screen.
The personal TM units 119, 121, 123 are thin portable monitor/tablet units that automatically synchronize to the current TV channel being viewed. By communicating with the docking station, the TM units can display information, links and interactivity related to the specific TV program being viewed (when operating in “autopilot” mode) or just connect to the Internet and not relate to the TV programming (when operating in a “manual” mode), by appropriately setting switch 517. In the preferred embodiment, the TM units wirelessly communicate with the docking station 111 by means of either IR or RF signals. RF is the preferred method since it is not reliant upon a clear line of sight, but IR can be used for compatibility with TV sets, for changing channels, volume control, etc.
Each of the TM units has a built-in stand (not shown for the sake of clarity) which can be opened, for example like a picture frame, to provide stand-alone support for each of the TM units. The docking station has multiple functions. It acts as a charging station for the TM units. The docking station also is constantly retrieving streaming information from a specialized website server which is accessible over the Internet. The stream is “tuned” to a server channel which is tied to the channel currently being viewed on the TV. The docking station 111 sends the streaming information it receives from the server to the currently active TM units for processing and display via the wireless transceivers. The docking station receives input from the individual IM units and sends that input to the server, resolving links into pages, retrieving page information and sending the retrieved information back to the appropriate requesting TM unit. The docking station is arranged to serve many TM units individually and substantially at the same time. Different ones of the IM units or different links may also be content rated for different audiences. The TM units can also be turned on but remain in the docking station so as to be viewed next to the TV unit. The TM units need not always be locked into the TV channel being viewed and any individual TM unit can be taken off “autopilot” and placed in the “manual” mode by actuating a link or an “autopilot” button 617 thereby allowing an operator to get to other web content, related or unrelated to the TV channel, and proceed at the operator's own pace.
The docking station system also includes a “front-most” detection feature by which it may be determined which of the docked TM units is “front-most” in the docking station and therefore viewable by an individual who is also viewing the nearby television. This is important in order to enable the front-most TM unit (i.e. the TM unit mounted closest to the front of the docking station) to display information whenever TM units are added or removed from any of the mounting slots 120 of the docking station. For example, suppose a family has purchased a docking station with four individual TM units. The docking station is placed next to a TV and all TM units are docked into the docking station and charging their respective onboard batteries. The docking station and the front-most TM unit are positioned such that when one is watching the TV, the front-most TM unit can be viewed without removing it from the docking station. One member of the family turns on a selected channel and decides not to pick up a TM unit, but instead, presses the “Display” button 117 on the docking station 111. While remaining docked, the front-most TM unit turns on and begins to display enhanced content relative to the tuned TV channel. Next assume a second member of the family arrives and grabs another IM unit. Although the second member can choose and take any of the four docked IM units, the second member chooses to take the front-most IM unit. As the front-most IM unit is taken from the docking station, the next IM unit in the array is now the front-most IM unit and is automatically turned on and continues to display the server information so that the first member can continue to view the front-most IM unit without interruption. In the array of docked IM units, all of the IM units are automatically set with the same settings as the front-most IM unit so that, until changed by an individual user, all of the IM units will have the same settings such as the Synch setting and the “Autopilot” setting. After removing the IM unit from the docking station, the second member is able to actuate the Synch switch to go into a “manual” mode and “surf the web”, independently of the TV program, using the touch sensitive screen for input. After the second member has finished the web session, the IM unit that was used is returned to the docking station. If that IM unit is placed in the front-most slot of the docking station, then a determination of the front-most IM unit is again automatically made and the newly placed IM unit again displays the information content associated with the tuned TV channel.
The exemplary screen illustrated in
The exemplary screen 501 shows a “Player Roster” which may be displayed to provide further detail for a baseball game being watched on an associated TV. An “up” arrow 510 and a “down” arrow 512 may be used to scroll when the main window content extends beyond the defined window area 501. In a lower section of the display below line 502, there is a control area which is used to indicate several selections and controls for other aspects of the displayed web page and related television program. The TV station identification is displayed 513 in one block and an indication of the ON/OFF status of the synchronization function, i.e. “Autopilot”, is shown in another block 519. An ON/OFF toggle switch 517 for the Autopilot function is also shown. Also shown is a page title block 515 (“PLAYER ROSTER”) which displays the title of the page being presented in the main display area 501. Side arrows 521 and 522 are also included to allow a user to move to a previous or subsequent page presentation. A “NOW” block 523 is also shown to allow a user to reset the synch display back to a data stream now playing in connection with the television channel being viewed. When the Autopilot is ON as indicated in
As noted earlier, although the above describes an exemplary use of the docking system in connection with the viewing of a television program, the disclosed system may also be used in many other applications as well. For example, a central docking station may be installed at a baseball game and each customer who comes to watch a game may rent out an IM unit to use while watching the baseball game. The server-available information may be broadcast from one or more docking stations to a great number of IM units throughout the ballpark and each customer would be able to activate various links on the IM unit and access and retrieve much information while watching the game, even, perhaps checking the operator's email or processing work-related information.
As shown in
As shown in
It is noted that the disclosed IM system is not limited to providing additional information related to TV programs. The IM system can also be used in many other environments including, for example, a remote learning classroom environment where a teacher is running a class via a TV monitor. Students with individual IM units can follow along in context to what is being taught, ask questions, participate in feedback and, by switching into “manual” mode, a student can even obtain additional subject matter relater content.
The method and apparatus of the present invention has been described in connection with a preferred embodiment as disclosed herein. The disclosed methodology may be implemented in a wide range of sequences, menus and screen designs to accomplish the desired results as herein illustrated. Although an embodiment of the present invention has been shown and described in detail herein, along with certain variants thereof, many other varied embodiments that incorporate the teachings of the invention may be easily constructed by those skilled in the art, and even included or integrated into a processor or CPU or other larger system integrated circuit or chip. The disclosed methodology may also be implemented solely in program code stored on a disk or diskette (portable or fixed), or other memory unit, from which it may be executed to achieve the beneficial results as described herein. Accordingly, the present invention is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5195183 | Miller et al. | Mar 1993 | A |
5317691 | Traeger | May 1994 | A |
6061719 | Bendinelli et al. | May 2000 | A |
6084638 | Hare et al. | Jul 2000 | A |
6104921 | Cosley et al. | Aug 2000 | A |
6209132 | Harrison et al. | Mar 2001 | B1 |
6243772 | Ghori et al. | Jun 2001 | B1 |
6249914 | Harrison et al. | Jun 2001 | B1 |
6259443 | Williams | Jul 2001 | B1 |
6263505 | Walker et al. | Jul 2001 | B1 |
6272680 | Gaughan et al. | Aug 2001 | B1 |
6281880 | Rose et al. | Aug 2001 | B1 |
6349410 | Lortz | Feb 2002 | B1 |
6496122 | Sampsell | Dec 2002 | B1 |
6567984 | Allport | May 2003 | B1 |
6654826 | Cho et al. | Nov 2003 | B1 |
6862611 | Marics et al. | Mar 2005 | B1 |
20010037376 | Ullman et al. | Nov 2001 | A1 |
20020010941 | Johnson | Jan 2002 | A1 |
20020057209 | Sampsell | May 2002 | A1 |
20020065902 | Janik et al. | May 2002 | A1 |
20020162120 | Mitchell | Oct 2002 | A1 |
20020177473 | Skinner et al. | Nov 2002 | A1 |
20030088621 | Martinez et al. | May 2003 | A1 |
20030088880 | Martinez et al. | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030088879 A1 | May 2003 | US |