Embodiments of the present invention relate to radio frequency (RF) transceivers, and more particularly to a RF transceiver having different output power configurations.
Advances in wireless technology enable wireless communication devices to support signal transmission and reception over multiple frequency bands and communication standards. For example, a cellular phone may be able to communicate using WCDMA, CDMA, GSM, LTE standards for cellular telephony, IEEE 802.11 protocols for wireless LAN, and/or Bluetooth Low Energy (BLE) for piconet wireless communication.
However, an external (i.e., off-chip) switch device may increase the printed circuit board area, power consumption, and the manufacturing costs that are not suitable for high volume and low cost production of wearable wireless devices.
Embodiments of the present invention provide novel solutions to these problems.
An aspect of the present invention provides a wireless transceiver including a receive path having a first switch and configured to receive an input signal when the first switch is in an open position, a first transmit path having a second switch and configured to provide a first output signal when the second switch is in a closed position and the first switch is in a closed position, and a second transmit path having a third switch and configured to provide a second output signal when the third switch is in a closed position, the first switch is in the closed position, and the second switch is in an open position. The first, second, and third switches are integrated together with the receive path, the first RF transmit path, and the second transmit path within a same integrated circuit.
Another aspect of the present invention provides a configurable transceiver having a receive path comprising a low noise amplifier (LNA) having an input terminal coupled to an antenna, a first switch being coupled to the input terminal of the LNA and a ground potential, a first transmit path comprising a low power amplifier having an output terminal coupled to the antenna through the second switch, and a second transmit path comprising a high power amplifier having an output terminal coupled to a balun having a primary winding and a secondary winding, a third switch is coupled between an end terminal of the secondary winding and a ground potential.
Yet another aspect of the present invention provides a method of configuring a wireless transceiver comprising a receive path having a first switch, a first transmit path having a second switch, and a third transmit path having a third switch. The method may include selecting the receive path by setting the first switch in an open position, the second switch in the open position, and the third switch in the open position, selecting the first transmit path by setting the first switch in a closed position, the second switch in the closed position, and the third switch in the open position, and selecting the second transmit path by setting the first switch in a closed position, the second switch in the open position, and the third switch in the closed position.
The following description, together with the accompanying drawings, will provide a better understanding of the nature and advantages of the claimed invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present invention. The like reference labels in various drawings refer to the like elements.
The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of the preferred embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only. The embodiments are described in sufficient detail to enable one of skill in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
It will be understood that, when an element or component is referred to as “adjacent to,” “connected to,” or “coupled to” another element or component, it can be directly adjacent to, connected or coupled to the other element or 1 component, or intervening elements or components may also be present. In contrast, when an element is referred to as being “directly connected to,” or “directly coupled to” another element or component, there are no intervening elements or components present between them. It will be understood that, although the terms “first,” “second,” “third,” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terms “a”, “an” and “the” may include singular and plural references. It will be further understood that the terms “comprising”, “including”, having” and variants thereof, when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and; or groups thereof. Furthermore, as used herein, the words “and/or” may refer to and encompass any possible combinations of one or more of the associated listed items.
The use of the terms first, second, etc. do not denote any order, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. does not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. As used herein, the term “radio frequency”, “RF,” and “wireless” are interchangeably used.
Receive path 21 may include a low noise amplifier (LNA) 211 configured to receive a RF input signal 213 from antenna 250 through an ac coupling capacitor C11. Receive path 21 may also include a first switch S1 coupled between one end of coupling capacitor C11 and one end of a first DC block capacitor C12. First DC block capacitor C12 has another end coupled to a ground potential GND. Receive path 21 may further include a direct current (DC) bias circuit A 215 configured to provide a bias voltage to LNA 211. In one embodiment, LNA 211 may have an internal DC bias circuit, in this case DC bias circuit 215 may be omitted. In one embodiment, receive path 21 may also include an LNA impedance matching inductor 214.
First RF transmit path 22 may include a low power amplifier (LP AMP) 221, a second switch S2, and a second DC block capacitor C21 having one end coupled to main signal path 200 and another end coupled to one end of second switch S2. Second switch S2 has another end coupled to an output of LP AMP 221. LP AMP 221 receives an RF first input signal t1 and provides an amplified output signal 223. First RF transmit path 22 may further include a second DC bias circuit B 225 coupled to second switch S2 and configured to provide a DC bias voltage 226 to output signal 223 when second switch S2 is in a closed position. Bias voltage 226 is blocked by DC block capacitor C21 so that only output signal 223 reaches main signal path 200. In one embodiment, the low power amplifier may have an internal bias voltage or current so that DC bias circuit B 225 may be omitted.
Second RF transmit path 23 may include a high power amplifier (HP AMP) 231 and a balun 235 having a primary winding 235p and a secondary winding 235s. Primary winding 235p has a tap connected to a power supply Vbat. Secondary winding 235s is electromagnetically coupled to primary winding 235p and has one end coupled to main signal path 200 and another end coupled to the ground potential GND through a third switch S3. HP AMP 231 is configured to receive a signal t2 and output an amplified differential output signal 232 to balun 235. Balun 235 is configured to convert differential signal 232 to a single-ended signal 233 and provide to node 201. In one embodiment, single-ended signal 233 of secondary winding 235s of balun 235 can directly drive antenna 250 without an additional power amplification stage.
In one embodiment, transceiver 20 may further includes two switchable capacitors C31, C32 coupled in parallel to primary winding 235p in order to obtain s switchable high input impedance of balun 235.
In one embodiment, transceiver 20 may also include an off-chip matching network 260 coupled between node 201 and antenna 250. Matching network 260 is configured to match an output impedance of HP AMP 231 to an impedance of a load, i.e., antenna 250.
In some embodiments, receive path 21 has a first power supply voltage V1, first transmit path 22 has a second power supply voltage V2, and second transmit path 23 has a third power supply voltage V3. Transceiver 20 may be an integrated circuit having a core region that is supplied by a fourth supply voltage V4. For example, the core region may include core transistors and pass gate transistors that are operating at the fourth supply voltage V4. First transmit path 22 and second transmit path 23 each may have transistors in the peripheral region of the integrated circuit, the transistors in the peripheral region may have a gate oxide layer thickness thicker than the gate oxide thickness of the transistors of the receive path. In one embodiment, V4<V1<V2<V3. For example, the supply voltage V4 of the core region including logic circuit 270 may be about 0.9V, the supply voltage V1 of the receive path including the LNA may be in the range between 1.0V and 1.2V, the supply voltage V2 of the first transmit path including the LP AMP may be about 1.8V, and the supply voltage V3 of the second transmit path including the HP AMP may be about 3.3V. In one embodiment, the voltage Vbat applied to the center tap of the primary winding of the balun is about 3.3V, i.e., the same as V3.
As used herein, low voltage MOS transistors (e.g., FETs) are referred to as transistors having a thin gate oxide layer (on the order of 2.6 nm thick), whereas high voltage FET are referred to transistors that are fabricated with a thicker gate oxide (on the order of 5.6 nm thick). Additionally, the high voltage FETs have a longer channel length of 250 nm or more, vs. 40 nm for a low voltage FET (in 40 nm process). Low voltage FETs (also referred to as core FETs) constitute the largest portion of the chip functionality. High voltage FETs (also referred to as IO FETs) are predominantly used for Input and Output (IO) signals. The low voltage FET has a far superior Figure of Merit, defined as FOM=RDS×CGS (lower is better); lower on-resistance and lower parasitic capacitance. It is highly favorable to implement a switch using a low voltage FET provided it can be assured that it remains within its safe operating voltage.
Switches S1 and S3 are low voltage n-type field effect transistors (nFETs) whereas switch S2 is a high voltage IO n-type field effect transistors (nFET). In the following, a switch being in a closed (open) positon is referred to as the nFET is in a “turned on” or “conducting” (“turned off” or “non-conducting”) state.
Logic circuit 270 is configured to generate control signals to set switches S1, S2, and S3 to their respective positions, e.g., closed position, and open position. Logic circuit 270 may include digital logic gates (e.g., inverters, NAND, NOR, and/or XOR gates) or a microcontroller, microprocessor, programmable logic array, and/or field programmable logic.
Transceiver 20 may be operated in a variety of operating modes. In one embodiment, transceiver 20 may be operated in a receive mode. In the receive mode, logic circuit 270 provides a first control signal k1 to set (actuate) first switch S1 to an open position, a second control signal k2 to set second switch S2 to the open position, and a third control signal k3 to set third switch to the open position. In one embodiment, transceiver 20 may be operated in a first transmission mode. In the first transmission mode, logic circuit 270 provides first control signal k1 to set first switch S1 to a closed position, second control signal k2 to set second switch S2 to the closed position, and third control signal k3 to set third switch to the open position. In one embodiment, transceiver 20 may be operated in a second transmission mode. In the second transmission mode, logic circuit provides first control signal k1 to set first switch S1 to the closed position, second control signal k2 to set second switch S2 to the open position, and third control signal k3 to set third switch to the closed position.
These configurations of the transceiver have important advantages in terms of electrical performance and high level of integration. As explained in the background section, a high drain-to-source voltage could exceed the breakdown voltage of the transistors used for S1 and S3. Therefore, both the first switch (e.g., nFET) S1 and the third switch (e.g., nFET) S3 are in the open position when the high power transmit path is not in use. When the high power transmit path is in use, the first switch S1 and the third switch S3 (nFET) are conducting, lowering the risk of a breakdown of the nFETs.
It will be appreciated by those of ordinary skill in the art that the components in first transmit path 22 and second transmit path 23 are shown for illustrative purpose only, and that first transmit path 22 and second transmit path 23 may be implemented using any alternative architectures. For example, the low power amplifier and the high power amplifier in the respective first transmit path and the second transmit path may have one or more amplification stages. The configurations and techniques of the present invention can be applied to such alternative architectures.
In one embodiment, input signal 213 to LNA 211 is a single-ended signal, output signal 223 provided at an output of LP AMP 221 is a single-ended output signal, and output signal 232 provided at an output of HP AMP 231 is a differential signal. In one embodiment, LNA 211 is supplied with a first supply voltage V1, LP AMP 221 is supplied with a second supply voltage V2, HP AMP 231 is supplied with a third supply voltage V3, and logic circuit 270 is supplied with a second supply voltage V4. In one embodiment, V4<V1<V2<V3. In one embodiment the voltage Vbat at the center tap of primary winding 235p of balun 235 is equal to V3.
It is understood that the number of transmission paths and the number of receive paths can be any integer number. In the example embodiments shown in
Referring to
At step 405, when the first transmit path is desired and selected, method 40 includes setting the first switch in the closed position, the second switch in the closed position, and the third switch in the open position. That is, during the transmission operation with the first transmit path, the first switch and the second switch are closed (the associated FETs are turned on), and the third switch is open (the associated FET is turned off).
At step 407, when the second transmit path is desired and selected, method 40 includes setting the first switch in the closed position, the second switch in the open position, and the third switch in the closed position. That is, during the transmission operation with the second transmit path, the first switch is closed (the associated FET is turned on), the second switch is open (the associated FET is turned off), and the third switch is closed (the associated FET is turned on).
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is derived to achieve the same purpose may be substituted for the specific embodiments shown. Many modifications of the invention will be apparent to those of ordinary skill in the art. Accordingly, this disclosure is intended to cover any modifications or variations of the invention. It is intended that this invention be limited only by the following claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 15/952,228, filed on Apr. 12, 2018, entitled “MULTI-MODE CONFIGURABLE TRANSCEIVER WITH LOW VOLTAGE SWITCHES,” which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7283793 | McKay | Oct 2007 | B1 |
7944296 | Lee | May 2011 | B1 |
8044540 | Lee | Oct 2011 | B2 |
8107906 | Lum | Jan 2012 | B2 |
8165535 | Ahn et al. | Apr 2012 | B2 |
8624658 | Jones et al. | Jan 2014 | B1 |
9031517 | Jerng | May 2015 | B2 |
9160377 | Lee | Oct 2015 | B2 |
9614574 | Maimon et al. | Apr 2017 | B2 |
10181829 | Oshita | Jan 2019 | B2 |
10236838 | Ngai | Mar 2019 | B2 |
10637528 | Liu | Apr 2020 | B2 |
10715204 | Hur | Jul 2020 | B2 |
20040212437 | Kim | Oct 2004 | A1 |
20060232358 | Jedeloo | Oct 2006 | A1 |
20070037600 | Fukuda | Feb 2007 | A1 |
20070281629 | Ahn et al. | Dec 2007 | A1 |
20080144707 | Tsfati | Jun 2008 | A1 |
20080299913 | Han et al. | Dec 2008 | A1 |
20090029733 | Schilling et al. | Jan 2009 | A1 |
20090036065 | Siu | Feb 2009 | A1 |
20090209214 | Harel | Aug 2009 | A1 |
20090253384 | Gorbachov | Oct 2009 | A1 |
20090273411 | Roufoogaran | Nov 2009 | A1 |
20090289721 | Rajendran et al. | Nov 2009 | A1 |
20100026459 | Seppa | Feb 2010 | A1 |
20100040178 | Sutton et al. | Feb 2010 | A1 |
20100157858 | Lee | Jun 2010 | A1 |
20110195675 | Nitsche | Aug 2011 | A1 |
20110273355 | Ahn | Nov 2011 | A1 |
20120235737 | Reisner | Sep 2012 | A1 |
20120295559 | Kwok et al. | Nov 2012 | A1 |
20140015731 | Khlat et al. | Jan 2014 | A1 |
20140043203 | Sabouri | Feb 2014 | A1 |
20140187284 | Sanchez et al. | Jul 2014 | A1 |
20150035617 | Leipold et al. | Feb 2015 | A1 |
20150050901 | Lee | Feb 2015 | A1 |
20150070097 | Bauer | Mar 2015 | A1 |
20150311922 | Bakalski | Oct 2015 | A1 |
20150381171 | Cebi et al. | Dec 2015 | A1 |
20160164547 | Kim | Jun 2016 | A1 |
20170070199 | Anderson et al. | Mar 2017 | A1 |
20170110451 | Fraser et al. | Apr 2017 | A1 |
20170250728 | Afsahi et al. | Aug 2017 | A1 |
20170331458 | Tomita | Nov 2017 | A1 |
20170338839 | Little | Nov 2017 | A1 |
20180226932 | Beaudin | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
103986493 | Aug 2014 | CN |
105610463 | May 2016 | CN |
1237222 | Sep 2002 | EP |
3142258 | Apr 2004 | EP |
2004036778 | Apr 2004 | WO |
Entry |
---|
EP Communication dated Apr. 8, 2020. |
EP Office Action with Search Report dated Jun. 18, 2019 in the corresponding EP application (application No. 18793157.1). |
Number | Date | Country | |
---|---|---|---|
20190319664 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15952228 | Apr 2018 | US |
Child | 16404720 | US |