1. Field
The following invention disclosure is generally concerned with augmented reality visual systems and specifically concerned with stored data recall modes which depend upon system spatial states.
2. Background
Augmented reality (AR) is a term which can be used to describe a live view image of a physical or ‘real-world environment, wherein elements of the image are augmented by computer-generated such as graphics and other information.
For graphics and information generated by a computer to be most relevant, AR systems need to ‘know’ what is in their field-of-view. Systems that are used to generate these augmented graphics generally fall into two categories; visual based AR and sensor based AR. Visual based AR systems analyze the image to display the graphics in relation to a detected pattern or object. The system may ‘look’ for markers in a captured image of a scene that may be machine analyzed in the imaging device computing station of the mobile device or conversely, convey the image to a remote computing station to be analyzed there, for example via cloud computing resources. Results are returned and used to be displayed along with actual images of a scene being addressed. This method generally works best at close range and in well-lit situations with no intervening obstructions. Examples of visual based AR systems include those sometimes known as “Google Goggles” iPhone application from Google Inc., and the “Panasonic 3D Viera AR Greeting” application for iPhone from Panasonic Corporation.
Sensor based AR systems rely on using sensors such as, GPS, Compass, accelerometers and gyroscopes to determine physical spatial states of the device, i.e. position or location and attitude or ‘pointing direction’. Such a device can then query a database of objects that have a fixed and known location and determine what is being addressed with respect to the device pointing direction. This method is best for mobile applications where the user is out and about in the world and is gathering information about objects that are sometimes at a great distance or obscured by intervening buildings, inclement weather, hills or vehicles. Examples of sensor based AR systems and methods are well described in U.S. Pat. No. 5,815,411 “Electro-optic vision systems”, U.S. Pat. No. 7,031,875 “Pointing systems for addressing objects” and the “World Surfer” applications for iPhone and Android from GeoVector Corporation.
While systems and inventions of the art are designed to achieve particular goals and objectives, some of those being no less than remarkable, these inventions of the art have nevertheless include limitations which prevent uses in new ways now possible. Inventions of the art are not used and cannot be used to realize advantages and objectives of the teachings presented herefollowing.
Comes now, Peter Malcolm, Thomas W. and John Ellenby with inventions of a multi mode search apparatus and method for augmented reality visual systems.
The present invention includes methods of switching between visual based and sensor based search methods—in response to multiple detected conditions. It can be imagined that one may want to have a single device or application that is capable of performing both visual based and sensor based AR depending on the situation they find themselves in. Imagine a user who is in an art gallery. They see a painting they would like to know more about. They address it with their AR device and it analyzes the image, determines what the painting is and recalls from a prescribed computer memory information relating to the addressed object and further delivers a wealth of information about the painting as a presentation consumed by the user via viewing. With the same AR device, a user may then step out of the art gallery onto the street to see a nondescript building in the distance and decides they would like more information about it. They address the building with their AR device by pointing it theretowards the building and the sensors determine the location and the orientation of the device, then query a database based on those spatial parameters to determine which buildings are in that direction. In one version, the device returns a list of buildings from near to far and gives the user a choice of selecting to receive all of the relevant information about the building of interest. The user did not have to tell the device to utilize visual or sensor based AR mode. The device itself determined which mode to use based on the state of the camera. In this example the device analyzed the focal distance of the camera. While in the museum the camera was focused at a short distance and device selected visual based AR mode based on that information. While outside the camera was focused at a great distance and the device was instructed to utilize sensor based AR mode based on the focus state of the system. Other methods of analyzing camera states and image quality can be utilized to determine the recall and search modes, visual or sensor, that the device utilizes. Analyzing the state of the sensors, in particular the GPS or other positioning means, may also be used to determine a preferred mode to be used.
Today we have AR systems that only use position and attitude means to determine what is being addressed by a device. We also have AR systems that rely on visual recognition techniques, the cameras input and analysis of the image, to determine what is being addressed by a device. Typically the position and attitude determining devices are used when a user is querying a real world scene and desires information about a real world object or landmark (Sensor Mode). The visual devices are usually used when a user is trying to find out more information about a book, CD, painting etc, or is reading some kind of visual encoding such as a barcode or QR code (Visual Mode) or in some cases recognizing an important building or distinctive landmark. Applications that rely on position and attitude of a device are not very good at identifying small individual objects, and applications that rely on visual recognition techniques are not very good at identifying all buildings, landmarks etc.
The benefits of combining both methods into one device or application would be of great merit to the user who desires both functionalities. Automatically switching between these modes based upon various conditional including those which relate to the system physical and operational states and determining which of the sensors to employ is the subject of the present invention.
One example solution is to monitor the focal length of the camera as the user addresses an object or scene. If the camera is focusing on an object at a close range it is most likely addressing a small object and Visual Mode should be employed. There would be no need to activate the GPS and heading sensors to initiate a query based primarily on image content of the scene being addressed. If the camera is focusing at a distance (far field) the device is most likely addressing a real world scene and Sensor Mode should initially be employed to effect a search for information relating to the scene. There would be less need to analyze the image for recognition of its content.
Additionally, when such a device is first activated, the camera focal length may be queried and this information may be used to determine which search mode to activate initially. In example, if the local length is determined to be below a certain threshold then the device would activate Visual Mode, begin analyzing the image and would not query the GPS or heading sensor at that time. If the local length is determined to be greater than a certain threshold the device would then activate Sensor Mode, query the sensor (GPS, compass, etc.) and search a database based upon the results of these queries. In this way power may be saved and latency reduced by automatically using the desired search method that fits the situation.
Switching between Visual Mode and Sensor Mode may be activated based upon various factors and conditions including by way of example:
1. Range to an object This range may be determined by focal length of the imaging means (the camera), an active range finder such as a laser or other means. Note that the range threshold that determines which type of search to use could itself be modified based upon various factors such as time of day, local light level, high contrast in image, local weather, etc.
2. Time of day. Say for example it is night time in the location where the search is to take place. In this case the default may always be Sensor Mode as Visual Mode is seriously degraded at night.
3. Low light detected in this case also the default may always be Sensor Mode as Visual Mode is seriously degraded when insufficient light is available to enable an image of sufficient detail to be captured and analyzed. It should be noted that the light level may not be restricted to visual light. Many devices available today have image intensification means or broad spectrum sensitivity and are able to “see” in low light and the infrared and ultra violet spectrums for example. In these cases, even though the local visual light level may appear low to the user of the device, devices with these image intensification or broad spectrum capabilities would potentially still be able to function in Visual Mode. Additionally illumination by the device itself may be provided in the form of visual light, infrared light, UV etc.
4. Camera unable to focus and hence range using focal length is unavailable. A subset of this may be the instance that the camera is unable to focus due to excessive motion of camera or relative mention of the subject. For example, excessive vibration may be detected by the accelerometers and/or gyros of the device or alternatively by analysis of the captured image stream.
5. Captured image contrast too high and hence sufficient detail to analyze image is unavailable.
6. Local weather. With the knowledge of location provided using the position of the device to query a remote service providing local weather information the device may have knowledge of the local weather conditions. Examples when Visual Mode would be seriously degraded would be heavy rain, fog or snow.
7. Loss of location, e.g. loss of GPS or other location determining means. In this case Sensor Mode would be unavailable and Visual Mode would be the default. This may happen when the device is taken into a building for example. It should be noted that various methods for determining the position of a device when indoors, such as inertial navigation (INS) based upon. Monitoring the devices accelerometers, gyros, etc. are or soon will be available in miniaturized form and if such positioning was available to the device then Sensor Mode would still be an option with the device simply switching from one position determining means to another.
8. Severe magnetic interference likely causing poor compass indications. An example would be complete saturation of magnetic sensor or over a preset limit such as 90 degree swing reading with negligible motion detected by accelerometer and/or gyro. In this case Sensor Mode may be automatically disabled. Alternatively, if the magnetic interference is above a first below a second threshold and the magnetic field is from a source with a known location and of a known strength then, by using a table of offsets based upon the relative range to the known source of the magnetic field (i.e. based upon the determined position of the device and the known position and strength of the source of the magnetic field) or comparing the determined position of the device to a geolocated model of the region of magnetic interference, a dynamic offset may be determined and applied such that the heading is adjusted accordingly and hence Sensor Mode may still remain an option.
9. Known proximity to or location in known areas of strong magnetic fields based upon location of the device. If the device is close to areas or objects that have high magnetic fields, such as power cables, speakers such as those used in concert halls or a building with a high steel content for example, then Sensor Mode may be automatically disabled.
10. Poor Attitude Information Analysis of the sensor suite indicating poor reliability from gyro or accelerometers due to high rate of motion such as in a banking aircraft, or a rapidly cornering vehicle. In this case Sensor Mode may be automatically disabled.
11. Uncalibrated Sensors User failure or device inability to calibrate the sensor suite. In this case Sensor Mode may be automatically disabled and the user alerted.
There would also be instances where both Visual Mode and Sensor Mode could be used in combination, especially when aligning graphics to real world scenes. Determining how the device is used in this manner could be set by the user as their default means or some pre-set software algorithm for example failing to find sufficient objects of interest in view using one method Would automatically seek to use both methods essentially simultaneously.
The results of both types of search could be displayed to the user for manual selection. This could be further refined by using algorithms to determine the probability of accuracy of the results of each type of search based upon various sensed conditions such as location. For example a device in a known position in Tokyo is presented with the Eifel Tower in Paris as a result of Visual Mode search and the Tokyo Tower as a result of the Sensor Mode search. Given the knowledge of the location of the device as determined by the GPS or other positioning means the device would display a very low (perhaps even 0%) probability that the result of the Visual Mode search is accurate.
The mode switching may be within one application that provides both types of search or may be from individual application to individual application, each providing a specific type of search.
These and other features, aspects, and advantages of the present inventions will become better understood with regard to the following description, appended claims and drawings where:
Throughout this disclosure, reference is made to some terms which may or may not be exactly defined in popular dictionaries as they are defined here. To provide a more precise disclosure, the following term definitions are presented with a view to clarity so that the true breadth and scope mar be more readily appreciated. Although every attempt is made to be precise and thorough, it is a necessary condition that not all meanings associated with each term can be completely set forth. Accordingly, each term is intended to also include its common meaning which may be derived from general usage within the pertinent arts or by dictionary meaning. Where the presented definition is in conflict with a dictionary or arts definition, one must consider context of use and provide liberal discretion to arrive at an intended meaning. One will be well advised to error on the side of attaching broader meanings to terms used in order to fully appreciate the entire depth of the teaching and to understand all intended variations.
By ‘mobile device’ it is meant a mobile computing platform having physical state measuring capacity including position, location and orientation whose position and orientation may vary or be varied by a user—in example a hand held computing device such as a smart-phone.
By “sensor mode search” it is meant a method of searching a database utilizing information regarding the physical state of the device. This physical state may include, but is not limited to, the location or position of the device and the attitude or pointing direction of the device.
By “visual mode search” it is meant a method of Searching a database utilizing information ascertained by analysis of a captured image.
In accordance with each preferred embodiment of the inventions, search mode switching methods are provided. It will be appreciated that each of the embodiments described include methods and that methods of one preferred embodiment may be different than methods of another embodiment:. Accordingly, limitations read in one example should not be carried forward and implicitly assumed to be part of an alternate example.
The examples above are directed to specific embodiments which illustrate preferred versions of devices and methods of these inventions. In the interests of completeness, a more general description of devices and the elements of which they are comprised as well as methods and the steps of which they are comprised is presented herefollowing.
One will now fully appreciate how augmented reality visual systems may include search facility which is dependent upon multiple operational modes. Although the present invention has been described in considerable detail with clear and concise language and with reference to certain preferred versions thereof including best modes anticipated by the inventors, other versions are possible. Therefore, the spirit and scope of the invention should not be limited by the description of the preferred versions contained therein, but rather by the claims appended hereto.
This application claims benefit from provisional application filed Mar. 14, 2011 having application No. 61/465,096.
Number | Date | Country | |
---|---|---|---|
61465096 | Mar 2011 | US |