The present technology is generally directed to the combination of two or more materials having different sizes to form a bed of coking material with a higher density than predicted by ideal mixing laws.
Iron and steel are vital parts of the global economy. The World Steel Association reported that 1.1 billion tons of raw iron was produced globally by blast furnaces in 2013. This process uses coke and iron ore as its main raw materials. Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Coke is produced by exposing properly selected and prepared blend of bituminous coals to the high temperatures of a coke oven for an adequate period of time in the absence of air. During the entire conversion, volatile gases, vapors and tars are being expelled from the charge. As the temperatures of the charge increases in the reducing coke oven atmosphere, the coking coals pass through a plastic or softening stage, gasses and tars are evolved, coal particles swell and shrink and then bond or adhere together re-solidifying into a semi coke and finally a coke at about 1830 degrees Fahrenheit. Coking coals are unique with respect to this unusual behavior when heated. The coals are solid when charged, become fluid to varying degrees, then with further increase in temperature, become the solid, hard porous substance, known as coke. Coke is porous black to silver gray substance. It is high in carbon content, low in non-carbon impurities such as sulfur and ash. Physically, the coke produced is strong, resistant to abrasion, and sized to span a narrow size range.
The melting and fusion process undergone by the coal particles during the heating process is an important part of coking. The degree of melting and degree of assimilation of the coal particles into the molten mass determine the characteristics of the coke produced. In order to produce the strongest coke from a particular coal or coal blend, there is an optimum ratio of reactive to inert entities in the coal. The porosity and strength of the coke are important for the ore refining process and are determined by the coal source and/or method of coking.
Coal particles or a blend of coal particles are charged into hot ovens, and the coal is heated in the ovens in order to remove volatile matter (“VM”) from the resulting coke. The coking process is highly dependent on the oven design, the type of coal, and the conversion temperature used. Typically, ovens are adjusted during the coking process so that each charge of coal is coked out in approximately the same amount of time. Once the coal is “coked out” or fully coked, the coke is removed from the oven and quenched with water to cool it below its ignition temperature. Alternatively, the coke is dry quenched with an inert gas. The quenching operation must also be carefully controlled so that the coke does not absorb too much moisture. Once it is quenched, the coke is screened and loaded into rail cars, trucks, or onto belt conveyors, for shipment.
As the source of coal suitable for forming metallurgical coal (“coking coal”) has decreased, attempts have been made to blend weak or lower quality coals (“non-coking coal”) with coking coals to provide a suitable coal charge for the ovens. One way to combine non-coking and coking coals is to use compacted or stamp-charged coal. The coal may be compacted before or after it is in the oven. In some embodiments, a mixture of non-coking and coking coals is compacted to greater than 50 pounds per cubic foot in order to use non-coking coal in the coke making process. As the percentage of non-coking coal in the coal mixture is increased, higher levels of coal compaction are required (e.g., up to about 65 to 75 pounds per cubic foot). Commercially, coal is typically compacted to about 1.15 to 1.2 specific gravity (sg) or about 70-75 pounds per cubic foot.
The manner in which coals are selected, prepared and combined greatly effects the properties of the coke produced. Coals must be reduced in size by grinding to optimal levels and then thoroughly mixed to ensure good distribution of coal particles that will promote the maximum coke quality achievable form the available coals. In North America, coke makers generally pulverize their coals or blends to 75% to 95% minus ⅛″ size. The size the coal is crushed is expressed as % minus ⅛″ is commonly referred to as the pulverization level. In addition to size control, bulk density must be controlled. High bulk density can cause hard-pushing and damage coke oven walls in a byproduct coke oven. Low bulk density can reduce the strength of the coke produced.
Two coke oven technologies dominate the industry: by-product coke ovens and heat recovery coke ovens. The majority of the coke produced in the United States comes from by-product oven batteries. This technology charges coal into a number of slot type ovens wherein each oven shares a common heating flue with the adjacent oven. Natural gas and other fuels are used to provide heat to the ovens. Coal is carbonized in the reducing atmosphere, under positive (higher than atmospheric) pressure and the gasses and tars that evolve (off-gases) are collected and sent to a by-product plant where various by-products are recovered. Coal to coke transformation in a by-product oven takes place when the heat is transferred from the heated brick walls into the coal charge. The coal decomposes to form plastic layers near each wall and these layers progress toward the center of the oven. Once the plastic layers have met in the center of the oven, the entire mass is carbonized.
Alternatively, using heat-recovery, non-recovery, or beehive oven technology, coal is charged to large oven chambers operated under negative (lower than atmospheric) pressure. The carbonization process takes place from the top by radiant heat transfer and from the bottom by conduction of heat through the sole floor. Primary combustion air is introduced into the oven chamber through several ports located above the charge level. The evolving gasses and tar are combusted in the top chamber and soles of the oven and provide the heat for the coking process. In heat recovery ovens, excess thermal energy from the combusted gases is recovered in the waste heat recovery boiler and converted to steam or power. Coal to coke transformation in a heat-recovery, non-recovery and beehive oven takes place when the heat is transferred from the heated brick floor or radiant heat from the top of the coal bed into the coal charge. The coal decomposes to form plastic layers near the wall and the top of the bed and these layers progress toward the center of the oven. Once the plastic layers have met in the center of the oven, the entire mass is carbonized.
The rate of movement of the plastic layer to the center of the coal bed in both by-product and heat-recovery ovens is limited by the conductive heat transfer rate of the coal bed. Coal chemistry and bed density have a major impact on the heat transfer rate which ultimately sets the oven cycle time and battery production capacity. By-product ovens generally have cycle times between 17 to 24 hours per charge. Heat-recovery ovens generally have cycle times between 24 and 48 hours per charge.
The common method to increase bulk density of the coal charge to the oven is to compact the coal bed prior to or after it is charged by mechanical means known as stamp charging. While a stamp charge method can successfully increase the overall bulk density of the coal charge, it requires expensive equipment to perform the compaction. In heat recovery ovens, it results in a longer coking cycle because the closely packed particles release VM slower than a loosely packed bed. At the same time, stamp charging's higher density leads to improved coke quality. This allows attaining a higher coke quality and the option to substitute lower cost, lower quality coals. In the United States, there is an abundance of high quality low cost coal. The abundance of low cost, high quality coal and the high cost of installing a stamp charger has led to stamp chargers not being employed in the United States. Any low cost method to improve coal density without stamp charging would have application in the United States to improve coke quality and possibly use some lower cost coals or coal substitutes.
Loosely packed bed density is determined by the height of the coal bed and the specified coal size. Bed height is determined by the geometry of the coke oven and cannot be generally varied. Coals are typically crushed to a specified top size, have a naturally occurring particle size distribution that, when plotted, fit under a typical single Gaussian curve. Such naturally occurring size distribution does not have the optimum particle size distribution to produce the optimal density of a loosely packed coal bed.
With reference to
A blend of material created by mixing different grind sizes of particles is expected to follow “ideal mixing characteristics.” In other words, the volume of the mixture should vary linearly with composition. Combining a material A of higher bulk density with a material B of lower bulk density, accordingly, should result in a blend of material with a bulk density equal to the weighed sum of the pure bulk densities of each of the components ρA and ρB. Thus, the bulk density of the blended bed of material A and B would be:
ρ=ρA×XZ+ρE×XB
Where XA is the weight fraction of material A and XB is the weight fraction of material B. This same blending characteristic extends to blends of 2 or more materials.
Coke chemistry, coke size, and coke strength (stability) have been considered the most important factors for evaluating coke for use in a blast furnace. However, coke reactivity index (CRI) and coke strength after reaction (CSR) are increasing in importance as their impact on blast furnace performance is better understood. For example, a decrease in coke consumption during hot metal production can be linked to increases in CSR values. The magnitude of coke rate reduction varies with changes in blast furnaces size and operating parameters. However, it is estimated that 2 to 5 lbs. of coke are saved per net ton of hot metal produced for every point that CSR increases.
As a result of major changes in blast furnace design and operating parameters, the amount of coke consumed in blast furnaces has dropped below 1000 lbs. per net ton of hot metal produced, requiring increased coke quality. Consequently, the need for strong and consistent coke properties has become more important than ever.
Coke reactivity is a weight loss reaction in which the coke carbon reacts with oxidizing gases such as carbon dioxide. The test reacts lump-sized coke with carbon dioxide at high temperatures. In an exemplary test, a 200 g sample of −21 mm to +19 mm coke is heated to 1,100° C. under one atmosphere pressure of carbon dioxide for two hours. The percentage weight loss is known as the coke reactivity index (CRI). The reacted coke is then tumbled in a drum for a period of time to determine its strength after reacting. The cumulative percent of +10 mm coke after tumbling is referred to as the CSR. A coal that achieves a low CRI value and a high CSR value, after coking, is most favorable in the market because these values relate to blast furnace performance and, specifically, fuel rate and permeability of the burden.
Coke should not react significantly at lower temperatures in the upper zone of the blast furnace to avoid premature coke consumption, which wastes carbon. Highly reactive coke becomes substantially weakened so that it cannot properly support the other burden materials during its descent in the blast furnace. By the time the coke descends on the blast furnace high temperature combustion zone, or raceway, the highly reactive coke becomes so weak that it causes major upsets to occur in raceway performance. Poor raceway performance restricts gas and liquid permeability in the blast furnace, reducing overall furnace efficiency.
Coke stability is the most widely used measure of coke strength employed in the United States. High stability coke is required to support the load of the other burden materials charged to the furnace. High coke stability is also linked to a reduction in the amount of coke consumed in the blast furnace for each ton of hot metal produced. The coke savings are different for each blast furnace and different operating conditions. As a general rule, about 10 lbs. of coke are saved, per net ton of hot metal produced, for every point that stability increases.
The stability test measures resistance to abrasion. Lumps of specifically sized coke are tumbled in a controlled test. After the tumbling is complete, the sample is screened at 1 inch and ¼ inch. The percentage of coke retained on the 1 inch screen is termed stability factor. The cumulative percentage of coke retained on the ¼ inch screen is termed hardness factor. No relationship exists between stability and CSR.
Coke tumbler tests measure the resistance of coke to impact and abrasion during removal from the coke oven and transportation, and the abrasion that occurs during its descent in the blast furnace. In one tumbler test, a micum drum is used. The micum drum is a cylindrical, rotating container made of mild steel and having an internal diameter of one meter. In one common test, a 50 kg sample of coke above 63 mm size is rotated for four minutes at the rate of 25 revolutions/min. The coke is then removed from the drum screened. The percentage of +40 mm coke remaining after screening is designated as M40 on the micum index. The percentage of −10 mm coke remaining after screening is designated as M10 on the micum index. Larger values of M40 and smaller values of M10 generally indicate strong coke. This test is commonly used in Europe to evaluate coke strength.
In another tumbler test, a 10 kg representative sample of +50 mm square hole coke is placed in a specified tumble drum and rotated for 30 revolutions, removed, screened and replaced in the drum and subjected to a further 150 revolutions. In this tumbler test the drum contains lifters that raise the coke and allow it fall so that it undergoes a large number of impacts with the drum walls. The test is based on the Japanese Industrial Standard JIS K2151. A number of indices can be measured. For example, DI3015 represents the percentage of +15 mm square hole material remaining after 30 revolutions. Similarly, DI15015 represents the percentage of +15 mm square hole material remaining after 150 revolutions. For these indices, the larger the number, the stronger the coke. This test is commonly used in Japan, South Korea, and Brazil to evaluate coke strength.
Over the last two decades, coke making capacity has slowly declined in the United States without corresponding decrease in demand. Increased demand for coke and decreased supply in the United States have driven the price of coke up. This has become a major incentive to reduce coke consumption in the blast furnace. The increased cost of coke has caused companies to replace a portion of the coke used in the combustion zone of the blast furnaces with pulverized coal (PCI) and other fuels. Because less coke is being charged to the furnace, the quality requirements of coke have increased in order to maintain the furnace productivity. Higher coke stability (60+), lower coke reactivity (<23) and higher coke CSR (>60) are now generally desired.
Coke chemistry and chemical properties are also extremely important to blast furnace performance. Coke ash, fixed carbon, sulfur and ash chemical properties are, for the most part, directly related to the coals used to produce coke. These properties directly influence blast furnace productivity, burdening practices, and ultimately, the chemistry of the hot metal produced for downstream steelmaking. Increased ash, sulfur and alkali metals increase coke consumption rates in the blast furnace. If coke quality were improved by increasing CSR by 1 point, increasing stability by 1 point, and reducing the coke ash by 1% ash, coke sulfur by 0.1%, coke alkaline metals by 0.01% on a 4500 net ton hot metal per day blast furnace with coal pricing of $115 per ton, a cost savings of several million per year would result. Current coke pricing is over $250 per ton.
For blast furnace use, a narrow size range of coke is required. In general, coke size range from 3 inch by 1 inch is most desired. Coke larger than 4 inches is usually crushed prior to charging and coke smaller than ¾ inch is generally screened out at the coke plant and sold or used as coke breeze. In the United States, most coke produced has less than 10% larger than 4″ and less than 6% minus ¾″ coke prior to crushing or plant screening. Material screened out under ¾″ is called breeze and generally disposed of in a landfill.
Coke size is important because coke is the support mechanism and permeable layer for other burden materials like limestone, iron ore, iron pellets, and sinter. As the coke layer descends downward in the blast furnace, adequate upward and downward permeability must be maintained. Hot metal drops downward through the coke layers. Reducing gases pass upward through the coke layers. Having coke fines present in the layers reduces the permeability of this layer and causes reductions in the production. Coarse coke causes coke waste and can end up as carbon contamination in the hot metal.
For each ton of raw iron, 0.5 to 0.65 tons of metallurgical coke are consumed. The global market consumes an estimated 700 million tons of coke annually. Breeze, a major byproduct of coke production, typically ranges from 5% to 7% of the coke produced. Breeze is fine coke that cannot be used in a blast furnace over a threshold limit. The coking process normally generates more breeze than a blast furnace can consume. The industry has not been successful in finding a method of consuming or disposing of this material. A major portion of the breeze generated in the United States is landfilled.
The present technology is generally directed to methods of combining of two or more particulate materials of different bulk densities in combinations that produce beds of coking material with bulk densities that are greater than ideal bulk densities predicted by a linear combination of the bulk densities of the individual particulate materials. In some embodiments, the methods create a bi-modal mixture by combining a quantity of material A of grind G1 with a quantity of material B of grind G2 where the particulate size distribution of grind G1 for material A is not identical to the particulate size distribution of grind G2 for material B. Another embodiment, of the present technology, creates a bi-modal mixture by combining a quantity of material A of grind G1 with a quantity of the same material A of size S2. In this embodiment, G1 is achieved using a grinding of material A and the particulate size distribution is not identical to size S2, which is achieved using a sieve. In further embodiments, material of size S1 is obtained by screening and combined with a material of size S2, which is also obtained by screening. Accordingly, “multi-modal”, as the term is used herein, will be understood to mean a distribution or blending of two or more particulate size distributions. In various embodiments, the resulting multi-modal bed of coking material may be obtained using various combinations of similar or dissimilar materials of different particulate size distributions and/or bulk densities. These methods can provide beds of coking material that, when processed in a coking oven, produces coke that exhibits improvements in one or more of: coke stability, size, hardness, coke reactivity index (CRI), drum index, micum index, and CSR.
Specific details of several embodiments of the technology are described below with reference to
Methods of the present technology provide beds of coking material to charge a coking oven. In various embodiments, a quantity of first particulate material “A”, having a first particulate size S1 and bulk density ρA, is combined with a second particulate material “B”, having a second particulate size S2 and bulk density ρB, to define a multi-modal bed of coking material. The multi-modal bed of coking material exhibits an optimized bulk density that is greater than the “ideal bulk density” predicted by an Ideal Blending Rule. The Ideal Blending Rule, as that term is used herein, is a linear combination of the bulk densities of the individual materials. Specifically, when the bulk densities of any number of materials A, B, . . . η is ρA, ρB, . . . ρη and present in the blended bed in weight fraction χA, χB, . . . χη and the bulk density of a blended bed ρ generated by the present technology is expressed as:
ρ≥ρA*χA+ρB*χB+ . . . +χη
In various embodiments, the first particulate material is comprised of a carbon containing material such as one of various coking coals, such as hard coking coal, semi-soft coking coal, thermal coal, and the like. Embodiments of the present technology may use one or more of a wide array of second particulate materials. In some embodiments, the second particulate material may be a carbon containing inert material. In other embodiments, the second particulate material may be a non-carbon containing inert material. In some embodiments, exemplary materials that may be used with the present technology include: coal; anthracite; breeze; petcoke; biochar; biomaterials; lignite; met coals; thermal coal; coke; pad coal; and pad coke. In other embodiments, exemplary materials that may be used with the present technology include: inerts; carbonates; silicates; coke alloys; carbon alloys; flyash; wood; wood chips; biomass; lignin; reclaimed or recovery materials from bioprocesses; catalysts; plastics; recycled plastics; recycled solid hydrocarbons; and other solid hydrocarbons. Non-carbon metallic materials that may be used as the second particulate material, in various embodiments, include: dust fines from industrial processes; iron; iron oxides; and slag. Non-carbon nonmetallic materials that may be used as the second particulate material, in various embodiments, include: sand; alumina; stone dust from quarry operations; dust fines from brick or cement manufacturing; dust fines from polishing operations; catalyst fines from regen operations; and salts. In other embodiments the second material could be the same material as the first particulate material but of a different particle size distribution. In other embodiments the blends can employ a blended bed of two or more particulate materials. In other embodiments blends can also employ the addition of liquids, tars, pitch, oils, liquid hydrocarbons and other additives.
The multi-modal beds of the present technology are formed by blending the first particulate material and the second particulate material with one another. In some embodiments, the first particulate material and second particulate material are sized prior to blending the two materials. In many embodiments, sizing the first particulate material and second particulate material is accomplished by pulverizing, grinding, or screening the materials to desired sizes using milling and separating equipment known within the industry. It is contemplated that, in any embodiment of the present technology, the first particulate material and the second particulate material may be sized using the same or different milling or separating systems and methods. With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
Aspects of the present technology are not limited to the use of breeze as the additional “recycled” coking material in multi-modal beds of coking material. In other embodiments quantities of other coking process waste materials may be used to form the multi-modal beds. In such embodiments, one or more of the following coking process waste materials may be used: breeze; clinker; biochar; recycled refractory material; coke; coal; pad coke; pad coal; bag house dust; fly ash; lime; activated carbon; and quench pond dipping.
Multi-modal beds of coking coal, created by the present technology, exhibit a higher bulk density than that expected by the partial contributions of each of the particulate materials used in the mixture.
The above-described process exhibits optimizing non-ideal results when a small amount of fine breeze is added to the coal. It is believed that the non-ideal characteristics peak and then diminish as more fines are added to the coal. Testing has shown that such improved density, using methods of the present technology, can be realized over the expected results of blending coal particulate with fine coal particulate. With reference to
Aspects of the present technology exploit the existing void spaces created by inefficiently packed particles in the naturally occurring Gaussian distribution of particles in a bulk material. As depicted in
Using this process, an amount of material within a particular size range, can be added to a bed of loosely charged coal, increasing the density of the bed without a significant impact on the volume occupied by the coal charge. The increased density of the coal blend facilitates conductive heat transfer between individual coal particles. The additional mass of the denser bed adversely affects the coking process by adding more mass to heat. At the same time, the higher density improves the heat transfer process. Experimentation was completed on 3% higher density coal beds. The ultimate result confirmed by experimentation is that the denser bed facilitates improved conductive heat transfer sufficiently to overcome the extra time required to heat the additional bed mass. Adding the smaller particles to increase the density allowed more mass (charge) to be processed in the same amount of time. Consequently, the addition of the smaller particles increased the coking rate (coke produced/time).
Testing has demonstrated that various ratios of first particulate material to second particulate material can be blended with one another to produce variable levels of quality and density. For example, a first particulate material sized between 80%-⅛ inch to 95%-⅛ inch can be blended with a second particulate material sized between 75%-150 mesh and higher to produce a multi-modal blend. The multi-modal blend was formed using approximately 95% first particulate material and 5% second particulate material. Coke produced from such a multi-modal bed exhibited optimum quality and an acceptable density.
In another embodiment, a first particulate material sized between 75%-⅛ inch to 83%-⅛ inch was blended with a second particulate material sized between 90%-100 mesh and higher to produce a multi-modal blend. The multi-modal blend was formed using approximately 90% first particulate material and 10% second particulate material. Coke produced from such a multi-modal bed exhibited good quality and a medium density.
In yet another embodiment, a first particulate material sized between 65%-⅛ inch to 74%-⅛ inch was blended with a second particulate material sized between 75%-100 mesh and higher to produce a multi-modal blend. The multi-modal blend was formed using approximately 80% first particulate material and 20% second particulate material. Coke produced from such a multi-modal bed exhibited medium quality and good density.
In still another embodiment, a first particulate material sized between 55%-⅛ inch to 64%-⅛ inch was blended with a second particulate material sized between 50%-60 mesh and higher to produce a multi-modal blend. The multi-modal blend was formed using approximately 10% first particulate material and 90% second particulate material. Coke produced from such a multi-modal bed exhibited acceptable quality and an optimum density.
The resulting bulk density of a blend created by the present technology can be sensitive, in certain embodiments, to the moisture content of the individual materials. Moisture can cause one particulate material to adhere to another particulate material. For example, fine particles that are used to fill void spaces in a multi-modal blend adhere strongly to larger particulate material in the blend, where the larger particulate material has a greater moisture content than the fine particulate material. The attraction is strong enough to overcome the forces imposed by vibratory screeners. Table 2 below shows coal that was sieved though a vibratory screener at 9% moisture as wet coal and then again at less than 1% moisture as dry coal. The data shows that removing moisture allows more material of 50 mesh or smaller to be recovered.
Reducing the moisture content frees up the smaller particles to move around in the multi-modal bed. Accordingly, in various methods according to the present technology, the second particulate material is dried prior to blending with the first particulate material. It is contemplated that the degree to which the second particulate material is dried will vary from one embodiment to another and may be partially determined according to the type of material used and the size to which it is milled. However, in some embodiments, the second particulate material is dried to a moisture content of less than 1%, such as where the second particulate material is ground to a size that is smaller than 100 mesh. In other embodiments, the second particulate material is dried to a moisture content of less than 11%, such as where the second particulate material is ground to a size that is smaller than 30 mesh.
The moisture differential between the first particulate material and the second particulate material plays a role in the strength of the adhesion of the particulate materials to one another. In some embodiments of the present technology, the moisture differential between the first particulate material and the second particulate material is from 3% to 14%. In other embodiments, the moisture differential is from 3% to 5%. In still other embodiments, the moisture differential is 5% or less. In one exemplary embodiment, the first particulate material is provided with a moisture content of 15% and the second particulate material is provided with a moisture content of 10%. In another exemplary embodiment, the first particulate material is provided with a moisture content of 10% and the second particulate material is provided with a moisture content of 5%. In still another exemplary embodiment, the first particulate material is provided with a moisture content of 5% and the second particulate material is provided with a moisture content of 1% or less. It is contemplated that the moisture content of either or both of the first particulate material and second particulate material may be altered to attain a desirable moisture differential. As discussed above, the particulate material can be dried, using one of various known systems and methods. However, it is contemplated that a first particulate material could be mixed with a suspension agent, prior to blending the first particulate material and second particulate material. In various embodiments, the suspension agent can include water and/or one or more fluid hydrocarbon materials, such as oil and organics such as tars, pitch, diesel, and the like.
In various aspects of the present technology, free movement of fine particles optimizes the density of the multi-modal bed. Experimentation using an embodiment of the present technology was done where the fine material was pre-conditioned to be of low moisture content. Bulk density charts above are where the fine material contained 0.1 wt % moisture. The fine material at this moisture level is free flowing. The fine particles do not appear to interact with one another or adhere to other particles in any way. The majority coal component (larger particles) was at 9% moisture. The dry fine material is then introduced into the higher moisture coal; the fine material adheres to the moister coal particles. The two materials are vigorously mixed and the blend is used to create a multi-modal coal bed that is charged to a coke oven and processed. As the blend moves from the charging system to the bed being formed, the fine particles move with the large particles and orient themselves such that the void spaces between the larger particles become occupied by the smaller particles. An added benefit of employing the dry finer particles with larger particles of higher moisture is the reduction in dust from the system. The lower moisture particles have a tendency to stick to the larger higher moisture particles. This has led to the environmental benefit of less dust production during the handling of the blends.
Higher bulk density coal beds present many benefits to the coking process. A more uniform volatile matter release rate throughout the coking cycle is caused by the denser bed which prevents the volatile matter from easily escaping early in the coking cycle. In heat-recovery ovens, this can translate to a lower peak temperature which is detrimental to the oven bricks. The slower volatile matter release results in a higher oven operating temperature later in the coking cycle, which is when the heat is generally needed the most. Methods, such as flue gas sharing, have been developed to mitigate the slow volatile matter release at the end of the coking cycle. In contrast, the extremely high density attained by various methods of mechanical stamp chargers can inhibit the release of the volatile matter.
Multi-modal beds have also shown the ability to improve coking time of a bed charged to the oven. The higher density bed also allows more material to be charged in the same volume resulting in an increased coking rate. The denser bed also facilitates conductive heat transfer. However, unlike stamp charging methods of obtaining density, multi-modal beds of the present technology still include loosely packed coal. This allows the coal to release the volatile matter much easier than the super packed stamp charged beds. The heat up of the heat-recovery ovens is faster than stamp charge units. The plastic layer progresses faster through the bed in both heat-recovery ovens and by-product ovens due to the loosely packed high density bed. In experimentation, a heat-recovery coke oven that normally processed 48 tons of coal was able to process 49.5 tons of coal and fine breeze (3 wt. %) during the same 48 hour period. A coking rate improvement of 1% to 10% above the coal beds using a Gaussian partial size distribution is expected by using multi-modal beds of the present technology.
The density improvement acquired by multi-modal blends of the present technology has many other advantages. The addition of a suspension agent, such as oil, may be used to improve the flowability of coal particle and it ultimately improves the packing efficiency and density of the coal beds created. Multi-modal blends of the present technology, without oil addition, exhibited improved flowability characteristics in all experiments, compared with standard coal mixtures. Multi-modal blends created by the present technology introduce dry fine material to larger coal particles, which also enhance flowability of the coal by providing a flexible layer of smaller particles between the larger coal particles. Adding oil to a multi-modal bed further enhances benefits derived from each method individually.
The improved flowability exhibited by the present technology is expected to provide a number of advantages for the coking process. The coal charge occupies a more uniform space in the coking oven. In a traditional heat-recovery oven, the coal charge has void volumes along the wall. The charge height at the coke side of the oven is lower than the charge height at the coal side of the oven due to the flex in the charging conveyer. A more level charge of the coal bed from the center of the oven to the wall, and from the front door to the back door, uses more of the available oven volume.
A uniform bed height has additional advantages. In current pushing practices, the height difference between the pusher side and coke side of a heat recovery oven is suspected as causing a higher temperature on one side. A level oven charge is expected to promote a more consistent temperature profile across a heat-recovery oven from the coke side to the pusher side because the volume of coal at each side is identical. Additionally, a level charge provides the opportunity to slightly increase the charge weight to each oven occupying volume that was normally void along the walls and the coke side door. Coking material effectively uses the wasted oven volume to produce coke. The higher density of the coal bed compounds on the flowability benefits. A similar oven filling benefit can be realized in by-product ovens due to the improved flowability exhibited by the present technology.
Ultrahigh density coal beds can be achieved by stamp charging multi-modal blends of the present technology. Generally, a stamp charging process can increase bed density by 10% or more but requires 10% or more moisture in the coal bed to keep the bed from falling apart when placed in the oven. A multi-modal blend is created, according to the present technology, using a dry fine material which effectively reduces the overall moisture content of the bed. As discussed previously, multi-modal beds of the present technology exhibit improved flowability characteristics as well. Stamp charging a multi-modal bed results in a ultrahigh density, low moisture bed of coking material. This translates to less heat used to remove the moisture from the coal charge, faster heat-up, and reduced coking time.
Multi-modal beds can be used to further enhance the density improvement achieved from stamp charging. Stamp charging works by mechanically forcing particles to re-orient themselves and compact against neighboring particles removing void spaces and improving the packing efficiency of the bed. Some of the current compaction methods employed include hammers, hydraulic presses and vibrocompactors. Multi-modal beds, according to the present technology, also exhibit improved packing efficiency and reduced void spaces. They also have less moisture and improved flowability. Stamp charging a multi-modal bed further increases the density of the multi-modal bed. In some embodiments, stamp charging a multi-modal bed increases the density of the multi-modal bed from between 0.67 sg to 0.78 sg to a density of between 0.85 sg to 1.2 sg. In other embodiments, the multi-modal bed of material is stamp charged to a density of over 1.2 sg. Stamp charging a multi-modal bed of material requires less effort than stamp charging a standard bed of material due to the improved flowability of the multi-modal bed of material. This ultimately reduces the passes required by stamp charging, reduces the size of the equipment used in stamp charging, reduces the pressure used in stamp charging, and reduces the cycle time required to stamp charge. In an optimized state, multi-modal blends can serve as a substitute for stamp charging. Multi-modal blends of the present technology realize an increased density, which leads to higher quality coke and higher coke production rates.
The higher density charges realized by the present technology result in higher CSR. This principal is used when low grade coals are stamp charged to enhance the coke CSR. Multi-modal beds exhibiting higher density achieve the same result on CSR due to the higher density. The CSR improvement is believed to be related to denser less porous coke produced by the dense charge.
Multi-modal beds of high density can be used to correct detrimental impact of components in the coal blend. Breeze, generally a waste material, can be blended into the coal to enhance its value by transforming it into coke. However, breeze has a very high ash content, ranging between 12% to 35% ash. Ash is detrimental to CSR. Experimental results have shown that CSR decreases as breeze is added to a coal blend.
Multi-modal beds, according to the present technology, can be used to correct for the drop in CSR. In some embodiments, the breeze can be milled to a fine size and used to create a multi-modal blend in small proportions. The high ash content of the breeze will decrease the CSR of the final product. However, the fine breeze increases the bed density increasing the CSR of the final product countering the impact from the ash. The end result is that the CSR of the final product remains unchanged while breeze is successfully introduced into the coal blend.
Another advantage attained by the use of finer breeze is increased strength. When the above test employed a finer grind, the CSR loss per percent breeze added decreased. This occurs because large breeze can actually be a crack initiator. It is believed that if the breeze is larger than the coke pore cell wall thickness, it will cause cracks and breakage. If the breeze is smaller than the cell wall, it will actually stop cracks and breakage by relieving stress.
Experimental results confirm the mitigation effect of multi-modal beds.
Bed height is also linked to bed density. A taller bed exerts more static pressure on the coal at the bottom of the bed creating a compact, dense region at the bottom. This region generally produces higher CSR coke. To optimize the production capacity of ovens, a thinner bed can be charged. A thinner bed cokes faster than a thicker bed when compared on a tons of coal processed/hour basis. The reason is that the heating rate is non-linear and the heating rate is faster for thinner beds. Because the distance between the top and bottom of the bed is less, it takes less time for the plastic layer to propagate through the bed and complete the coking cycle. This allows a coke oven annual capacity to increase by 25% or more on an annual basis. As an example, a heat-recovery oven can process 48 tons in 48 hours or 28 tons in 24 hours. However, the thinner beds have less static pressure on the bottom and result in lower CSR coke product. Multi-modal beds, according to the present technology, can be used to compensate the thinner beds by boosting the density of the thinner bed and ultimately the CSR. As such, multi-modal beds can overcome or immunize against the detriment to CSR commonly realized in a thinner bed, producing coke of a quality comparable to that attained by coking charges having traditional bed heights.
Multi-modal beds, of the present technology, also realize higher stability coke. This can be attributed to the fact that the fine particles, especially those with dissimilar properties than coal (inerts) become engrained in the coke structure as the plastic layer passes across that section of the bed. The coke without the fine material is similar to cement. The coke with the fine material ingrained into the structure is similar to concrete with an aggregate material providing strength to the overall structure. Petrographic results confirm that materials that are dissimilar to coal, such as breeze, are incorporated into the coke structure in the coking process.
A fracture starting at the outer end of the coke structure, as depicted in
Multi-modal blends can be used to enhance stability to compensate for other factors that are detrimental to stability. As discussed above, thinner beds can be used to improve coke oven production. However, in addition to a detriment to CSR, thinner beds also result in a detriment to stability in the final product. Multi-modal thin beds, according to the present technology, compensate for this effect, creating a higher stability thin bed product. Ultimately, this results in a high capacity coke oven capable of producing a commercially acceptable product.
The benefits of multi-modal beds discussed above can further be utilized incorporating new materials. Low grade coal, anthracite, bio-char, and other carbon containing compounds can be incorporated into the coal blend. Further, using a breeze-coal multi-modal blend will reduce the total effective VM composition of the coal blend because breeze contains very little VM and has 100% yield to coke while coal has 100-VM yield to coke. A higher VM coal can be used to compensate for the low VM breeze. The VM release rate is also lower due to the increased bulk density of the bed. The higher VM coals will release VM slower than under a condition with lower bulk density. This will lower the initial peak temperature of the oven ultimately making high VM, lower cost coals a practical ingredient in the coking process.
Multi-modal beds, according to the present technology, can also result in a high yield in the coking process. The resulting coke is more stable and produces less breeze. Also, fine ingredients used, such as breeze, can have little to no VM and the majority of the material will be converted into coke.
The following Examples are illustrative of several embodiments of the present technology.
1. A method of coking beds of material, the method comprising:
2. The method of example 1 wherein the coking oven is a horizontal heat recovery oven.
3. The method of example 1 wherein the first volume of waste material is an inert carbon material.
4. The method of example 1 wherein the first volume of waste material is an inert non-carbon-material.
5. The method of example 1 wherein the first volume of waste material is comprised of breeze.
6. The method of example 1 wherein the first volume of waste material is comprised of clinker.
7. The method of example 1 wherein the second bed of carbon-containing material is comprised of a quantity of particulate coking material having a first particulate size; the first volume of waste material having a second particulate size, which is smaller than the first particulate size; the particulate coking material being combined with the first volume of waste material to define the second bed of carbon-containing material as a multi-modal bed of material.
8. The method of example 7 further comprising:
9. The method of example 7 further comprising:
10. The method of example 9 wherein the suspension agent is comprised of a fluid hydrocarbon.
11. The method of example 10 wherein the suspension agent is comprised of at least one of oil, tar, pitch and diesel.
12. The method of example 9 wherein the quantity of particulate coking material has a first moisture content, the first volume of waste material has a second moisture content, and the difference between the first moisture content and the second moisture content is from 3% to 14%.
13. The method of example 1 wherein the quantity of first volume of waste material approximates less than 5% by weight of the second bed of carbon-containing material.
14. The method of example 1 wherein the second bed of carbon-containing material is comprised of a quantity of particulate coking material having a first bulk density and the first volume of waste material has a second bulk density; the second bed of carbon-containing material having a third bulk density which is higher than the first bulk density and the second bulk density.
15. The method of example 1 wherein the first bed of carbon-containing material experiences a first volatile material loss during processing and the second bed of carbon-containing material experiences a second volatile material loss which is lower than the first volatile material loss.
16. The method of example 1 wherein the first volume of coke amounts to a first percentage of the first bed of carbon-containing material and the second volume of coke amounts to a second percentage of the second bed of carbon-containing material; the second percentage being higher than the second percentage.
17. A method of coking beds of material, the method comprising:
18. The method of example 17 wherein:
19. The method of example 17 further comprising:
20. The method of example 17 wherein the quantity of carbon-containing material has a first bulk density, the quantity of process waste material has a second bulk density, and the multi-modal bed of material has a third bulk density which is higher than the first bulk density and the second bulk density.
21. The method of example 17 wherein the quantity of carbon-containing coking material has a first moisture content, the quantity of process waste material has a second moisture content, and the difference between the first moisture content and the second moisture content is from 3% to 14%.
22. The method of example 17 wherein the quantity of quantity of process waste material approximates less than 5% by weight of the multi-modal bed of material.
23. The method of example 17 wherein the quantity of coking process waste material is chosen from a group of materials including: breeze; clinker; biochar; recycled refractory material; coke; coal; pad coke; pad coal; bag house dust; fly ash; lime; activated carbon; and quench pond dripping.
Although the technology has been described in language that is specific to certain structures, materials, and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures, materials, and/or steps described. Rather, the specific aspects and steps are described as forms of implementing the claimed invention. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/098,935, filed Dec. 31, 2014, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
425797 | Hunt | Apr 1890 | A |
469868 | Osbourn | Mar 1892 | A |
845719 | Schniewind | Feb 1907 | A |
976580 | Krause | Jul 1909 | A |
1140798 | Carpenter | May 1915 | A |
1424777 | Schondeling | Aug 1922 | A |
1430027 | Plantinga | Sep 1922 | A |
1486401 | Van Ackeren | Mar 1924 | A |
1530995 | Geiger | Mar 1925 | A |
1572391 | Kiaiber | Feb 1926 | A |
1677973 | Marquard | Jul 1928 | A |
1705039 | Thornhill | Mar 1929 | A |
1721813 | Geipert | Jul 1929 | A |
1757682 | Palm | May 1930 | A |
1818370 | Wine | Aug 1931 | A |
1818994 | Kreisinger | Aug 1931 | A |
1830951 | Lovett | Nov 1931 | A |
1848818 | Becker | Mar 1932 | A |
1947499 | Schrader et al. | Feb 1934 | A |
1955962 | Jones | Apr 1934 | A |
2075337 | Burnaugh | Mar 1937 | A |
2141035 | Daniels | Dec 1938 | A |
2195466 | Otto | Apr 1940 | A |
2235970 | Wilputte | Mar 1941 | A |
2340981 | Otto | Feb 1944 | A |
2394173 | Harris et al. | Feb 1946 | A |
2424012 | Bangham et al. | Jul 1947 | A |
2641575 | Otto | Jun 1953 | A |
2649978 | Such | Aug 1953 | A |
2667185 | Beavers | Jan 1954 | A |
2723725 | Keifer | Nov 1955 | A |
2756842 | Chamberlin et al. | Jul 1956 | A |
2813708 | Frey | Nov 1957 | A |
2827424 | Homan | Mar 1958 | A |
2873816 | Umbricht et al. | Feb 1959 | A |
2902991 | Whitman | Sep 1959 | A |
2907698 | Erich Schulz | Oct 1959 | A |
3015893 | McCreary | Jan 1962 | A |
3033764 | Hannes | May 1962 | A |
3224805 | Clyatt | Dec 1965 | A |
3448012 | Allred | Jun 1969 | A |
3462345 | Kernan | Aug 1969 | A |
3511030 | Hall et al. | May 1970 | A |
3542650 | Kulakov | Nov 1970 | A |
3545470 | Paton | Dec 1970 | A |
3592742 | Thompson | Jul 1971 | A |
3616408 | Hickam | Oct 1971 | A |
3623511 | Levin | Nov 1971 | A |
3630852 | Nashan et al. | Dec 1971 | A |
3652403 | Knappstein et al. | Mar 1972 | A |
3676305 | Cremer | Jul 1972 | A |
3709794 | Kinzler et al. | Jan 1973 | A |
3710551 | Sved | Jan 1973 | A |
3746626 | Morrison, Jr. | Jul 1973 | A |
3748235 | Pries | Jul 1973 | A |
3784034 | Thompson | Jan 1974 | A |
3806032 | Pries | Apr 1974 | A |
3811572 | Tatterson | May 1974 | A |
3836161 | Buhl | Sep 1974 | A |
3839156 | Jakobi et al. | Oct 1974 | A |
3844900 | Schulte | Oct 1974 | A |
3857758 | Mole | Dec 1974 | A |
3875016 | Schmidt-Balve et al. | Apr 1975 | A |
3876143 | Rossow et al. | Apr 1975 | A |
3876506 | Dix et al. | Apr 1975 | A |
3878053 | Hyde | Apr 1975 | A |
3894302 | Lasater | Jul 1975 | A |
3897312 | Armour et al. | Jul 1975 | A |
3906992 | Leach | Sep 1975 | A |
3912091 | Thompson | Oct 1975 | A |
3912597 | MacDonald | Oct 1975 | A |
3917458 | Polak | Nov 1975 | A |
3928144 | Jakimowicz | Dec 1975 | A |
3930961 | Sustarsic et al. | Jan 1976 | A |
3933443 | Lohrmann | Jan 1976 | A |
3957591 | Riecker | May 1976 | A |
3959084 | Price | May 1976 | A |
3963582 | Helm et al. | Jun 1976 | A |
3969191 | Bollenbach | Jul 1976 | A |
3975148 | Fukuda et al. | Aug 1976 | A |
3984289 | Sustarsic et al. | Oct 1976 | A |
4004702 | Szendroi | Jan 1977 | A |
4004983 | Pries | Jan 1977 | A |
4025395 | Ekholm et al. | May 1977 | A |
4040910 | Knappstein et al. | Aug 1977 | A |
4045056 | Kandakov et al. | Aug 1977 | A |
4045299 | MacDonald | Aug 1977 | A |
4059885 | Oldengott | Nov 1977 | A |
4067462 | Thompson | Jan 1978 | A |
4083753 | Rogers et al. | Apr 1978 | A |
4086231 | Ikio | Apr 1978 | A |
4093245 | Connor | Jun 1978 | A |
4100033 | Holter | Jul 1978 | A |
4100491 | Newman, Jr. et al. | Jul 1978 | A |
4111757 | Ciarimboli | Sep 1978 | A |
4124450 | MacDonald | Nov 1978 | A |
4135948 | Mertens et al. | Jan 1979 | A |
4141796 | Clark et al. | Feb 1979 | A |
4145195 | Knappstein et al. | Mar 1979 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4162546 | Shortell | Jul 1979 | A |
4181459 | Price | Jan 1980 | A |
4189272 | Gregor et al. | Feb 1980 | A |
4194951 | Pries | Mar 1980 | A |
4196053 | Grohmann | Apr 1980 | A |
4211608 | Kwasnoski et al. | Jul 1980 | A |
4211611 | Bocsanczy et al. | Jul 1980 | A |
4213489 | Cain | Jul 1980 | A |
4213828 | Calderon | Jul 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4222824 | Flockenhaus et al. | Sep 1980 | A |
4224109 | Flockenhaus | Sep 1980 | A |
4225393 | Gregor et al. | Sep 1980 | A |
4235830 | Bennett et al. | Nov 1980 | A |
4239602 | La Bate | Dec 1980 | A |
4248671 | Belding | Feb 1981 | A |
4249997 | Schmitz | Feb 1981 | A |
4263099 | Porter | Apr 1981 | A |
4268360 | Tsuzuki et al. | May 1981 | A |
4271814 | Lister | Jun 1981 | A |
4284478 | Brommel | Aug 1981 | A |
4285772 | Kress | Aug 1981 | A |
4287024 | Thompson | Sep 1981 | A |
4289479 | Johnson | Sep 1981 | A |
4289584 | Chuss et al. | Sep 1981 | A |
4289585 | Wagener et al. | Sep 1981 | A |
4296938 | Offermann et al. | Oct 1981 | A |
4299666 | Ostmann | Nov 1981 | A |
4302935 | Cousimano | Dec 1981 | A |
4303615 | Jarmell et al. | Dec 1981 | A |
4307673 | Caughey | Dec 1981 | A |
4314787 | Kwasnik et al. | Feb 1982 | A |
4324568 | Wilcox et al. | Apr 1982 | A |
4330372 | Cairns et al. | May 1982 | A |
4334963 | Stog | Jun 1982 | A |
4336843 | Petty | Jun 1982 | A |
4340445 | Kucher et al. | Jul 1982 | A |
4342195 | Lo | Aug 1982 | A |
4344820 | Thompson | Aug 1982 | A |
4344822 | Schwartz et al. | Aug 1982 | A |
4353189 | Thiersch et al. | Oct 1982 | A |
4366029 | Bixby et al. | Dec 1982 | A |
4373244 | Mertens et al. | Feb 1983 | A |
4375388 | Hara et al. | Mar 1983 | A |
4391674 | Velmin et al. | Jul 1983 | A |
4392824 | Struck et al. | Jul 1983 | A |
4394217 | Holz et al. | Jul 1983 | A |
4395269 | Schuler | Jul 1983 | A |
4396394 | Li et al. | Aug 1983 | A |
4396461 | Neubaum et al. | Aug 1983 | A |
4407237 | Merritt | Oct 1983 | A |
4421070 | Sullivan | Dec 1983 | A |
4431484 | Weber et al. | Feb 1984 | A |
4439277 | Dix | Mar 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445977 | Husher | May 1984 | A |
4446018 | Cerwick | May 1984 | A |
4448541 | Wirtschafter | May 1984 | A |
4452749 | Kolvek et al. | Jun 1984 | A |
4459103 | Gieskieng | Jul 1984 | A |
4469446 | Goodboy | Sep 1984 | A |
4474344 | Bennett | Oct 1984 | A |
4487137 | Horvat et al. | Dec 1984 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4506025 | Kleeb et al. | Mar 1985 | A |
4508539 | Nakai | Apr 1985 | A |
4527488 | Lindgren | Jul 1985 | A |
4564420 | Spindeler et al. | Jan 1986 | A |
4568426 | Orlando | Feb 1986 | A |
4570670 | Johnson | Feb 1986 | A |
4614567 | Stahlherm et al. | Sep 1986 | A |
4643327 | Campbell | Feb 1987 | A |
4645513 | Kubota et al. | Feb 1987 | A |
4655193 | Blacket | Apr 1987 | A |
4655804 | Kercheval et al. | Apr 1987 | A |
4666675 | Parker et al. | May 1987 | A |
4680167 | Orlando | Jul 1987 | A |
4690689 | Malcosky et al. | Sep 1987 | A |
4704195 | Janicka et al. | Nov 1987 | A |
4720262 | Durr et al. | Jan 1988 | A |
4724976 | Lee | Feb 1988 | A |
4726465 | Kwasnik et al. | Feb 1988 | A |
4732652 | Durselen et al. | Mar 1988 | A |
4793931 | Doyle et al. | Dec 1988 | A |
4824614 | Jones | Apr 1989 | A |
4889698 | Moller et al. | Dec 1989 | A |
4919170 | Kallinich et al. | Apr 1990 | A |
4929179 | Breidenbach et al. | May 1990 | A |
4941824 | Holter et al. | Jul 1990 | A |
5052922 | Stokman et al. | Oct 1991 | A |
5062925 | Durselen et al. | Nov 1991 | A |
5078822 | Hodges et al. | Jan 1992 | A |
5087328 | Wegerer et al. | Feb 1992 | A |
5114542 | Childress et al. | May 1992 | A |
5213138 | Presz | May 1993 | A |
5227106 | Kolvek | Jul 1993 | A |
5228955 | Westbrook, III | Jul 1993 | A |
5234601 | Janke et al. | Aug 1993 | A |
5318671 | Pruitt | Jun 1994 | A |
5370218 | Johnson et al. | Dec 1994 | A |
5423152 | Kolvek | Jun 1995 | A |
5447606 | Pruitt | Sep 1995 | A |
5480594 | Wilkerson et al. | Jan 1996 | A |
5542650 | Abel et al. | Aug 1996 | A |
5622280 | Mays et al. | Apr 1997 | A |
5659110 | Herden et al. | Aug 1997 | A |
5670025 | Baird | Sep 1997 | A |
5687768 | Mull, Jr. et al. | Nov 1997 | A |
5715962 | McDonnell | Feb 1998 | A |
5752548 | Matsumoto et al. | May 1998 | A |
5787821 | Bhat et al. | Aug 1998 | A |
5810032 | Hong et al. | Sep 1998 | A |
5816210 | Yamaguchi | Oct 1998 | A |
5857308 | Dismore et al. | Jan 1999 | A |
5913448 | Mann et al. | Jun 1999 | A |
5928476 | Daniels | Jul 1999 | A |
5966886 | Di Loreto | Oct 1999 | A |
5968320 | Sprague | Oct 1999 | A |
6017214 | Sturgulewski | Jan 2000 | A |
6059932 | Sturgulewski | May 2000 | A |
6139692 | Tamura et al. | Oct 2000 | A |
6152668 | Knoch | Nov 2000 | A |
6187148 | Sturgulewski | Feb 2001 | B1 |
6189819 | Racine | Feb 2001 | B1 |
6290494 | Barkdoll | Sep 2001 | B1 |
6412221 | Emsbo | Jul 2002 | B1 |
6596128 | Westbrook | Jul 2003 | B2 |
6626984 | Taylor | Sep 2003 | B1 |
6699035 | Brooker | Mar 2004 | B2 |
6758875 | Reid et al. | Jul 2004 | B2 |
6907895 | Johnson et al. | Jun 2005 | B2 |
6946011 | Snyder | Sep 2005 | B2 |
6964236 | Schucker | Nov 2005 | B2 |
7056390 | Fratello et al. | Jun 2006 | B2 |
7077892 | Lee | Jul 2006 | B2 |
7314060 | Chen et al. | Jan 2008 | B2 |
7331298 | Barkdoll et al. | Feb 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7497930 | Barkdoll et al. | Mar 2009 | B2 |
7611609 | Valia et al. | Nov 2009 | B1 |
7644711 | Creel | Jan 2010 | B2 |
7722843 | Srinivasachar | May 2010 | B1 |
7727307 | Winkler | Jun 2010 | B2 |
7785447 | Eatough et al. | Aug 2010 | B2 |
7803627 | Hodges | Sep 2010 | B2 |
7823401 | Takeuchi et al. | Nov 2010 | B2 |
7827689 | Crane et al. | Nov 2010 | B2 |
7998316 | Barkdoll | Aug 2011 | B2 |
8071060 | Ukai et al. | Dec 2011 | B2 |
8079751 | Kapila et al. | Dec 2011 | B2 |
8080088 | Srinivasachar | Dec 2011 | B1 |
8146376 | Williams et al. | Apr 2012 | B1 |
8152970 | Barkdoll et al. | Apr 2012 | B2 |
8236142 | Westbrook | Aug 2012 | B2 |
8266853 | Bloom et al. | Sep 2012 | B2 |
8398935 | Howell, Jr. et al. | Mar 2013 | B2 |
8409405 | Kim et al. | Apr 2013 | B2 |
8500881 | Orita et al. | Aug 2013 | B2 |
8515508 | Kawamura et al. | Aug 2013 | B2 |
8647476 | Kim et al. | Feb 2014 | B2 |
8800795 | Hwang | Aug 2014 | B2 |
8956995 | Masatsugu et al. | Feb 2015 | B2 |
8980063 | Kim et al. | Mar 2015 | B2 |
9039869 | Kim et al. | May 2015 | B2 |
9057023 | Reichelt et al. | Jun 2015 | B2 |
9103234 | Gu et al. | Aug 2015 | B2 |
9193915 | West et al. | Nov 2015 | B2 |
9243186 | Quanci et al. | Jan 2016 | B2 |
9249357 | Quanci et al. | Feb 2016 | B2 |
9273249 | Quanci et al. | Mar 2016 | B2 |
9404043 | Kim | Aug 2016 | B2 |
9498786 | Pearson | Nov 2016 | B2 |
10047295 | Chun et al. | Aug 2018 | B2 |
10323192 | Quanci et al. | Jun 2019 | B2 |
10578521 | Dinakaran et al. | Mar 2020 | B1 |
10732621 | Cella et al. | Aug 2020 | B2 |
20020170605 | Shiraishi et al. | Nov 2002 | A1 |
20030014954 | Ronning et al. | Jan 2003 | A1 |
20030015809 | Carson | Jan 2003 | A1 |
20030057083 | Eatough et al. | Mar 2003 | A1 |
20050087767 | Fitzgerald et al. | Apr 2005 | A1 |
20060102420 | Huber et al. | May 2006 | A1 |
20060149407 | Markham et al. | Jul 2006 | A1 |
20070087946 | Quest et al. | Apr 2007 | A1 |
20070116619 | Taylor et al. | May 2007 | A1 |
20070251198 | Witter | Nov 2007 | A1 |
20080028935 | Andersson | Feb 2008 | A1 |
20080169578 | Crane et al. | Jul 2008 | A1 |
20080179165 | Chen et al. | Jul 2008 | A1 |
20080257236 | Green | Oct 2008 | A1 |
20080271985 | Yamasaki | Nov 2008 | A1 |
20080289305 | Girondi | Nov 2008 | A1 |
20090007785 | Kimura et al. | Jan 2009 | A1 |
20090032385 | Engle | Feb 2009 | A1 |
20090152092 | Kim et al. | Jun 2009 | A1 |
20090162269 | Barger et al. | Jun 2009 | A1 |
20090217576 | Kim et al. | Sep 2009 | A1 |
20090257932 | Canari et al. | Oct 2009 | A1 |
20090283395 | Hippe | Nov 2009 | A1 |
20100095521 | Bertini et al. | Apr 2010 | A1 |
20100106310 | Grohman | Apr 2010 | A1 |
20100113266 | Abe et al. | May 2010 | A1 |
20100115912 | Worley | May 2010 | A1 |
20100119425 | Palmer | May 2010 | A1 |
20100181297 | Whysail | Jul 2010 | A1 |
20100196597 | Di Loreto | Aug 2010 | A1 |
20100276269 | Schuecker et al. | Nov 2010 | A1 |
20100287871 | Bloom et al. | Nov 2010 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
20100314234 | Knoch et al. | Dec 2010 | A1 |
20110000284 | Kumar et al. | Jan 2011 | A1 |
20110014406 | Coleman et al. | Jan 2011 | A1 |
20110048917 | Kim et al. | Mar 2011 | A1 |
20110088600 | McRae | Apr 2011 | A1 |
20110120852 | Kim | May 2011 | A1 |
20110144406 | Masatsugu et al. | Jun 2011 | A1 |
20110168482 | Merchant et al. | Jul 2011 | A1 |
20110174301 | Haydock et al. | Jul 2011 | A1 |
20110192395 | Kim | Aug 2011 | A1 |
20110198206 | Kim et al. | Aug 2011 | A1 |
20110223088 | Chang et al. | Sep 2011 | A1 |
20110253521 | Kim | Oct 2011 | A1 |
20110291827 | Baldocchi et al. | Dec 2011 | A1 |
20110313218 | Dana | Dec 2011 | A1 |
20110315538 | Kim et al. | Dec 2011 | A1 |
20120024688 | Barkdoll | Feb 2012 | A1 |
20120030998 | Barkdoll et al. | Feb 2012 | A1 |
20120031076 | Frank et al. | Feb 2012 | A1 |
20120125709 | Merchant et al. | May 2012 | A1 |
20120152720 | Reichelt et al. | Jun 2012 | A1 |
20120177541 | Mutsuda et al. | Jul 2012 | A1 |
20120180133 | Al-Harbi et al. | Jul 2012 | A1 |
20120228115 | Westbrook | Sep 2012 | A1 |
20120247939 | Kim et al. | Oct 2012 | A1 |
20120305380 | Wang et al. | Dec 2012 | A1 |
20120312019 | Rechtman | Dec 2012 | A1 |
20130020781 | Kishikawa | Jan 2013 | A1 |
20130045149 | Miller | Feb 2013 | A1 |
20130216717 | Rago et al. | Aug 2013 | A1 |
20130220373 | Kim | Aug 2013 | A1 |
20130306462 | Kim et al. | Nov 2013 | A1 |
20140033917 | Rodgers et al. | Feb 2014 | A1 |
20140039833 | Sharpe, Jr. et al. | Feb 2014 | A1 |
20140048402 | Quanci et al. | Feb 2014 | A1 |
20140061018 | Sarpen et al. | Mar 2014 | A1 |
20140083836 | Quanci et al. | Mar 2014 | A1 |
20140182195 | Quanci et al. | Jul 2014 | A1 |
20140182683 | Quanci et al. | Jul 2014 | A1 |
20140183023 | Quanci et al. | Jul 2014 | A1 |
20140183024 | Chun et al. | Jul 2014 | A1 |
20140183026 | Quanci et al. | Jul 2014 | A1 |
20140208997 | Alferyev et al. | Jul 2014 | A1 |
20140224123 | Walters | Aug 2014 | A1 |
20140262139 | Choi et al. | Sep 2014 | A1 |
20140262726 | West et al. | Sep 2014 | A1 |
20150122629 | Freimuth et al. | May 2015 | A1 |
20150175433 | Micka et al. | Jun 2015 | A1 |
20150219530 | Li et al. | Aug 2015 | A1 |
20150247092 | Quanci et al. | Sep 2015 | A1 |
20150287026 | Yang et al. | Oct 2015 | A1 |
20150328576 | Quanci et al. | Nov 2015 | A1 |
20150361346 | West et al. | Dec 2015 | A1 |
20150361347 | Ball et al. | Dec 2015 | A1 |
20160026193 | Rhodes et al. | Jan 2016 | A1 |
20160032193 | Sarpen et al. | Feb 2016 | A1 |
20160048139 | Samples et al. | Feb 2016 | A1 |
20160060532 | Quanci et al. | Mar 2016 | A1 |
20160060533 | Quanci et al. | Mar 2016 | A1 |
20160060534 | Quanci et al. | Mar 2016 | A1 |
20160060536 | Quanci et al. | Mar 2016 | A1 |
20160149944 | Obermeier et al. | May 2016 | A1 |
20160154171 | Kato et al. | Jun 2016 | A1 |
20160186064 | Quanci | Jun 2016 | A1 |
20160186065 | Quanci | Jun 2016 | A1 |
20170015908 | Quanci et al. | Jan 2017 | A1 |
20170182447 | Sappok et al. | Jun 2017 | A1 |
20170261417 | Zhang | Sep 2017 | A1 |
20190317167 | LaBorde et al. | Oct 2019 | A1 |
20200071190 | Wiederin et al. | Mar 2020 | A1 |
20200139273 | Badiei | May 2020 | A1 |
20200173679 | O'Reilly et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1172895 | Aug 1984 | CA |
2775992 | May 2011 | CA |
2822841 | Jul 2012 | CA |
2822857 | Jul 2012 | CA |
87212113 | Jun 1988 | CN |
87107195 | Jul 1988 | CN |
2064363 | Oct 1990 | CN |
2139121 | Jul 1993 | CN |
1092457 | Sep 1994 | CN |
1255528 | Jun 2000 | CN |
1270983 | Oct 2000 | CN |
1358822 | Jul 2002 | CN |
2509188 | Sep 2002 | CN |
2521473 | Nov 2002 | CN |
2528771 | Jan 2003 | CN |
1468364 | Jan 2004 | CN |
1527872 | Sep 2004 | CN |
2668641 | Jan 2005 | CN |
1957204 | May 2007 | CN |
101037603 | Sep 2007 | CN |
101058731 | Oct 2007 | CN |
101157874 | Apr 2008 | CN |
201121178 | Sep 2008 | CN |
101395248 | Mar 2009 | CN |
100510004 | Jul 2009 | CN |
101486017 | Jul 2009 | CN |
201264981 | Jul 2009 | CN |
101497835 | Aug 2009 | CN |
101509427 | Aug 2009 | CN |
101886466 | Nov 2010 | CN |
102155300 | Aug 2011 | CN |
202226816 | May 2012 | CN |
202265541 | Jun 2012 | CN |
102584294 | Jul 2012 | CN |
202415446 | Sep 2012 | CN |
103468289 | Dec 2013 | CN |
203981700 | Dec 2014 | CN |
105189704 | Dec 2015 | CN |
106661456 | May 2017 | CN |
107445633 | Dec 2017 | CN |
100500619 | Jun 2020 | CN |
201729 | Sep 1908 | DE |
212176 | Jul 1909 | DE |
1212037 | Mar 1966 | DE |
3315738 | Nov 1983 | DE |
3231697 | Jan 1984 | DE |
3329367 | Nov 1984 | DE |
3328702 | Feb 1985 | DE |
3407487 | Jun 1985 | DE |
19545736 | Jun 1997 | DE |
19803455 | Aug 1999 | DE |
10122531 | Nov 2002 | DE |
10154785 | May 2003 | DE |
102005015301 | Oct 2006 | DE |
102006004669 | Aug 2007 | DE |
102006026521 | Dec 2007 | DE |
102009031436 | Jan 2011 | DE |
102011052785 | Dec 2012 | DE |
0126399 | Nov 1984 | EP |
0208490 | Jan 1987 | EP |
0903393 | Mar 1999 | EP |
1538503 | Jun 2005 | EP |
2295129 | Mar 2011 | EP |
2468837 | Jun 2012 | EP |
2339664 | Aug 1977 | FR |
364236 | Jan 1932 | GB |
368649 | Mar 1932 | GB |
441784 | Jan 1936 | GB |
606340 | Aug 1948 | GB |
611524 | Nov 1948 | GB |
725865 | Mar 1955 | GB |
871094 | Jun 1961 | GB |
923205 | May 1963 | GB |
S50148405 | Nov 1975 | JP |
S59019301 | Feb 1978 | JP |
54054101 | Apr 1979 | JP |
S5453103 | Apr 1979 | JP |
57051786 | Mar 1982 | JP |
57051787 | Mar 1982 | JP |
57083585 | May 1982 | JP |
57090092 | Jun 1982 | JP |
S57172978 | Oct 1982 | JP |
58091788 | May 1983 | JP |
59051978 | Mar 1984 | JP |
59053589 | Mar 1984 | JP |
59071388 | Apr 1984 | JP |
59108083 | Jun 1984 | JP |
59145281 | Aug 1984 | JP |
60004588 | Jan 1985 | JP |
61106690 | May 1986 | JP |
62011794 | Jan 1987 | JP |
62285980 | Dec 1987 | JP |
01103694 | Apr 1989 | JP |
01249886 | Oct 1989 | JP |
H0319127 | Mar 1991 | JP |
H04178494 | Jun 1992 | JP |
H05230466 | Sep 1993 | JP |
H0649450 | Feb 1994 | JP |
H0654753 | Jul 1994 | JP |
06264062 | Sep 1994 | JP |
H06299156 | Oct 1994 | JP |
07188668 | Jul 1995 | JP |
07216357 | Aug 1995 | JP |
H07204432 | Aug 1995 | JP |
H08104875 | Apr 1996 | JP |
08127778 | May 1996 | JP |
H10273672 | Oct 1998 | JP |
H11-131074 | May 1999 | JP |
2000204373 | Jul 2000 | JP |
2000219883 | Aug 2000 | JP |
2001055576 | Feb 2001 | JP |
2001200258 | Jul 2001 | JP |
03197588 | Aug 2001 | JP |
2002097472 | Apr 2002 | JP |
2002106941 | Apr 2002 | JP |
2003041258 | Feb 2003 | JP |
2003071313 | Mar 2003 | JP |
2003292968 | Oct 2003 | JP |
2003342581 | Dec 2003 | JP |
2005503448 | Feb 2005 | JP |
2005154597 | Jun 2005 | JP |
2005263983 | Sep 2005 | JP |
2005344085 | Dec 2005 | JP |
2006188608 | Jul 2006 | JP |
2007063420 | Mar 2007 | JP |
4101226 | Jun 2008 | JP |
04159392 | Oct 2008 | JP |
2008231278 | Oct 2008 | JP |
2009019106 | Jan 2009 | JP |
2009073864 | Apr 2009 | JP |
2009073865 | Apr 2009 | JP |
2009144121 | Jul 2009 | JP |
2010229239 | Oct 2010 | JP |
2010248389 | Nov 2010 | JP |
2011504947 | Feb 2011 | JP |
2011068733 | Apr 2011 | JP |
2011102351 | May 2011 | JP |
2012102302 | May 2012 | JP |
2013006957 | Jan 2013 | JP |
2013510910 | Mar 2013 | JP |
2013189322 | Sep 2013 | JP |
2014040502 | Mar 2014 | JP |
2015094091 | May 2015 | JP |
2016169897 | Sep 2016 | JP |
1019960008754 | Oct 1996 | KR |
19990017156 | May 1999 | KR |
1019990054426 | Jul 1999 | KR |
20000042375 | Jul 2000 | KR |
20030012458 | Feb 2003 | KR |
1020050053861 | Jun 2005 | KR |
20060132336 | Dec 2006 | KR |
100737393 | Jul 2007 | KR |
10-0797852 | Jan 2008 | KR |
20080069170 | Jul 2008 | KR |
10-2011-0010452 | Feb 2011 | KR |
101314288 | Apr 2011 | KR |
10-0296700 | Oct 2011 | KR |
20120033091 | Apr 2012 | KR |
20130050807 | May 2013 | KR |
101318388 | Oct 2013 | KR |
20140042526 | Apr 2014 | KR |
20150011084 | Jan 2015 | KR |
20170038102 | Apr 2017 | KR |
20170058808 | May 2017 | KR |
101862491 | May 2018 | KR |
2083532 | Jul 1997 | RU |
2441898 | Feb 2012 | RU |
2493233 | Sep 2013 | RU |
1535880 | Jan 1990 | SU |
201241166 | Oct 2012 | TW |
201245431 | Nov 2012 | TW |
50580 | Oct 2002 | UA |
WO-9012074 | Oct 1990 | WO |
WO-9945083 | Sep 1999 | WO |
WO02062922 | Aug 2002 | WO |
WO2005023649 | Mar 2005 | WO |
WO-2005115583 | Dec 2005 | WO |
WO-2007103649 | Sep 2007 | WO |
WO-2008034424 | Mar 2008 | WO |
WO-2010107513 | Sep 2010 | WO |
WO-2011000447 | Jan 2011 | WO |
WO2011126043 | Oct 2011 | WO |
WO-2012029979 | Mar 2012 | WO |
WO2012031726 | Mar 2012 | WO |
WO-2013023872 | Feb 2013 | WO |
WO2014021909 | Feb 2014 | WO |
WO2014043667 | Mar 2014 | WO |
WO2014105064 | Jul 2014 | WO |
WO2014153050 | Sep 2014 | WO |
WO2016004106 | Jan 2016 | WO |
WO2016033511 | Mar 2016 | WO |
Entry |
---|
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at: http://dofasco.arcelormittal.com/˜/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf. |
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, Quanci et al. |
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf. |
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30. |
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29. |
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1 -Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1 -24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *. |
Walker D N et al, “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23. |
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, Quanci et al. |
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, Quanci et al. |
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, Quanci et al. |
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, Quanci et al. |
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, Quanci et al. |
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, Quanci et al. |
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, Choi et al. |
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010. |
Basset, et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C. IMechIE 2001. |
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages. |
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217. |
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546. |
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552. |
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412. |
JP 03-197588, Inoqu Keizo et al., Method and Equipment for Boring Degassing Hole in Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991. |
JP 04-159392, Inoue Keizo et al., Method and Equipment for Opening Hole for Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992. |
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, West et al. |
U.S. Appl. No. 15/443,246, filed Feb. 27, 2017, Quanci et al. |
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, West et al. |
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67. |
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32. |
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, Quanci et al. |
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25. |
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28. |
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358. |
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247. |
International Search Report and Written Opinion issued in PCT/US2015/068117, dated Apr. 18, 2016, 17 pages. |
Internatinoal Search Report and Written Opinion issued in PCT/US2015/068111, dated Apr. 18, 2016, 12 pages. |
International Search Report and Written Opinion issued in PCT/US2015/068314, dated Apr. 18, 2016, 12 pages. |
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64. |
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, Chun et al. |
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, Quanci et al. |
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages. |
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981. |
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages. |
U.S. Appl. No. 15/987,860, filed May 23, 2018, Crum et al. |
U.S. Appl. No. 16/000,516, filed Jun. 5, 2018, Quanci. |
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video. |
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple. |
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals. |
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, Quanci et al. |
U.S. Appl. No. 16/428,014, filed May 31, 2019, Quanci et al. |
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, West et al. |
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,170, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, Quanci et at. |
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, Quanci et al. |
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference, San Diego, CA, 1999, pp. 3106-3118 vol. 5. |
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184. |
Brazilian Preliminary Office Action for Brazilian Application No. BR112017014233-3; dated Oct. 15, 2019; 8 pages. |
Brazilian Preliminary Office Action for Brazilian Application No. BR1120170141973; dated Oct. 15, 2019; 8 pages. |
Brazilian Preliminary Office Action for Brazilian Application No. BR112017014186-8; dated Dec. 20, 2019; 7 pages. |
Chinese Office Action in Chinese Application No. 201580077229.8; dated Sep. 9, 2019; 24 pages. |
India First Examination Report in Application No. 201737026986; dated Sep. 27, 2019; 7 pages. |
India First Examination Report in Application No. 201737026985; dated Nov. 26, 2019; 9 pages. |
India First Examination Report in Application No. 201737026982; dated Dec. 14, 2019; 7 pages. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, titled Method and System For Dynamically Charging a Coke Oven. |
U.S. Appl. No. 14/655,204, filed Jun. 24, 2015, titled Systems and Methods For Removing Mercury From Emissions. |
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, titled Methods For Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 15/987,860, filed May 23, 2018, titled System and Method For Repairing a Coke Oven. |
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, Quanci et al. |
U.S. Appl. No. 16/845,530, filed Apr. 101, 2020, Quanci et al. |
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, Ball et al. |
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, Crum et al. |
Brazilian Examination Report for Brazilian Application No. BR112017014186-8; dated Jul. 21, 2020; 27 pages. |
Brazilian Examination Report for Brazilian Application No. BR112017014233-3; dated Jul. 21, 2020; 19 pages. |
Brazilian Examination Report for Brazilian Application No. BR112017014197-3; dated Jul. 21, 2020; 24 pages. |
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation. |
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery. |
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing. |
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein. |
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus For Capturing Coke Oven Charging Emissions. |
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door. |
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus For Coal Coking. |
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch. |
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus For Compacting Coal For a Coal Coking Process. |
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus For Producing Coke. |
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable In Situ Spark Arrestor. |
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus For Compacting Coal For a Coal Coking Process. |
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods For Handling Coal Processing Emissions and Associated Systems and Devices. |
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle. |
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle. |
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods For Removing Mercury From Emissions. |
U.S. Appl. No. 16/000,516, filed Jun. 5, 2018, titled Systems and Methods For Removing Mercury From Emissions. |
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295. |
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods. |
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, titled Methods and Systems For Improved Coke Quenching. |
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods For Improving Quenched Coke Recovery. |
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods For Improving Quenched Coke Recovery. |
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods For Improving Quenched Coke Recovery. |
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods For Controlling Air Distribution in a Coke Oven. |
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, titled Vent Stack Lids and Associated Systems and Methods. |
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems For Improved Quench Tower Design. |
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, titled Methods and Systems For Improved Quench Tower Design. |
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods For Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, titled Systems and Methods For Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, titled Coke Ovens Having Monolith Component Construction. |
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing, now U.S. Pat. No. 10,041,002. |
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens. |
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating The Same, and Methods Therefor. |
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, titled Exhaust Flow Modifier, Duck Intersection Incorporating The Same, and Methods Therefor. |
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties. |
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627. |
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System. |
U.S. Appl. No. 15/443,246, now U.S. Pat. No. 9,976,089, filed Feb. 27, 2017, titled Coke Oven Charging System. |
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations. |
U.S. Appl. No. 16/428,014, filed May 31, 2019, titled Improved Burn Profiles for Coke Operations. |
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility. |
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17,076,563, filed Oct. 21, 2020, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes. |
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, titled Systems and Methods for Treating a Surface of a Coke Plant. |
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection. |
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems. |
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas. |
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 16/729,170, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods. |
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, titled Heat Recovery Oven Foundation. |
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method. |
Number | Date | Country | |
---|---|---|---|
20160186063 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62098935 | Dec 2014 | US |